Multiobjective Replacements for Set Optimization and Robust Multiobjective Optimization (Slides Part I)

joint work with Ernest Quintana and Stefan Rocktäschel

Gabriele Eichfelder Technische Universität Ilmenau

Supported by:

on the basis of a decision by the German Bundestag

What is Set Optimization?

• Minimizing a scalar-valued objective function $f: \Omega \to \mathbb{R}$ over a non-empty set Ω :

 $ar{x}\in\Omega$ minimal solution $\,\,\Leftrightarrow\,\,f(ar{x})\leq f(x)\,\,$ for all $x\in\Omega$.

• Multiobjective optimization: Minimizing a vector-valued objective function

 $f: \Omega \to \mathbb{R}^m$

over a non-empty set Ω :

 $\bar{x} \in \Omega$ efficient solution $\Leftrightarrow (\{f(\bar{x})\} - \mathbb{R}^m_+) \cap f(\Omega) = \{f(\bar{x})\}.$

• Set optimization: Minimizing a set-valued objective function

 $F: \Omega \rightrightarrows \mathbb{R}^m, \qquad F(x) \subseteq \mathbb{R}^m.$

Why Set Optimization?

- transport robots, finance, socio economics, ...
- Bilevel optimization: upper level function

 $F(x) = \{f_u(x, y) \in \mathbb{R}^m \mid y \text{ solves lower level problem } P(x)\}$

- Uncertain values $F(x) = \{f(x)\} + B(0, r(x))$
- Robust multiobjective optimization $F(x) = \{f(x,\xi) \in \mathbb{R}^m \mid \xi \in U\}$, e.g., $F(x) = \{f(x+z) \in \mathbb{R}^m \mid z \in Z\}$ (see later in this talk)

Khan, Tammer, Zălinescu,

Set-valued optimization – an introduction with applications, Springer 2015.

Hamel, Heyde, Löhne, Rudloff, Schrage,

Set Optimization: A Rather Short Introduction, In: Set Optimization and Applications — The State of the Art, Springer 2015.

Outline

- Multiobjective Optimization and Optimality Notions
- Set Optimization and Optimality Notions
- Example: Uncertain Multiobjective Optimization
- Multiobjective Replacements
- Vectorization I (for convex-valued problems)
- Vectorization II
- Uncertain Multiobjective Optimization

Multiobjective Optimization Problem (MOP)

$$\min \left(\begin{array}{c} f_1(x) \\ \vdots \\ f_m(x) \end{array}\right) \text{ s.t. } x \in \Omega$$

(MOP)

with functions $f_j \colon \mathbb{R}^n \to \mathbb{R}$, $j = 1, \ldots, m$ and feasible set $\Omega \subseteq \mathbb{R}^n$.

Applications are for instance

- optimal portfolio with minimal risk and maximal return
- optimal design with minimal weight, maximal stability
- optimal treatment plan in medicine which destroys tumour, spares healthy organs
- optimal mixing with minimal energy and maximal mixing quality

In general, there is no point $ar{x}\in\Omega$ with

```
\bar{x} \in \operatorname{argmin}\{f_j(x) \mid x \in \Omega\} for all j \in \{1, \dots, m\}
```

at the same time!

In general, there is no point $ar{x}\in\Omega$ with

```
\bar{x} \in \operatorname{argmin}\{f_j(x) \mid x \in \Omega\} for all j \in \{1, \dots, m\}
```

at the same time!

Equivalent conditions in **single-objective** optimization for a minimal solution $\bar{x} \in \Omega$:

• $f(\bar{x}) \leq f(x)$ for all $x \in \Omega$

In general, there is no point $ar{x}\in\Omega$ with

```
\bar{x} \in \operatorname{argmin}\{f_j(x) \mid x \in \Omega\} for all j \in \{1, \dots, m\}
```

at the same time!

Equivalent conditions in **single-objective** optimization for a minimal solution $\bar{x} \in \Omega$:

• $f(\bar{x}) \leq f(x)$ for all $x \in \Omega$ (for MOP *strongly efficient point*, in general there is none)

In general, there is no point $\bar{x}\in\Omega$ with

```
\bar{x} \in \operatorname{argmin}\{f_j(x) \mid x \in \Omega\} for all j \in \{1, \dots, m\}
```

at the same time!

- $f(\bar{x}) \leq f(x)$ for all $x \in \Omega$ (for MOP *strongly efficient point*, in general there is none)
- $x \in \Omega$ with $f(x) \leq f(\bar{x})$ implies $f(x) = f(\bar{x})$

In general, there is no point $\bar{x}\in\Omega$ with

```
\bar{x} \in \operatorname{argmin}\{f_j(x) \mid x \in \Omega\} for all j \in \{1, \dots, m\}
```

at the same time!

- $f(\bar{x}) \leq f(x)$ for all $x \in \Omega$ (for MOP *strongly efficient point*, in general there is none)
- $x \in \Omega$ with $f(x) \leq f(\bar{x})$ implies $f(x) = f(\bar{x})$ (for MOP *efficient point*, next slide)

In general, there is no point $ar{x}\in\Omega$ with

```
\bar{x} \in \operatorname{argmin}\{f_j(x) \mid x \in \Omega\} for all j \in \{1, \dots, m\}
```

at the same time!

