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Abstract

We introduce choice-matching, a class of mechanisms for eliciting honest responses to a multi-

ple choice question (MCQ), as might appear in a market research study, opinion poll or economics

experiment. Under choice-matching, respondents are compensated through an auxiliary task, e.g.,

a personal consumption choice or a forecast. Their compensation depends both on their perfor-

mance on the auxiliary task, and on the performance of those respondents who matched their

response to the MCQ. We give conditions for such mechanisms to be strictly truth-inducing, fo-

cusing on a special case in which the auxiliary task is to predict the answers of other respondents.
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1 Introduction

More than other social sciences, economics favors the hard data revealed by agents’ decisions, as

opposed to surveys of their opinions or tastes. Yet subjective reports are often an irreplaceable source

of information. Firms that want to know how consumers would value a hypothetical new product,

government agencies asking external experts to assess the long-term impact of a policy, and economists

working with self-reported panel-data all rely on answers provided by individuals whose effort or

honesty may be in doubt. We propose a new class of incentive-compatible mechanisms for this problem

that we call choice-matching.1 The idea is to link explicit opinions and judgments, with an auxiliary

task that reveals the respondents’ “types”, but only implicitly. In our canonical version, respondents

answer a multiple choice question (MCQ), and the auxiliary task asks respondents to predict how often

each answer was chosen by all other respondents.

A respondent’s score is then a weighted sum of a prediction accuracy score and the average pre-

diction accuracy score of all the respondents who endorse the same answer to the MCQ. We state

conditions under which this mechanism is truth-inducing, the major one being that there is a one-to-

one correspondence between predictions and answers to the MCQ. However, the guiding idea behind

choice-matching is more general, and the prediction question can be replaced with other kinds of tasks

or games.

We illustrate choice-matching with an example of consumer evaluations of a trial product in section

2. Section 3 presents the model and our results in the canonical version of our mechanism. Section 4

explains how the choice-matching payment rules can be used without asking for predictions of other

respondents’ answers, and discusses possible applications in marketing and experimental economics.

Section 5 compares our method to previous proposals. Section 6 concludes.

2 Example

Suppose that a firm intends to launch a new product and asks respondents to evaluate a trial version

on a scale from 1 to 5. A rating that best represents a respondent’s true opinion is their type. The firm

would like to know the actual percentage of each type, but may be worried that some respondents may
1This paper integrates results from three independent, previously unpublished documents: Cvitanić and Prelec

(2014), Riley (2014) and Tereick (2016).
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not answer honestly, for lack of effort or because they feel obliged to endorse the product. The firm

wants to provide monetary incentives for honest answers. For these incentives to be strict, there must

be some additional input to the mechanism beyond the answers themselves (Radanovic and Faltings,

2013; Cvitanić et al., 2017). In our canonical version of choice-matching, this input is a respondent’s

prediction of the relative frequency of each of the five ratings submitted by other respondents in the

sample.

Let xr = (xr1, ...,xr5) denote the reported rating of respondent r, where xrk = 1 if r’s answer is “k”

and xrk = 0 otherwise. yr = (yr1, ..,yr5), is then a vector of predictions, where yrk is the prediction by

respondent r of the frequency of others choosing k as their MCQ answer.

The “prediction score” that respondent r receives is a function S(x̄−r,yr) of his prediction vector

yr and the distribution x̄−r of the reported ratings’ frequencies, excluding his own reported rating.

The firm chooses S to be a proper scoring rule (see Savage, 1971, Gneiting and Raftery, 2007, and

Definition 2 below). It is then in the interest of each respondent to report their expected value of

the frequencies, which we call their best prediction. We denote by S̄−r the average prediction score

of respondents other than r who report the same rating as r, if any. Respondent r receives a score

of zero if among the others’ ratings there is any missing ratings option, not reported by at least one

respondent other than r. If there is no missing option, he receives

λS+ (1−λ) S̄−r

with λ ∈ (0,1) an arbitrary weight chosen by the survey planner.

Why might we expect this payment formula to be truth-inducing? Observe, first, that respondent

r can safely assume that the payment formula is in effect, because the presence or absence of a missing

option does not hinge on his rating, and if the formula is not in effect he receives zero no matter what

he does. This triggering mechanism was first employed by Baillon (2017), for the binary case.

The term λS provides incentives for giving best predictions because S is a strictly proper scoring

rule. If a respondent believes that those who share his type also have (roughly) the same expectations

of type frequencies, he will anticipate that they will also give (roughly) the same predictions. Then,

if all respondents other than him provide honest ratings, the average of the prediction scores of all

those with the same rating is (roughly) equal to the score corresponding to their best prediction. By
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providing his honest rating, a respondent is scored according to a prediction (roughly) identical to

the one he made himself, ensuring that the second term provides the incentives to answer the MCQ

honestly. These incentives apply even if some respondents do not provide a personal prediction. Thus,

in a large survey most respondents could be asked just for their ratings (letting λ= 0 in their scoring

formula).

For the above arguments, it is not crucial that respondents use what we call best predictions. What

is important is that respondents of the same type believe that approximately the same predictions are

optimal, and respondents of different types believe that different predictions are optimal, as we discuss

below. Previous mechanisms have also invoked this assumption in some form, but with additional

requirements or limitations (Prelec, 2004; Witkowski and Parkes, 2012; Radanovic and Faltings, 2013,

2014; Zhang and Cheng, 2014; Baillon, 2017). We will compare choice-matching to these proposals at

the end of the paper.