- $f(\bar{x}) \leq f(x)$ for all $x \in \Omega$ (for MOP *strongly efficient point*, in general there is none)
- $x \in \Omega$ with $f(x) \leq f(\bar{x})$ implies $f(x) = f(\bar{x})$ (for MOP *efficient point*, next slide)
- there is no $x \in \Omega$ with $f(x) < f(\bar{x})$

In general, there is no point $\bar{x}\in\Omega$ with

```
\bar{x} \in \operatorname{argmin}\{f_j(x) \mid x \in \Omega\} for all j \in \{1, \dots, m\}
```

at the same time!

- $f(\bar{x}) \leq f(x)$ for all $x \in \Omega$ (for MOP *strongly efficient point*, in general there is none)
- $x \in \Omega$ with $f(x) \leq f(\bar{x})$ implies $f(x) = f(\bar{x})$ (for MOP *efficient point*, next slide)
- there is no $x \in \Omega$ with $f(x) < f(\bar{x})$ (for MOP *weakly efficient point*, soon)

Efficient Points of a MOP

A point $\bar{x} \in X$ is **efficient** for $\min_{x \in \Omega} f(x)$ if it holds for all $x \in \Omega$ with

 $f_i(x) \leq f_i(\bar{x})$ for all $i = 1, \ldots, m$

that $f(x) = f(\bar{x})$,

Efficient Points of a MOP

A point $\bar{x} \in X$ is **efficient** for $\min_{x \in \Omega} f(x)$ if it f_2 holds for all $x \in \Omega$ with

 $f_i(x) \leq f_i(ar{x})$ for all $i=1,\ldots,m$

that $f(x) = f(\bar{x})$, i.e., there is no $x \in \Omega$ with $f_i(x) \leq f_i(\bar{x}), i = 1, ..., m$ and with

 $f_j(x) < f_j(ar{x}) ~$ for at least one $j \in \{1,\ldots,m\}.$

Equivalently: $({f(\bar{x})} - \mathbb{R}^m_+) \cap f(\Omega) = {f(\bar{x})}$. Then we call $f(\bar{x})$ nondominated.

Efficient and Weakly Efficient of a MOP

A point $\bar{x} \in \Omega$ is **efficient** for $\min_{x \in \Omega} f(x)$ if there is **no** $x \in \Omega$ with

 $f_i(x) \leq f_i(\bar{x}) \text{ for all } i = 1, \dots, m,$ and $f_j(x) < f_j(\bar{x}) \text{ for at least one } j \in \{1, \dots, m\},$

i.e., if

 $({f(\bar{x})} - \mathbb{R}^m_+) \cap f(\Omega) = {f(\bar{x})}$.

Efficient and Weakly Efficient of a MOP

A point $\bar{x} \in \Omega$ is **efficient** for $\min_{x \in \Omega} f(x)$ if there is **no** $x \in \Omega$ with

 $f_i(x) \leq f_i(\bar{x}) \text{ for all } i = 1, \dots, m,$ and $f_j(x) < f_j(\bar{x}) \text{ for at least one } j \in \{1, \dots, m\},$

i.e., if

 $(\{f(\bar{x})\}-\mathbb{R}^m_+)\cap f(\Omega)=\{f(\bar{x})\}$.

A point $\bar{x} \in \Omega$ is weakly efficient for $\min_{x \in \Omega} f(x)$ if there is **no** $x \in \Omega$ with $f_i(x) < f_i(\bar{x})$ for all i = 1, ..., m, i.e., if

$$(\{f(ar{x})\} - \operatorname{int}(\mathbb{R}^m_+)) \cap f(\Omega) = \emptyset$$
.

Weakly Efficient Points of a MOP

A point $\bar{x} \in \Omega$ is **weakly efficient** for $\min_{x \in \Omega} f(x)$ if there is **no** $x \in \Omega$ with

 $f_i(x) < f_i(ar{x})$ for all $i = 1, \dots, m$

i.e., if

 $({f(\bar{x})} - \operatorname{int}(\mathbb{R}^m_+)) \cap f(\Omega) = \emptyset$.

Then we call $f(\bar{x})$ weakly nondominated and write $\bar{x} \in \operatorname{argwMin}(f, \Omega, \mathbb{R}^m_+)$.

Weakly Efficient Points of a MOP

A point $\bar{x} \in \Omega$ is **weakly efficient** for $\min_{x \in \Omega} f(x)$ if there is **no** $x \in \Omega$ with

 $f_i(x) < f_i(\bar{x})$ for all $i = 1, \ldots, m$

i.e., if

 $({f(\bar{x})} - \operatorname{int}(\mathbb{R}^m_+)) \cap f(\Omega) = \emptyset$.

Then we call $f(\bar{x})$ weakly nondominated and write $\bar{x} \in \operatorname{argwMin}(f, \Omega, \mathbb{R}^m_+)$.

images of weakly efficient points weakly nondominated points

Approximate Weakly Efficient Points of a MOP

Let $\varepsilon > 0$. A point $\bar{x} \in X$ is ε -weakly efficient for $\min_{x \in \Omega} f(x)$ if there is no $x \in \Omega$ with

$$f_i(x) < f_i(\bar{x}) - \varepsilon$$
 for all $i = 1, \dots, m$,

i.e., if

 $(\{f(\bar{x}) - \varepsilon \, e\} - \operatorname{int}(\mathbb{R}^m_+)) \cap f(\Omega) = \emptyset \;.$

Approximate Weakly Efficient Points of a MOP

Let $\varepsilon > 0$. A point $\bar{x} \in X$ is ε -weakly efficient for $\min_{x \in \Omega} f(x)$ if there is no $x \in \Omega$ with

$$f_i(x) < f_i(\bar{x}) - \varepsilon$$
 for all $i = 1, \dots, m$,

i.e., if

$$(\{f(\bar{x}) - \varepsilon e\} - \operatorname{int}(\mathbb{R}^m_+)) \cap f(\Omega) = \emptyset$$
.

For $\varepsilon \ge 0$, we write ε argwMin $(f, \Omega, \mathbb{R}^m_+)$, and call its elements ε -weakly efficient solutions. For $\varepsilon = 0$, we write argwMin $(f, \Omega, \mathbb{R}^m_+)$, and call its elements weakly efficient solutions.

Set Optimization Problem

 $\min_{x\in\Omega}F(x)$

(SOP)

with

- $\Omega \subseteq \mathbb{R}^n$ nonempty and closed,
- $F \colon \mathbb{R}^n \rightrightarrows \mathbb{R}^m$ a given set-valued map such that $\Omega \subseteq \operatorname{dom} F$ and
- F(x) compact for all $x \in \Omega$ (and sometimes: convex)
- sometimes $\bigcup_{x \in \Omega} F(x)$ bounded,
- $C \subseteq \mathbb{R}^m$ a closed, pointed, solid and convex cone, here: $C = \mathbb{R}^m_+$, and $e \in \text{int}C$, here: $e = (1, \ldots, 1)^\top \in \mathbb{R}^m_+$, a given element.

Binary Relations for Set Optimization

We take in the talk as ordering cone $C = \mathbb{R}^m_+$ in $Y = \mathbb{R}^m$, but results apply for any closed, pointed, convex and solid cone $C \subseteq \mathbb{R}^m$.

(i) the *u*-less order relation is defined by: $A \preccurlyeq_u B :\Leftrightarrow A \subseteq B - C$,

Binary Relations for Set Optimization

We take in the talk as ordering cone $C = \mathbb{R}^m_+$ in $Y = \mathbb{R}^m$, but results apply for any closed, pointed, convex and solid cone $C \subseteq \mathbb{R}^m$.

(i) the *u*-less order relation is defined by: $A \preccurlyeq_u B :\Leftrightarrow A \subseteq B - C$,

(ii) the *I*-less order relation is defined by: $A \preccurlyeq_I B :\Leftrightarrow B \subseteq A + C$,

Binary Relations for Set Optimization

We take in the talk as ordering cone $C = \mathbb{R}^m_+$ in $Y = \mathbb{R}^m$, but results apply for any closed, pointed, convex and solid cone $C \subseteq \mathbb{R}^m$.

(i) the *u*-less order relation is defined by: $A \preccurlyeq_u B :\Leftrightarrow A \subseteq B - C$, (ii) the *l*-less order relation is defined by: $A \preccurlyeq_l B :\Leftrightarrow B \subseteq A + C$,and (iii) the set less order relation is defined by: $A \preccurlyeq_s B :\Leftrightarrow A \preccurlyeq_u B$ and $A \preccurlyeq_l B$.

Optimality Notion in Set Optimization

Definition

Let $* \in \{l, u, s\}$. We denote $\bar{x} \in \Omega$ a **minimal solution** of (SOP^{*}) if

$$\forall x \in \Omega : F(x) \preccurlyeq_* F(\bar{x}) \implies F(\bar{x}) \preccurlyeq_* F(x).$$

Optimality Notion in Set Optimization

Definition

Let $* \in \{l, u, s\}$. We denote $\bar{x} \in \Omega$ a minimal solution of (SOP^{*}) if

$$\forall x \in \Omega: F(x) \preccurlyeq_* F(\bar{x}) \implies F(\bar{x}) \preccurlyeq_* F(x).$$

We denote $\bar{x} \in \Omega$ a **weakly minimal solution** of (SOP^{*}) if there is no $x \in \Omega$ with

 $F(x) \prec_* F(\bar{x})$

where

 $A \prec_{I} B : \iff B \subseteq A + \operatorname{int}(\mathbb{R}^{m}_{+}), \quad A \prec_{u} B : \iff A \subseteq B - \operatorname{int}(\mathbb{R}^{m}_{+})$ $A \prec_{s} B : \iff A \prec_{I} B \land A \prec_{u} B.$

Uncertain Multiobjective Optimization

Let:

- $f: \mathbb{R}^n \times \mathbb{R}^k \to \mathbb{R}^m$ be continuous,
- $\Omega \subseteq \mathbb{R}^n$ be nonempty and closed,
- $\mathcal{U} \subseteq \mathbb{R}^k$ be nonempty and compact (the so called uncertainty set).