3 Model and Results

3.1 Setup

Generalizing the previous example, let A= {1, . . . , M} denote the set of possible answers to an MCQ,

and let N be the number of respondents. The respondent’s type is denoted by random vector T r,

where T ri = 1 if i ∈ A would be respondent r’s honest answer to the question, and T ri = 0 otherwise.2

Xr = (Xr
1 , ...,X

r
M ) denotes the chosen answer or reported type of respondent r, where Xr

k = 1 if

r’s answer is “k” and Xr
k = 0 otherwise. The answer is honest iff Xr = T r. For i ∈ A, T̄i

−r =
1

N−1
∑
s′ 6=r T

s′
i is the frequency of types i in the sample, after excluding respondent r, and similarly,

X̄−ri = 1
N−1

∑
s6=r X

s
i is the frequency of reported types i. Y ri is respondent r’s prediction of X̄−ri . The

realizations of Xr
i and Y ri are denoted xri , yri , the realization of T ri is tri , and so on.

A respondent’s score will depend on the reported types and predictions of all respondents, and the

following choice-matching trigger:

Definition 1. The choice-matching triggerMr of respondent r is the event such that each answer

i ∈A is reported at least once by respondents other than r. That is,Mr occurs if and only if there is
2We will say in this case that r has type i.
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no i ∈ A with x̄−ri = 0. The type-matching trigger Er of respondent r is the event such that each

type i ∈ A is represented at least once among respondents other than r.

Note that when all respondents other than r respond honestly, the choice-matching trigger becomes

identical to the type-matching trigger. Assumptions A1-A4 below are sufficient, but not necessary, for

choice-matching to be honesty-inducing. In subsection 3.2 we explain how they can be relaxed.

Assumption 1. Common prior. There exists a common prior on the distribution of T 1, ...,TN .

Importantly, we do not assume that the survey planner knows the prior, only that it is known to

the respondents.

Assumption 2. Non-degeneracy. For any respondent r and any realization tr: P (Er | T r = tr)> 0.

Each respondent considers it possible that all distinct types are represented in the rest of the

sample. Although a technical assumption, non-degeneracy cannot be relaxed without changing our

approach substantially. The method thus puts some constraints on the survey design: the number of

answer options must be less than the number of respondents (continuous scales are not allowed), and

all options must have a chance of receiving an honest endorsement.

We now write r’s expectation of others’ type frequencies, conditioning on own type k and Er, as

pr,k = E
[
T̄−r | T rk = 1, Er

]
Assumption 3. Stochastic relevance. For any two respondents r, s and any answer options,

k, i ∈ A:

pr,k 6= ps,i if k 6= i

Assumption 4. Impersonal updating. For any two respondents r, s and any answer option, k ∈A:

pr,k = ps,k

Our version of stochastic relevance differs slightly from the standard one (Miller et al., 2005),

because expectations are also conditioned on the type-matching trigger Er (this further implies N ≥

M + 2, since N =M + 1 and Er yield pr,k = (1/M,..,1/M), for all r,k).

4

Electronic copy available at: https://ssrn.com/abstract=2905447



Stochastic relevance is a mild requirement, with substantial support in the experimental psychology

literature (Marks and Miller, 1987). The finding there that respondents’ answers about their personal

characteristics are strongly correlated with their predictions about the distribution of answers in the

sample was labeled the “false consensus effect” (Ross et al., 1977), although, as noted by Dawes (1989),

it can be consistent with Bayesian updating.

Stochastic relevance may be violated if the distribution of a particular characteristic – for instance

gender – is common knowledge. However, such a characteristic can be made stochastically relevant if

combined with characteristics whose distribution is not common knowledge. For example, a respondent

could be asked to indicate both gender and beverage preference, and to predict their joint distribution

in the sample. If the correlation between beverage preference and gender is not known a priori, then

one’s own gender will be informative of the joint gender-preference distribution.

Impersonal updating is a more demanding assumption, stating that all respondents of the same type

have identical expectations about type frequencies. It will not hold exactly in practice, as respondents

with identical answers to an MCQ are likely to report differing predictions. As we discuss below, the

main result of this section continues to hold when impersonal updating is only approximately true.

Assumptions A1-A4 generically hold in a setting in which respondents’ types are independently

and identically distributed conditional on a certain state of the world.3 In our example in section 2

for instance, we could imagine that different states of the world correspond to the true quality of the

trial product and that the better the quality, the higher the probability for each respondent to have a

high honest rating.4

3.2 Inducing Honesty via Choice-Matching

We now assume A1-A4 and model the strategic setting induced by our payment rule as a Bayesian

game. A pure strategy for respondent r is a function σ(tr) = (σx(tr),σy(tr)) that maps his type to a

response (xr,yr). The profile of all respondents’ pure strategies is denoted σ(t), with entries σr(tr),
3An exact statement on the relation of the conditional i.i.d. assumption and our assumptions is given in the online

appendix. One sufficient condition for our assumptions to hold then is that N > M + 1 and that the state of the world
has a continuous distribution.

4Furthermore, our assumptions can hold even if the exact distribution of types is common knowledge. For example,
with N = 4, M = 2 and common knowledge that there are two respondents of each type, each type knows that among
the remaining three respondents there is one that matches his type and two who do not. A pair of respondents will
therefore have the same expectations if and only if the pair are of the same type, satisfying assumptions A3 and A4.
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and the profile excluding player r is denoted σ−r(t−r).

Given a real-valued payment rule R(σr(tr),σ−r(t−r)), a set of response strategies is a (Bayesian)

Nash equilibrium, if, for any response (x,y) 6= (σr(tr)), we have

E
[
R
(
σrx(tr),σry(tr);σ−r(t−r)

)
−R

(
x,y;σ−r(t−r)

)
| T r = tr

]
≥ 0 (3.1)

That is, by deviating in responses (x,y), player r would be worse off (in expectation) than by not

deviating. If the inequality is strict we speak of a strict Nash equilibrium. A Nash equilibrium

is strict in x if the inequality is strict whenever x 6= σrx(tr) and, analogously, it is strict in y if the

inequality is strict whenever y 6= σry(tr).