The uncertain multiobjective problem associated to this data is:

$$\left\{ \begin{array}{l} \min_{x} f(x, u) \\ \text{s.t. } x \in \Omega \end{array} \middle| u \in \mathcal{U} \right\}$$
 (\mathcal{UMP})

The Scalar Case

Let m = 1.

$$\left\{\begin{array}{c} \min_{x} f(x, u) \\ \text{s.t.} \ x \in \Omega \end{array} \middle| u \in \mathcal{U} \right\}$$

 (\mathcal{UMP})

The Scalar Case

Let m = 1.

$$\begin{array}{l} \min_{x} f(x, u) \\ \text{s.t.} \ x \in \Omega \end{array} \middle| \ u \in \mathcal{U} \Biggr\} \tag{\mathcal{UMP}}$$

Robust counterpart problem:

$$\min_{x} \sup_{u \in \mathcal{U}} f(x, u)$$

s.t. $x \in \Omega$

 (\mathcal{RCP})

Solutions of (\mathcal{RCP}) are called robust for (\mathcal{UMP}) .

Robust Counterpart Problem for $m \ge 2$

Consider $F_{\mathcal{U}} : \mathbb{R}^n \rightrightarrows \mathbb{R}^m$ given by $F_{\mathcal{U}}(x) := \{f(x, u) \in \mathbb{R}^m \mid u \in \mathcal{U}\}$.

Robust counterpart problem:

$$\min_{x} F_{\mathcal{U}}(x)$$

s.t. $x \in \Omega$ (\mathcal{RCP})

Recall: $\bar{x} \in \Omega$ is a weakly minimal solution of the set optimization problem (\mathcal{RCP}) w.r.t. * = u if

$$\exists x \in \Omega : F_{\mathcal{U}}(x) \subseteq F_{\mathcal{U}}(\bar{x}) - \operatorname{int}(\mathbb{R}^m_+).$$

Uncertain Multiobjective Optimization Problem

$$\left\{ \begin{array}{l} \min_{x} f(x, u) \\ \text{s.t. } x \in \Omega \end{array} \middle| u \in \mathcal{U} \right\}$$
 (\mathcal{UMP})

Definition (Ehrgott, Ide, Schöbel 2014, Ide, Köbis, Kuroiwa, Schöbel, Tammer 2014)

 $\bar{x} \in \Omega$ is a **robust weakly minimal solution** of (\mathcal{UMP}) if it is a weakly minimal solution of (\mathcal{RCP}) (w.r.t. * = u), i.e,

$$\exists x \in \Omega : F_{\mathcal{U}}(x) \subseteq F_{\mathcal{U}}(\bar{x}) - \operatorname{int}(\mathbb{R}^m_+),$$

where

$$F_{\mathcal{U}}(x) = \{f(x, u) \in \mathbb{R}^m \mid u \in \mathcal{U}\}.$$

State of the Art for Set Optimization

There are just a few approaches to numerically solve set optimization problems, for instance

- for polyhedral convex sets [Schrage, Löhne 2013]
- scalarization based, e.g., [Köbis, Köbis 2016]
- for finite families of sets [Günther, Köbis, Popovici 2019]
- derivative-free descent method [Jahn, 2015]

State of the Art for Set Optimization

There are just a few approaches to numerically solve set optimization problems, for instance

- for polyhedral convex sets [Schrage, Löhne 2013]
- scalarization based, e.g., [Köbis, Köbis 2016]
- for finite families of sets [Günther, Köbis, Popovici 2019]
- derivative-free descent method [Jahn, 2015]

We propose approaches based on solving (finite dimensional) multiobjective replacement problems.

Replacement Problem for Ball-valued maps

Theorem

Let $c: \Omega \to \mathbb{R}^m$ and $r: \Omega \to \mathbb{R}_+$. Let the ball-valued map $F: \Omega \rightrightarrows \mathbb{R}^m$ be defined by

$$F(x) := \{c(x)\} + \{y \in \mathbb{R}^m \mid ||y||_2 \le r(x)\}$$
 for all $x \in \Omega$.

Then $\bar{x} \in \Omega$ is a minimal solution of (SOP^s) if and only if \bar{x} is an efficient solution of

$$\min_{x \in \Omega} \begin{pmatrix} I_m & e \\ I_m & -e \end{pmatrix} \begin{pmatrix} c(x) \\ r(x) \end{pmatrix}$$

w.r.t. the ordering cone \mathbb{R}^{2m}_+ , where I_m is the m-dimensional identity matrix and e is the m-dimensional all-one vector.

How to Solve Set Optimization Problems?

For F(x) convex for all $x \in \Omega$, similar to a result in [Jahn, 2015], it holds for $x^1, x^2 \in \Omega$: $F(x^1) \preccurlyeq_l F(x^2) \iff \forall \ \ell \in \mathbb{R}^m_+ \setminus \{0\} : \min_{y \in F(x^1)} \ell^\top y \le \min_{y \in F(x^2)} \ell^\top y$.

How to Solve Set Optimization Problems?

For F(x) convex for all $x \in \Omega$, similar to a result in [Jahn, 2015], it holds for $x^1, x^2 \in \Omega$: $F(x^1) \preccurlyeq_l F(x^2) \iff \forall \ \ell \in \mathbb{R}^m_+ \setminus \{0\} : \min_{y \in F(x^1)} \ell^\top y \le \min_{y \in F(x^2)} \ell^\top y$.