A strategy profile is honest if every respondent r reports xr = tr. A payment rule which has a

Nash equilibrium that is strict in x and y and honest is called strictly incentive compatible. To

make choice-matching incentive compatible, we use strictly proper scoring rules:

Definition 2. Let Z be a random vector of positive frequencies with dimension M > 1 which satisfies∑M
k=1Zk = 1. Let y be a prediction of Z. We say that the scoring rule S is strictly proper if

E [S (y,Z)] is uniquely maximized for y = E [Z].

Well-known strictly proper scoring rules are the quadratic S (y,Z) = −∑M
k=1 (yk−Zk)2, and the

logarithmic S (y,Z) =∑M
k=1 Zk log (yk).

Definition 3. Consider a respondent r who reports k as his type, and let S be strictly proper. We

say that a collection of payment rules RrS,λ induces choice-matching if

(a) In the eventMr:

RrS,λ(xr,yr,x−r,y−r) = λS(yr, x̄−r) + (1−λ) S̄−r(xr,x−r,y−r)

where λ ∈ (0,1) and S̄−r(xr,x−r,y−r) is the average prediction score achieved by the re-

spondents other than r who submit xs = xr:

S̄−r(xr,x−r,y−r) =
∑
s6=r x

r ·xsS(ys, x̄−s)∑
s6=r xr ·xs

(b) and RrS,λ(xr,yr) = 0 otherwise.
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In words, if allM possible answers are chosen by at least one respondent other than r, choice-matching

assigns him a score that is a weighted average of his own prediction score (that is, S(yr, x̄−r)) and the

prediction score of those respondents who report the same type. Otherwise, he receives zero.

We now come to the main result of this section.

Proposition 1. Under Assumptions A1-A4 any collection of payment rules RrS,λ that induces choice-

matching is strictly incentive compatible.

Proof. We show that providing honest responses and best predictions is a Nash equilibrium that is

honest and strict in x and y, hence strictly incentive compatible. Fix a respondent r with type k and

suppose that all respondents other than r provide honest responses and best predictions. Because

respondent r cannot influence the choice-matching trigger and receives zero if he is not matched, he

will condition his payoffs on being choice-matched. Given that other respondents answer honestly, this

means conditioning on the type-matching event Er. With his prediction yr, r thus maximizes

E
[
S(yr, T̄−r) |Er, T rk = 1

]

Since S is strictly proper, r maximizes his expected payoff with yr = pr,k, i.e., what we call r’s “best

prediction” is the optimal prediction from r’s perspective.5 To see that choice-matching is strictly

incentive compatible in x, consider the difference in the expected score for respondent r between

reporting tr honestly and deviating by making some dishonest report xr with xri = 1:

Pr(Er | T r)× (1−λ)E
[
S̄−r(tr, t−r,y−r)− S̄−r(xr, t−r,y−r) | T r = tr,Er

]
From non-degeneracy, Pr(Er | T r)×(1−λ)> 0. Furthermore, by impersonal updating all respondents

of the same type have the same best prediction, so that the average S̄−r is equal to the corresponding

score S, and we have

E
[
S̄−r(tr, t−r,y−r)− S̄−r(xr, t−r,y−r) | T r = tr,Er

]
= E

[
S(pr,k, x̄−r)−S(pr,i, x̄−r) | T r = tr,Er

]
5Due to non-degeneracy, Ẽ [·] := E

[
· |Er, T r

k = 1
]
is also an expectation operator, so that when S is strictly proper,

for any random vector of frequencies Z, Ẽ [S (r,Z)] is maximized by r = Ẽ [Z].
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By definition

of pr,k and since S is strictly proper, we have E
[
S(pr,k, x̄−r)−S(pr,i, x̄−r) | T r = tr,Er

]
> 0 for any

i 6= k. Thus, RS,λ is strictly incentive compatible.

3.3 Robustness of the Result

In the following, we discuss extensions of Proposition 1. First, there may be equilibria other than

the honest one. However, if respondents cannot communicate with each other, it is plausible that

respondents of the same type will adopt the same strategies (perhaps mixed). Under this symmetry

assumption, we can show that all strict equilibria are either honest, or honest up to permutation of

responses, that is, all respondents of type k report type i, all respondents of type i report type j,

and so on. Second, we discuss in which way assumptions A1-A4 can be relaxed, while still allowing

for a strict Nash equilibrium in honest strategies. Third, we point out that it is not necessary that

all respondents report both an answer to the MCQ and a prediction, and that proper scoring can be

replaced with other belief elicitation mechanisms.

A strategy profile σ is symmetric if respondents of the same type have identical strategies, i.e., if

for all respondents r and s and all types tr, ts we have σr (tr) = σs (ts) whenever ts = tr. The profile

σ̃ is a permutation profile of σ if for any respondent r and any k ∈ A, we have σ̃π(k)
(
tt
)

= σk (tr),

where π is a permutation of the answers to the MCQ.

Corollary 1. Any permutation profile of honest responses is a strict Nash equilibrium. Moreover,

when σ is a symmetric strict Nash equilibrium, then σ is a permutation profile of honest responses.

Proof. The first part of Corollary 1 follows directly from the proof of Proposition 1, replacing k by

π (k). The second part rules out pooling equilibria as follows. Since σ is symmetric, respondents of the

same type always provide the same answers. First, if respondents of different types report different

answers, the reported types σx (t) are a permutation of the (actual) type profile. As in the proof of

Proposition 1, any respondent r of type k then maximizes his expected prediction score by setting

yr` = pr,k
σ−1

x (`) for all ` ∈ A. Taken together, σ (t) is a permutation profile of honest responses. Second,

if respondents of two different types report the same type, there must be a missing answer option and

thus all respondents receive zero. Since respondents could also receive zero by endorsing the missing

answer option, the equilibrium cannot be strict.
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Permutation profiles are a relabeling of the answers to the MCQ, and provide no benefit in score

relative to the focal honest equilibrium. It is hard to see how such relabeling might be individually

or collectively advantageous. Pooling equilibria may be attractive to respondents who would like to

conceal their type. However, as the above proof shows, they are either not strict or not symmetric (or

both).