Theorem

(a) $\bar{x} \in \Omega$ is a minimal solution of (SOP^{l}) if and only if there is no $x \in \Omega$ such that $\forall \ell \in \mathbb{R}^{m}_{+} \setminus \{0\} : \min_{y \in F(x)} \ell^{\top} y \leq \min_{\bar{y} \in F(\bar{x})} \ell^{\top} \bar{y} \text{ and } \exists \hat{\ell} \in \mathbb{R}^{m}_{+} \setminus \{0\} : \min_{y \in F(x)} \hat{\ell}^{\top} y < \min_{\bar{y} \in F(\bar{x})} \hat{\ell}^{\top} \bar{y}.$

How to Solve Set Optimization Problems?

For F(x) convex for all $x \in \Omega$, similar to a result in [Jahn, 2015], it holds for $x^1, x^2 \in \Omega$: $F(x^1) \preccurlyeq_l F(x^2) \iff \forall \ \ell \in \mathbb{R}^m_+ \setminus \{0\} : \min_{y \in F(x^1)} \ell^\top y \le \min_{y \in F(x^2)} \ell^\top y$.

Theorem

(a) $\bar{x} \in \Omega$ is a minimal solution of (SOP^{l}) if and only if there is no $x \in \Omega$ such that

$$\forall \ell \in \mathbb{R}^m_+ \setminus \{0\} : \min_{y \in F(x)} \ell^\top y \le \min_{\bar{y} \in F(\bar{x})} \ell^\top \bar{y} \text{ and } \exists \hat{\ell} \in \mathbb{R}^m_+ \setminus \{0\} : \min_{y \in F(x)} \hat{\ell}^\top y < \min_{\bar{y} \in F(\bar{x})} \hat{\ell}^\top \bar{y}.$$

(b) $\bar{x} \in \Omega$ is a weakly minimal solution of (SOP^l) if and only if there is no $x \in \Omega$ such that

$$\forall \ell \in \mathbb{R}^m_+ \setminus \{0\} : \min_{y \in F(x)} \ell^\top y < \min_{\bar{y} \in F(\bar{x})} \ell^\top \bar{y}.$$

Minimal Value Function

Let $\ell \in \mathbb{R}^m_+ \setminus \{0\}$ be given. The corresponding minimal value function $\ell_{min} : \Omega \to \mathbb{R}$ is defined by

$$\ell_{\min}(x) := \min_{y \in F(x)} \ell^{\top} y.$$

Minimal Value Function

Let $\ell \in \mathbb{R}^m_+ \setminus \{0\}$ be given. The corresponding minimal value function $\ell_{min} : \Omega \to \mathbb{R}$ is defined by

$$\ell_{\min}(x) := \min_{y \in F(x)} \ell^{\top} y.$$

A simple first sufficient condition for a minimal solution $\bar{x} \in \Omega$: If it holds $\ell_{\min}(\bar{x}) < \ell_{\min}(x)$ for all $x \in \Omega \setminus {\bar{x}}$, then \bar{x} is a minimal solution of (SOP').

Hence, by solving $\min_{x \in \Omega} \ell_{\min}(x)$ we can determine (weakly) minimal solutions of the set optimization problem!

Example I

$F: [\pi, \frac{5}{2}\pi] \rightrightarrows \mathbb{R}^2 \text{ with}$ $F(x) = \left\{ y \in \mathbb{R}^2 \mid y = 2 \begin{pmatrix} \cos(x) \\ \sin(x) \end{pmatrix} + r \begin{pmatrix} \cos(t) \\ \sin(t) \end{pmatrix}, \ r \in [0, R(x)], \ t \in [0, 2\pi] \right\}$

where the radii of the balls are given by $R(x) = 1 + \frac{4}{5}((\frac{2}{\pi}x - 3)^2 - 1)$.

Example II

For $\ell^1 := (1,0)^{\top}$, $\ell^2 := (0,1)^{\top}$, $\ell^3 := \frac{1}{\sqrt{2}}(1,1)^{\top}$: the graphs of ℓ_{\min}^i and the sets $F(\bar{x}^i)$ to the minimal solutions \bar{x}^i .

Main Idea:

Study

2 3 4 5

5 .4 .3 .2 .1

The multiobjective replacement problem

To a finite nonempty list $\mathcal{L} = \{\ell^1, \dots, \ell^k\} \subseteq \{y \in \mathbb{R}^m_+ \mid ||y|| = 1\}$ we assign the **multiobjective optimization problem**

$$\min_{x \in \Omega} f_{\mathcal{L}}(x) \tag{MOP}_{\mathcal{L}}$$

with
$$f^{\mathcal{L}} := (\ell_{\min}^1, \dots, \ell_{\min}^k)^\top \colon \mathbb{R}^n \to \mathbb{R}^k$$
, and, as before, $\ell_{\min}^i \colon \Omega \to \mathbb{R}$,
 $\ell_{\min}^i(x) := \min_{y \in F(x)} (\ell^i)^\top y$

for all $i \in \{1, \ldots, k\}$.

- Gerlach, Rocktäschel, *On convexity and quasiconvexity of extremal value functions in set optimization*, Applied Set-Valued Analysis and Optim., 2021.
- Eichfelder, Gerlach, Rocktäschel, *Convexity and continuity of specific set-valued maps and their extremal value functions*, J. of Applied and Numerical Optim., 2022.

How to Find Weakly Minimal Solutions of (SOP)?

Let
$$\mathcal{L} = \{\ell^1, \ldots, \ell^k\} \subseteq \{y \in \mathbb{R}^m_+ \mid ||y|| = 1\}.$$

Theorem

The weakly efficient solutions of $(MOP_{\mathcal{L}})$ are weakly minimal solutions of (SOP^{l}) , i.e.,

 $\operatorname{argwMin}(f_{\mathcal{L}}, \Omega, \mathbb{R}^{k}_{+}) \subseteq \operatorname{argwMin}^{l}(F, \Omega, \mathbb{R}^{m}_{+}).$

We do **not** have:

- $\operatorname{argMin}(f_{\mathcal{L}}, \Omega, \mathbb{R}^{k}_{+}) \subseteq \operatorname{argMin}^{l}(F, \Omega, \mathbb{R}^{m}_{+})$
- $\operatorname{argwMin}(f_{\mathcal{L}}, \Omega, \mathbb{R}^{k}_{+}) \supseteq \operatorname{argwMin}^{l}(F, \Omega, \mathbb{R}^{m}_{+})$

Weakly Minimal Solutions of (SOP) - Example

Example

- Choose $\mathcal{L} = \{(1,0)^{\top}, \ (\frac{1}{\sqrt{2}}, \ \frac{1}{\sqrt{2}})^{\top}, (0,1)^{\top}\}$ (three or more)
- $\Omega = \{x^1, x^2\}$
- $F(x^1) = \{y \in \mathbb{R}^2 \mid ||y||_2 \le 1\}$
- $F(x^2) = \operatorname{conv}(\{(1 + \varepsilon)(-1, 0)^{\top}, (1 + \varepsilon)(\frac{-1}{\sqrt{2}}, \frac{-1}{\sqrt{2}})^{\top}, (1 + \varepsilon)(0, -1)^{\top}\})$, where

$$\varepsilon := \frac{1}{2} \left(1 - \sqrt{1 - \frac{1}{4} \min_{i \neq j} ||\ell^i - \ell^j||_2^2} \right)$$

Weakly Minimal Solutions of (SOP) - Example

Is There a Nice '*\varepsilon*-connection'?

Theorem

For every $\varepsilon > 0$ there exists a finite $\mathcal{L} = \mathcal{L}(\varepsilon)$ such that,

 $\operatorname{argwMin}^{l}(F, \Omega, \mathbb{R}^{m}_{+}) \subseteq \varepsilon \operatorname{argwMin}(f_{\mathcal{L}}, \Omega, \mathbb{R}^{|\mathcal{L}|}_{+}).$

Is There a Nice '*\varepsilon*-connection'?

Theorem

For every $\varepsilon > 0$ there exists a finite $\mathcal{L} = \mathcal{L}(\varepsilon)$ such that,

 $\operatorname{argwMin}^{l}(F, \Omega, \mathbb{R}^{m}_{+}) \subseteq \varepsilon \operatorname{argwMin}(f_{\mathcal{L}}, \Omega, \mathbb{R}^{|\mathcal{L}|}_{+}).$

It follows:

 $\mathsf{argwMin}(f_{\mathcal{L}},\Omega,\mathbb{R}^{|\mathcal{L}|}_{+})\subseteq\mathsf{argwMin}'(\mathcal{F},\Omega,\mathbb{R}^{m}_{+})\subseteq\varepsilon\mathsf{argwMin}(f_{\mathcal{L}},\Omega,\mathbb{R}^{|\mathcal{L}|}_{+}).$

- $x^1 \in \operatorname{argwMin}(F, \Omega, \mathbb{R}^2_+)$
- x¹ ∉ argwMin(f_L, Ω, ℝ³₊)
 x² ∈ argwMin(F, Ω, ℝ²₊)

• $x^2 \in \operatorname{argwMin}(f_{\mathcal{L}}, \Omega, \mathbb{R}^3_+)$

30 Gabriele Eichfelder | Vienna | 16.12.2022

- $x^1 \in \operatorname{argwMin}(F, \Omega, \mathbb{R}^2_+)$
- $x^1 \notin \operatorname{argwMin}(f_{\mathcal{L}}, \Omega, \mathbb{R}^3_+)$
- $x^2 \in \operatorname{argwMin}(F, \Omega, \mathbb{R}^2_+)$
- $x^2 \in \operatorname{argwMin}(f_{\mathcal{L}}, \Omega, \mathbb{R}^3_+)$
- We see: $x^1 \in \varepsilon \operatorname{argwMin}(f_{\mathcal{L}}, \Omega, \mathbb{R}^3_+)$, $\varepsilon \approx 0.04$