Proposition 1 and Corollary 1 still hold when we weaken the impersonal updating assumption A4.

Note first that A4 does not affect incentives for the predictions. If all respondents other than r are

honest, r should report his best prediction pr,k when his type is k. It is intuitive that r will have strict

incentives to truthfully report his type if the best prediction of all individuals of his type is “closer” to

his best prediction than the best prediction of individuals of some other type. The precise definition

of “closer” in the proof of such a result will depend on the scoring rule S. For instance, with the

logarithmic scoring rule, assumption A4 can be replaced by the assumption that the relative entropy

between the best predictions of two individuals with the same type is smaller than the relative entropy

between the best predictions of two individuals with different types. As long as the expectations of

respondents are clustered in this sense, truth-telling will remain strictly incentive-compatible.

Our method further allows that only a subsample of the respondents answer both the MCQ and

the prediction question, while the remaining respondents answer the MCQ only. To accommodate this

option theoretically, we redefine the matching trigger such that for each answer choice i ∈ A there is

a respondent s 6= r who answers i and submits a prediction. Respondents who only answer the MCQ

will receive the score S̄, provided that the (redefined) eventMr occurs. This simplifies the mechanism

for those respondents without losing incentive compatibility.

Finally, by using other types of scoring rules one can adjust choice-matching to respondents who

are not risk-neutral or do not even maximize expected utility (Offerman et al, 2009). Whichever

method is chosen, choice-matching adds minimal difficulty to these procedures, since it relies on the

same scoring principle for rewarding answers to the MCQ as for rewarding predictions. A respondent

who understands the elicitation method will thus easily understand choice-matching incentives as well.
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4 Choice-Matching Generalized

Making predictions about other respondents’ answers is an attractive default for our auxiliary task.

However, there are situations in which its use cannot be recommended. First, it may be that the

stochastic relevance of individual answer types is weak since the distribution of types in a population

is well known, and the planner does not want to include another question in the survey to reinstate

stochastic relevance. Second, some respondents may have trouble understanding the payments made

according to proper scoring rules. Finally, in some situations respondents could expect that predictions

of some other respondent type might be more accurate. For example, if a survey asks about occupation,

a respondent could have an incentive to claim to be someone that has specialized knowledge of the

empirical distribution, for instance a labor economist.

In this section, we show that there is a general principle behind choice-matching which can be

employed by methods that do not rely on predictions.

4.1 General Mechanism

To formalize the underlying principle of choice-matching, we first introduce real-valued utility-functions

uk(yr,x−r,y−r) for k ∈ A that depend on all variables except a respondent’s reported type xr. Since

respondents do not necessarily report a prediction, we refer to yr in the following as r’s y-response,

which may take values in some general response set Ω. In the prediction-based model of Section 3, the

utility functions correspond to the (realized) prediction score:

uk
(
yr,x−r,y−r

)
=


S
(
yr,x−r

)
in the case ofMr

0 otherwise.

Note that in section 3 we implicitly assumed that the planner knows the respondents are risk-

neutral. However, in general, choice-matching does not require such knowledge. What is needed is

that the reward system used by the planner induces a game in which different strategies are optimal

for different types.

Definition 4. Let G be a (Bayesian) game given by the collection of N respondents, a set of types

A, a set of potential y-responses Ω, a prior P and utilities {uk}k∈A. The game G is type-separating
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if there is a profile σ such that for every respondent r and every k ∈ A:

(i) σrx (tr) = tr

(ii) σry (tr) = y∗k for some y∗k ∈ Ω if and only if trk = 1 and

(iii) E
[
uk
(
y∗k, t−r ,σ−ry

(
t−r

))
| trk = 1,Er

]
> E

[
uk
(
y, t−r ,σ−ry

(
t−r

))
| trk = 1,Er

]
for any k ∈

A, y ∈ Ω, y 6= y∗k.

In words, in a type-separating game there is a profile σ in which respondents declare their types

honestly (condition (i)), and in which respondents of identical types give the same y-response and

respondents of different types give different y-responses (condition (ii)). Furthermore, this profile is a

Nash equilibrium (condition (iii)). Importantly, this equilibrium is not strict in xr, since u
(
yr,x−r,y−r

)
does not depend on xr, so that the game G alone is not sufficient to reveal types. For instance, in

the setting discussed in section 3, it would not be sufficient to only score respondents on their own

predictions, since then they would have no incentive to report their honest answer to the MCQ.

In section 3, conditions (i)− (iii) correspond to separation in the prediction task, which – under

assumptions A1-A4 – can be achieved by choosing a strictly proper scoring rule. The idea of the next

proposition is that prediction scoring can be replaced by any game that satisfies conditions (i)− (iii).

Proposition 2. Let G=
〈
N,A,Ω,{uk}k∈A , P

〉
be a type-separating game. Under assumptions A1-A2,

any payment rule is strictly incentive compatible if it induces a game
〈
N,A,Ω,{Vk}k∈A , P

〉
in which

on eventMr:

Vk(xr,yr,x−r,y−r) = λuk
(
yr,x−r,y−r

)
+ (1−λ) ūk

(
xr,x−r,y−r

)
where λ ∈ (0,1) and ū is the average utility value achieved by the respondents other than r who submit

xs = xr, i.e.,

ūk
(
xr,x−r,y−r

)
=
∑
s6=r x

r ·xsuk
(
ys,x−s,y−s

)
∑
s6=r xr ·xs

,

and, on the complement ofMr:

Vk(xr,yr,x−r,y−r) = 0.
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Proof. The proof is given in the online appendix. It is almost identical to the special case in section

3.

4.2 Example and Applications

To see how choice-matching can be applied when the second question is not a prediction, consider

again the example from section 2 in which each respondent gives a rating for a trial product. As

an alternative to scoring respondents on predictions, the company could use the following procedure:

first, the company presents a list of existing products to each respondent and each respondent chooses

the product on the list he likes most. Again, we use the matching trigger: if there is a product that is

not chosen by anyone, then r receives nothing, or some pre-defined, fixed participation fee. Otherwise,

r participates in a “product lottery”: he receives the product he chose with probability λ, and else, he

receives the product chosen by a respondent randomly selected among those who give the same rating.

Intuitively, these incentives work if respondents expect that those who have the same assessment

of the trial product will have (approximately) the same preference with regard to the products on the

list, which is also what the type-separation assumption in proposition 2 entails.6

Experimental economics is another promising application domain for generalized choice-matching.

Suppose that an experimenter is interested in the willingness-to-pay for a good that cannot be offered

for sale, perhaps because its price exceeds the research budget or because it is hypothetical in nature.

As the auxiliary task, the experimenter can then ask for the willingness-to-pay for a good which can be

incentivized, and link the hypothetical willingness-to-pay to the stated willingness-to-pay demonstrated

in the lab. Choice-matching also makes it possible to incentivize survey responses about behavior

outside the lab, by linking the respondent’s reward to the one obtained by respondents who give the

same answers to the survey questions. For instance, in an experiment on decision-making under risk,

respondents often choose among a number of gambles, with one of the gambles randomly chosen to

be played out. Using choice-matching, the experimenter could ask a survey question related to risk

attitude, e.g., which insurance a respondent has bought. She could then provide incentives for this

survey question by paying respondents with some probablility according to the gambles chosen by

respondents with the same survey answer.
6The type-separation assumption can be relaxed in a similar fashion as the impersonal updating assumption in

subsection 3.1.
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5 Comparison with Existing Methods

Incentives for non-verifiable MCQs based on predictions of the answer distribution were introduced by

Prelec (2004), through the Bayesian Truth Serum (BTS) mechanism. Under BTS, a reported answer

receives a high score if its actual frequency exceeds predicted frequency (and predictions are scored

with the logarithmic version of S). The intuition here is that a respondent of, say, type k expects that

other types will underestimate the frequency of k-types in the population, making an honest k-report

optimal ex-ante. The exact BTS scoring formula is quite opaque and its theoretical guarantee holds

only in the large sample limit (Prelec 2004, Cvitanić et al. 2017). However, the scores deliver a bonus

property, in that they also reflect respondent expertise. Precisely, if types are i.i.d conditional on an

underlying state of the world, then equilibrium BTS scores rank types according to their posteriors

on the actual world state. In principle, one can back out the true world state by focusing on the

highest-scoring respondents, and thus improve on majority voting and other crowd-wisdom algorithms

(Prelec et al., 2017).

Finite sample incentive-compatibility is obtained by several recent mechanisms, typically under

weaker assumptions than needed for BTS. For binary questions, these include the Robust Bayesian

Truth Serum (RBTS) (Witkowski and Parkes, 2012) and Baillon’s (2017) “Bayesian Market.” The

latter translates reported types and predictions into the buying and selling of securities whose value is

defined by the distribution of reported answers. Some respondents may find the competitive market

trading setting more engaging than scoring rules. For general MCQs, Radanovic and Faltings (2013) is

mathematically simpler than both BTS and RBTS, but requires that the highest expected frequency

of each type is held by the type itself, i.e, pr,kk > pr,`k , for each k,` ∈ A with k 6= `.7 The mechanism

of Zhang and Chen (2014) involves a two-stage game where respondents revise their predictions after

receiving the answer of another respondent. Survey implementation would therefore require contacting

respondents more than once.

The (non-parametric) Divergence-based Bayesian Truth Serum (DIV) of Radanovic and Faltings

(2014) is closest to (prediction-based) choice-matching. The basic idea is to penalize disagreement in

predictions among respondents reporting the same type. A theoretical disadvantage of DIV relative

to choice-matching, is that it allows non-honest symmetric strict equilibria that also payoff dominate
7This assumptions for instance rules out the common knowledge case of stochastic relevance mentioned in footnote

4.
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honest ones. A practical disadvantage is that with DIV each respondent must provide a prediction.

Several mechanisms get by without asking for predictions. The “peer prediction” method of Miller

et al. (2005) assumes that the planner knows the common prior, and is in effect able to compute the

posteriors that ideal respondents would supply. More recently, data-intensive methods have attempted

to estimate the prior from distributional assumptions or by machine learning (Radanovic and Faltings,

2015, Radanovic et al., 2016, Shnayder et al., 2016, Agarwal et al., 2017, Liu and Chen, 2017). These

methods are suitable for settings where large quantities of data are collected on similar questions (e.g.,

different product ratings).

6 Conclusion

We have proposed a new way to elicit honest answers to a multiple choice question when honesty cannot

be verified, and the planner functions as an outsider, agnostic about the distribution of answers in

the population. The method asks respondents to engage in an incentivized auxiliary task, which in

our canonical version is to predict the distribution of answers in the sample. By answering the MCQ,

respondents pool with other respondents endorsing that same answer, and receive the same reward for

the auxiliary task. It is not necessary for everyone to participate in the auxiliary task; the minimal

number is just two plus the number of possible answers in the MCQ.

Compared to alternatives in the literature, our mechanism may be easier to explain. Previous

empirical tests of the BTS (John et al., 2012 and Weaver and Prelec, 2013) used the so-called “intim-

idation method” (Frank et al. 2017), where respondents are told that they do not need to understand

how the payment formula works, only that it is in their interest to be truthful. Although such black-

box instructions do affect the aggregate answer distribution, it is not clear what fraction of respondents

find the claim credible.