- $x^1 \in \operatorname{argwMin}(F, \Omega, \mathbb{R}^2_+)$
- $x^1 \notin \operatorname{argwMin}(f_{\mathcal{L}}, \Omega, \mathbb{R}^3_+)$
- $x^2 \in \operatorname{argwMin}(F, \Omega, \mathbb{R}^2_+)$
- $x^2 \in \operatorname{argwMin}(f_{\mathcal{L}}, \Omega, \mathbb{R}^3_+)$
- We see: $x^1 \in \varepsilon \operatorname{argwMin}(f_{\mathcal{L}}, \Omega, \mathbb{R}^3_+), \\ \varepsilon \approx 0.04$
- We can prove:

 $x^1\in \mathsf{argwMin}(F,\Omega,\mathbb{R}^2_+)\subseteq$

 ε argwMin $(f_{\mathcal{L}}, \Omega, \mathbb{R}^3_+)$

- $x^1 \in \operatorname{argwMin}(F, \Omega, \mathbb{R}^2_+)$
- $x^1 \notin \operatorname{argwMin}(f_{\mathcal{L}}, \Omega, \mathbb{R}^3_+)$
- $x^2 \in \operatorname{argwMin}(F, \Omega, \mathbb{R}^2_+)$
- $x^2 \in \operatorname{argwMin}(f_{\mathcal{L}}, \Omega, \mathbb{R}^3_+)$
- We see: $x^1 \in \varepsilon \operatorname{argwMin}(f_{\mathcal{L}}, \Omega, \mathbb{R}^3_+), \\ \varepsilon \approx 0.04$
- We can prove:

 $x^1\in \mathsf{argwMin}(F,\Omega,\mathbb{R}^2_+)\subseteq$

 ε argwMin $(f_{\mathcal{L}}, \Omega, \mathbb{R}^3_+)$

for $\varepsilon\approx 1.12$

A Hint on Choosing ${\cal L}$

Theorem

Suppose that

$$ar{u} := \sup\left\{ \|y\| \mid y \in \bigcup_{x \in \Omega} \mathsf{Min}(F(x), \mathbb{R}^m_+)
ight\} < +\infty.$$

Let $\varepsilon > 0$ be given and \mathcal{L} be a finite set with

$$\{y \in \mathbb{R}^m_+ \mid \|y\| = 1\} \subset \mathcal{L} + \frac{\varepsilon}{4\overline{u}}\mathbb{B}.$$

A Hint on Choosing ${\cal L}$

Theorem

Suppose that

$$ar{u} := \sup\left\{ \|y\| \mid y \in igcup_{x \in \Omega} \mathsf{Min}(F(x), \mathbb{R}^m_+)
ight\} < +\infty.$$

Let $\varepsilon > 0$ be given and \mathcal{L} be a finite set with

$$\{y \in \mathbb{R}^m_+ \mid \|y\| = 1\} \subset \mathcal{L} + rac{arepsilon}{4\overline{u}}\mathbb{B}.$$

Then

 $\operatorname{argwMin}(f_{\mathcal{L}},\Omega,\mathbb{R}^{k}_{+})\subseteq\operatorname{argwMin}^{l}(F,\Omega,\mathbb{R}^{m}_{+})\subseteq\operatorname{\varepsilonargwMin}(f_{\mathcal{L}},\Omega,\mathbb{R}^{k}_{+}).$

Finite Dimensional Vectorization Property (FDVP)

Definition

We say that $(MOP_{\mathcal{L}})$ satisfies the finite dimensional vectorization property (FDVP) if

 $\forall x \in \operatorname{argwMin}^{l}(F, \Omega, \mathbb{R}^{m}_{+}) \; \exists \mathcal{L} \subseteq \mathbb{R}^{m}_{+} \setminus \{0\} \colon |\mathcal{L}| < \infty \land x \in \operatorname{argwMin}(f_{\mathcal{L}}, \Omega, \mathbb{R}^{|\mathcal{L}|}_{+})$

Finite Dimensional Vectorization Property (FDVP)

Definition

We say that $(MOP_{\mathcal{L}})$ satisfies the finite dimensional vectorization property (FDVP) if

 $\forall x \in \mathsf{argwMin}^{l}(F, \Omega, \mathbb{R}^{m}_{+}) \exists \mathcal{L} \subseteq \mathbb{R}^{m}_{+} \setminus \{0\} \colon |\mathcal{L}| < \infty \land x \in \mathsf{argwMin}(f_{\mathcal{L}}, \Omega, \mathbb{R}^{|\mathcal{L}|}_{+})$

Theorem

Let Ω be convex, $\Omega \subseteq int(dom F)$. If gphF is convex, then $(MOP_{\mathcal{L}})$ satisfies (FDVP).

And Other Set Order Relations?

For F(x) convex for all $x \in \Omega$, similar to a result in [Jahn, 2015], it holds for $x^1, x^2 \in \Omega$: $F(x^1) \preccurlyeq_u F(x^2) \iff \forall \ \ell \in \mathbb{R}^m_+ \setminus \{0\} : \max_{y \in F(x^1)} \ell^\top y \le \max_{y \in F(x^2)} \ell^\top y$.

And Other Set Order Relations?

For F(x) convex for all $x \in \Omega$, similar to a result in [Jahn, 2015], it holds for $x^1, x^2 \in \Omega$: $F(x^1) \preccurlyeq_u F(x^2) \iff \forall \ \ell \in \mathbb{R}^m_+ \setminus \{0\} : \max_{y \in F(x^1)} \ell^\top y \le \max_{y \in F(x^2)} \ell^\top y$.