The specific prediction-based method may not be effective when there is strong public information

about the distribution of types, or when respondents of the same type, as defined by the MCQ, have

very different information about this distribution. The choice-matching principle can still be applied

provided there is some task that induces separation among the honest answers. The planner only

needs to find a task for which a separating equilibrium exists, she does not need to know the strategies

that constitute this equilibrium.
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While surveys have played a major role as a research tool in other social sciences, economists have

traditionally been suspicious of stated preferences and beliefs, since there are no consequences for

responding carelessly or dishonestly. These unverifiable variables may often be the key variables of

social science interest. By linking stated and revealed preferences our method erases, in principle, the

methodological boundary between those two types of data.
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Appendix

A Stochastic Relevance Under Conditional Independence

and Identical Distribution

Here we show that our stochastic relevance assumption A3 is satisfied in the common setup in which

there is an unknown state of the world conditioning on which respondent types are independently and

identically distributed.8

We first derive conditions which guarantee stochastic relevance without a matching trigger. These

conditions are always satisfied when the state of the world has a continuous distribution, and is

generically satisfied when it has a discrete distribution. In the second step, we show that our matching

trigger adds only minor additional requirements.

A.1 Stochastic relevance with respect to the state of the world

As before, let M > 1 be an integer and A = {1, ...,M}. We further write ∆M for the M -dimensional

simplex. We start by considering a single respondent, whose type we denote T . Suppose that Ω is a

random vector taking values in ∆M , representing the state of the world, and write

P (T = k |Ω = ω) = ωk (A.1)

for all k ∈A. In the following, we assume that Ω is a continuous random variable or a discrete random

variable, and we denote by P (ω) its probability density/mass function. In the appendix, we slightly

abuse notation by writing T = k instead of T rk = 1 to mean that respondent r’s type is k.

Definition 5. Stochastic relevance w.r.t. to Ω holds if for all different k,j ∈ A:

E (Ω|T = k) 6= E (Ω|T = j) (A.2)

Our first result states:
8Note that assumption A4 is then also satisfied.
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Proposition 3. Stochastic relevance w.r.t. to Ω holds if and only if for all different k,j ∈A and any

constant λ ∈ R:

P (Ωk = λΩj)< 1 (A.3)

In words, stochastic relevance w.r.t. Ω holds if the ratio of any two state components Ωk, Ωj is not

known with certainty ax ante. This condition is satisfied if Ω follows a continuous distribution on ∆M

because the subset of ∆M on which Ωk = λΩj has zero measure. If the distribution of Ω is discrete,

then A.3 is violated only if for all ω s.t. P (ω)> 0, ωk = λωj .

Proof. We first rewrite (A.2). W.l.o.g. take k = 1, j = 2. For any i ∈ A:

E (Ωi |T = 1) =
�

∆M

P (ω |T = 1)ωi dω =
�

∆M

ωi
P (T = 1 |ω)
P (T = 1) P (ω)dω (A.4)

=
�

∆M

ωiω1�
∆M P (ω′)ω′1dω′

P (ω)dω = E (ΩiΩ1)
E (Ω1) (A.5)

And analogously, E (Ωi |T = 2) = E(ΩiΩ2)
E(Ω2) . Thus, stochastic relevance w.r.t. Ω holds if and only if for

any i ∈ A:
E (ΩiΩ1)
E (Ω1) 6=

E (ΩiΩ2)
E (Ω2) (A.6)

We next show that (A.3) implies (A.6) by contradiction. Suppose that (A.3) holds but that stochastic

relevance w.r.t. Ω is violated, i.e. for any i ∈ A:

E [ΩiΩ1]
E [Ω1] = E [ΩiΩ2]

E [Ω2] (A.7)

In particular, setting i= 1 and i= 2, respectively, (A.7) implies:

E
[
(Ω1)2]= E [Ω1Ω2] E [Ω1]

E [Ω2] , E
[
(Ω2)2]= E [Ω1Ω2]E [Ω2]

E [Ω1] (A.8)

which yields

E
[
(Ω1)2]E [(Ω2)2]=

(
E
[
Ω1Ω2

])2
(A.9)
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Note that (A.9) is an instance of the Cauchy-Schwarz inequality which holds with equality if and only

if there is λ ∈ R such that

P (Ω1 = λΩ2) = 1 (A.10)

Thus, we have a contradiction and (A.3) indeed implies (A.6).

Finally, it is easy to see that (A.6) implies (A.3). Note that P (Ωk = λΩj) = 1 implies λ= E(Ω2)
E(Ω1) . This

immediately yields equation (A.7), in violation to (A.6).

Corollary 2. Stochastic relevance w.r.t. to Ω holds if and only if for all different k,j ∈ A there is a

set S ⊂∆M of possible values of Ω with

P (Ω ∈ S |T = k) 6= P (Ω ∈ S |T = j) (A.11)

In words, stochastic relevance w.r.t. to Ω holds if and only if every type disagrees with all other

types about the probabilities of some states of the world.

Proof. Consider the sets

S1 =
{
ω : ωk

E [ωk]
>

ωj
E [ωj ]

}
, S2 =

{
ω : ωk

E [ωk]
<

ωj
E [ωj ]

}
(A.12)

and recall that P (ω |T = k) = ωk
E[ωk] P (ω). Thus, for i= 1,2 we have

P (Ω ∈ Si |T = k) =
�

Si

ωk
E [ωk]

P (ω)dω

and hence P (Ω ∈ Si |T = k) = P (Ω ∈ Si |T = j) only if P (Ω ∈ Si) = 0. From Proposition 3, we know

that stochastic relevance holds if and only if for all different k,j ∈ A and any constant λ ∈ R, (A.3)

holds. It is straightforward to verify that (A.3) is equivalent to either P (Ω ∈ S1)> 0 or P (Ω ∈ S2)> 0

(or both). It follows that stochastic relevance holds if and only if P (Ω ∈ S1 |T = k) 6=P (Ω ∈ S1 |T = j)

or P (Ω ∈ S2 |T = k) 6= P (Ω ∈ S2 |T = j).
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A.2 Stochastic Relevance in a Finite Sample Distribution

Consider a finite sample of N respondents with types T 1, ...TN which satisfy conditional independence

w.r.t. Ω, that is, for all s 6= r and i,k ∈ A:

P (T s = i |Ω = ω, T r = k) = P (T s = i |Ω = ω) (A.13)

and are identically distributed, so that for all s,r ≤N :9

P (T s = i |Ω = ω) = P (T r = i |Ω = ω) = ωi (A.14)

Next, recall that we defined T̄−ri as the frequency of respondents whose type is i in the sample excluding

r.

Proposition 4. Under conditional i.i.d, stochastic relevance w.r.t. Ω implies stochastic relevance

w.r.t. T̄−r.

Proof. W.l.o.g let r = 1. Then, for all i,k ∈ A:

E
[
T̄−1
i |T

1 = k
]

= 1
N −1

N∑
s=2

Pr
[
T s = i |T 1 = k

]
= Pr

[
T 2 = i |T 1 = k

]
(A.15)

=
�

∆M

P
(
T 2 = i |T 1 = k, Ω = ω

)
P
(
Ω = ω |T 1 = k

)
dω = E

[
Ωi |T 1 = k

]
(A.16)

Thus, for given j,k ∈ A, we get that E
[
T̄−1 |T 1 = k

]
6= E

[
T̄−1 |T 1 = j

]
if E

[
Ω |T 1 = k

]
6=

E
[
Ω |T 1 = j

]
.

A.3 Sufficient Conditions For Assumption A3

We will next state a result which adapts propositions 3 and 4 to our matching trigger. As before, we

write:

pr,k := E
[
T̄−r |Er, T r = k

]
(A.17)

9Note that it is not restrictive that we identify the state ω with the probability ωi. Suppose for instance that in the
trial product example from section 2, honest ratings are distributed conditionally i.i.d on the quality of the product,
represented by Ω. We can then simply define a new random vector ω̃, s.t. P (T r = i |Ω = ω) = ω̃i.
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Recall that our assumption A3 states that if j 6= k, then:

pr,k 6= pr,j . (A.18)

It will further prove useful to use the following identities, where Ω > 0 means that Ωk > 0 for all

k ∈ A.

Lemma 1. If the types T 1, ...,TN are conditionally i.i.d w.r.t. Ω and P (Ω> 0) > 0, then for s 6= r

and any i ∈ A:

(i)P (T s = i|Ω = ω,T r = k,Er) = P (T s = i|Ω = ω,Er) = 1
N −1 + N −1−M

N −1 ωi (A.19)

(ii)E(T̄−ri |T r = k,Er) = 1
N −1 + N −1−M

N −1 E(Ωi|T r = k,Er) (A.20)

The first identity allows us to conclude that if T 1, ...,TN are conditionally i.i.d w.r.t. Ω, then

T 1, ...,TN are also conditionally i.i.d w.r.t. to both Ω and the matching trigger. The second identity

allows us to relate stochastic relevance w.r.t. Ω to stochastic relevance w.r.t. T̄−r.

Proof. In the following, w.l.o.g fix r = k = 1. We first prove identity (i). For s 6= 1:

P (T s = i|Ω = ω,T 1 = 1,E1) = P (T s = i, E1|Ω = ω,T 1 = 1)
P (E1|Ω = ω,T 1 = 1) (A.21)

Let θ−1 be the set of all possible t−1 = (t2, ..., tN ) and let θ−1
E be the set of all t−1 such that 1’s matching

trigger is in effect. We then get for the numerator:

P (T s = i, E1|Ω = ω,T 1 = 1) =
∑

t−1∈θ−1
E

P (T s = i, T−1 = t−1|Ω = ω,T 1 = 1) (A.22)

=
∑

t−1 ∈ θ−1
E ,

s.t. ts = i

P ( T−1 = t−1|Ω = ω,T 1 = k) =
∑

t−1 ∈ θ−1
E ,

s.t. ts = i

P (T−1 = t−1|Ω = ω) (A.23)
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where the first step uses that each part of the sum is zero when ts 6= k and the second step uses

conditional independence. Similarly, we get P
(
E1|Ω = ω,T 1 = 1

)
=P

(
E1|Ω = ω

)
for the denominator.

Thus:

P (T s = i|Ω = ω,T 1 = 1,E1) = P (T s = k, E1|Ω = ω)
P (E1|Ω = ω) = P (T s = i|Ω = ω,E1) (A.24)

which is the first part of identity (i). To get the second part, note that due to conditional i.i.d. w.r.t.

Ω we can rewrite

P (T−1 = t|Ω = ω) =
N∏
s=2

ωts (A.25)

so that (A.23) yields the same expression for all s 6= 1. Thus, we are allowed to write

P (T s = i|Ω = ω,E1) = 1
N −1

N∑
s′=2

P (T s
′
= i|Ω = ω,E1) (A.26)

= E(T̄−1
i |Ω = ω,E1) = 1

N −1E((N −1) T̄−1
i |Ω = ω,E1) (A.27)

Let Z = (N −1) T̄−1−1M , where 1M denotes an M -dimensional vector of 1s. Note that conditioning

on Ω = ω and E1, Z is distributed according to a multinomial distribution, with N−M−1 draws and

parameters ω1, ...,ωM , such that:

(N −1) E(T̄−1
i |Ω = ω,E1) = 1 +E(Zi |Ω = ω, Z ≥ 0) (A.28)

= 1 + (N −M −1)ωi (A.29)

which also shows the second part of identity (i).

To get to identity (ii), observe that for all i ∈ A

E(T̄−1
i |T

1 = k,E1) =
�

∆M
P ( ω|T 1 = k,E1)E(T̄−1

i |T
1 = k, Ω = ω, E1 )dω (A.30)
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=
�

∆M
P ( ω|T 1 = k,E1) 1

N −1

N∑
s=2

P (T s = i |T 1 = k, Ω = ω, E1 )dω (A.31)

=
�

∆M
P ( ω|T 1 = k,E1)

 N∑
s=2

1
(N −1)2 + N −M −1

(N −1)2 ωi

 dω (A.32)

= 1
N −1 + N −M −1

N −1 E(ωi|T 1 = k,E1) (A.33)

where in (A.32) we used identity (i). This proves identity (ii) as well.

We will now come to the key result:

Proposition 5. Let N −1>M and suppose that

(i) The types T 1, ...,TN are conditionally i.i.d w.r.t. Ω,

(ii) P (Ω> 0)> 0

(iii) and for all different k,j ∈ A and any constant λ ∈ R :

P (Ωk = λΩj |Ω> 0)< 1 (A.34)

Then, assumption A3 holds.

Proof. Again fix r = 1. Invoking Lemma 1, we have

E(T̄−1
i |T

1 = k,E1) = 1
N −1 + N −1−M

N −1 E(Ωi|T 1 = k,E1) (A.35)

Thus, under assumptions (i) and (ii), A3 holds if and only if E(Ω|T 1 = k,E1) 6= E(Ω|T 1 = j,E1)

for different j,k.

Note that P (Ω> 0)> 0 implies P (Ω> 0 |T r = i)> 0 for all i∈A. Under conditional i.i.d., this implies

that for any i ∈ A:

P
(
E1 |T 1 = i

)
> P

(
T 2 = 1, ..., TM+1 =M |T 1 = i

)
(A.36)

=
�

∆M

P
(
ω |T 1 = i

) M∏
k=1

ωk > 0 (A.37)
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Thus, we can define P̃ (·) := P
(
· |E1

)
and Ẽ (·) := E

(
· |E1

)
. Lemma 1 ensures that if T 1, ...,TN

are independent conditional on Ω, they are independent conditional on Ω when replacing P and E by

P̃ and Ẽ. We can thus apply proposition 3 to P̃ (·) and Ẽ (·), which yields that assumption A3 holds

if and only if for all λ ∈ R

P̃ (Ωk = λΩj) = P
(
Ωk = λΩj |E1

)
< 1 (A.38)

Finally, note that

P
(
Ωk = λΩj |E1

)
= 1−

�

∆M

P
(
ω |E1

)
I{ωk 6=λωj}dω (A.39)

P (Ωk = λΩj |Ω> 0) = 1−
�

∆M

P (ω |Ω> 0) I{ωk 6=λωj}dω (A.40)

and that

P
(
ω |E1

)
= P

(
ω |E1,Ω> 0

)
=
P
(
E1 |ω,Ω> 0

)
P (ω |Ω> 0)

P (E1 |Ω> 0) (A.41)

For ω > 0, we have that P
(
E1 |ω,Ω> 0

)
> 0, so that (A.41) is strictly larger than 0 if and only

if P (ω |Ω> 0) > 0. Therefore, when (A.40) does not equal 1, (A.39) does not equal 1 either. Thus,

assumption (iii) implies (A.38) and under (i) and (ii), assumption (iii) is sufficient to guarantee A3.

Note that in addition to the requirements of propositions 3 and 4, proposition 5 adds only the

additional requirements that the sample is sufficiently large (N−1>M) and that the linear indepen-

dence needed for proposition 3 holds also when restricted to Ω > 0. Again, given that N −1 >M , it

is sufficient that Ω has a continuous distribution on ∆M . Thus, the only cases that are excluded by

our matching trigger are knife edge cases in which Ω’s distribution on ∆M is discrete, and in which,

given that all types have a strictly positive (conditional) probability, the ratio of at least two types is

known. Since this peculiar situation is unlikely to occur in practice, the additional restriction implied

by our trigger is a very minor one.
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B Proof of Proposition 2

Recall the statement of Proposition 2:

Proposition. Let G =
〈
N,A,Ω,{uk}k∈A , P

〉
be a type-separating game. Under assumptions A1-A2,

any payment rule is strictly incentive compatible if it induces a game
〈
N,A,Ω,{Vk}k∈A , P

〉
in which

on eventMr:

Vk(xr,yr,x−r,y−r) = λuk
(
yr,x−r,y−r

)
+ (1−λ) ūk

(
xr,x−r,y−r

)
where λ ∈ (0,1) and ū is the average utility value achieved by the respondents other than r who

submit xs = xr, i.e.,

ūk
(
xr,x−r,y−r

)
=
∑
s6=r x

r ·xsuk
(
ys,x−s,y−s

)
∑
s6=r xr ·xs

,

and, on the complement ofMr:

Vk(xr,yr,x−r,y−r) = 0.

Proof. As in the proof of Proposition 1, observe that r cannot influence the choice-matching trigger

and should thus condition his expected payoffs on being choice-matched. Since G is type separating,

condition (iii) from definition 4 guarantees that the payment rule is strictly incentive compatible in

y. Consider then the difference in the expected score for respondent r between reporting tr honestly

and deviating by making some dishonest report xr with xri = 1:

P (Er | trk = 1)× (1−λ)E
[
ūk
(
tr,x−r,y−r

)
− ūk

(
xr,x−r,y−r

)
| T r = k,Er

]
Due to the construction of ū

(
xr,x−r,y−r

)
:

ūk
(
tr,x−r,y−r

)
− ūk

(
xr,x−r,y−r

)
= uk

(
y∗k,x−r,y−r

)
−uk

(
y∗i,x−r,y−r

)

for i 6= k. Again, using condition (iii) from definition 4, we have that for r’s conditional expectiation

of this payoff difference:

E
[
uk
(
y∗k,x−r,y−r

)
−uk

(
y∗i,x−r,y−r

)
| T r = k,Er

]
> 0
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which gives the required result.
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