Theorem

(a) $\bar{x} \in \Omega$ is a minimal solution of (SOP^u) if and only if there is no $x \in \Omega$ such that

 $\forall \ell \in \mathbb{R}^m_+ \setminus \{0\} : \max_{y \in F(x)} \ell^\top y \le \max_{\bar{y} \in F(\bar{x})} \ell^\top \bar{y} \text{ and } \exists \hat{\ell} \in \mathbb{R}^m_+ \setminus \{0\} : \max_{y \in F(x)} \hat{\ell}^\top y < \max_{\bar{y} \in F(\bar{x})} \hat{\ell}^\top \bar{y}.$

And Other Set Order Relations?

For F(x) convex for all $x \in \Omega$, similar to a result in [Jahn, 2015], it holds for $x^1, x^2 \in \Omega$: $F(x^1) \preccurlyeq_u F(x^2) \iff \forall \ \ell \in \mathbb{R}^m_+ \setminus \{0\} : \max_{y \in F(x^1)} \ell^\top y \le \max_{y \in F(x^2)} \ell^\top y$.

Theorem

(a) $\bar{x} \in \Omega$ is a minimal solution of (SOP^u) if and only if there is no $x \in \Omega$ such that

$$\forall \ell \in \mathbb{R}^m_+ \setminus \{0\} : \max_{y \in F(x)} \ell^\top y \le \max_{\bar{y} \in F(\bar{x})} \ell^\top \bar{y} \text{ and } \exists \hat{\ell} \in \mathbb{R}^m_+ \setminus \{0\} : \max_{y \in F(x)} \hat{\ell}^\top y < \max_{\bar{y} \in F(\bar{x})} \hat{\ell}^\top \bar{y}.$$

(b) $\bar{x} \in \Omega$ is a weakly minimal solution of (SOP^u) if and only if there is no $x \in \Omega$ such that

$$orall \ell \in \mathbb{R}^m_+ \setminus \{0\} : \max_{y \in F(x)} \ell^ op y < \max_{ar y \in F(ar x)} \ell^ op ar y.$$

(MOP) for Other Set Relations

For finite, nonempty sets $\mathcal{L} = \{\ell^1, ..., \ell^p\}, \mathcal{U} = \{\ell^{p+1}, ..., \ell^{p+q}\} \subseteq \mathbb{R}^m_+ \setminus \{0\}$ we define the multiobjective optimization problem:

(MOP) for Other Set Relations

For finite, nonempty sets $\mathcal{L} = \{\ell^1, ..., \ell^p\}, \mathcal{U} = \{\ell^{p+1}, ..., \ell^{p+q}\} \subseteq \mathbb{R}^m_+ \setminus \{0\}$ we define the multiobjective optimization problem:

$$\min_{x \in \Omega} f_{\mathcal{L}, \mathcal{U}}(x) := \begin{pmatrix} \min_{y \in F(x)} \ell^{1}(y) \\ \vdots \\ \min_{y \in F(x)} \ell^{p}(y) \\ \max_{y \in F(x)} \ell^{p+1}(y) \\ \vdots \\ \max_{y \in F(x)} \ell^{p+q}(y) \end{pmatrix} \text{ w.r.t. } \mathbb{R}^{p+q}_{+} \qquad (\text{MOP}(\mathcal{L}, \mathcal{U}))$$

Definition

 \bar{x} is a vector approach weakly minimal solution of (SOP) if there exists $\bar{y} \in F(\bar{x})$ such that (\bar{x}, \bar{y}) is a weakly efficient solution of the multiobjective optimization problem

Definition

 \bar{x} is a vector approach weakly minimal solution of (SOP) if there exists $\bar{y} \in F(\bar{x})$ such that (\bar{x}, \bar{y}) is a weakly efficient solution of the multiobjective optimization problem

We know that:

 \bar{x} vector approach weakly minimal solution $\Longrightarrow \bar{x} \in \operatorname{argwMin}^{l}(F, \Omega, \mathbb{R}^{m}_{+})$.

n

Definition

 \bar{x} is a vector approach weakly minimal solution of (SOP) if there exists $\bar{y} \in F(\bar{x})$ such that (\bar{x}, \bar{y}) is a weakly efficient solution of the multiobjective optimization problem

$$\begin{array}{l} \min_{y^1} y^1 \\ \text{s.t.} \ (x,y^1) \in \operatorname{gph} F, \\ x \in \Omega. \end{array}$$
 (\mathcal{MP}_1)

 $\operatorname{argwMin}_{x}(\mathcal{MP}_{1}) := \{x \in \mathbb{R}^{n} \mid \exists \ y \in \mathbb{R}^{m} : (x, y) \in \operatorname{argwMin}(\mathcal{MP}_{1})\} \subseteq \operatorname{argwMin}^{\prime}(F, \Omega, \mathbb{R}^{m}_{+}).$

Vectorization II—Motivation

$$\min_{x,y^1,y^2} \begin{pmatrix} y^1 \\ y^2 \end{pmatrix}$$

$$(\mathcal{MP}_2)$$

s.t
$$(x, y^1) \in \text{gph } F$$
,
 $(x, y^2) \in \text{gph } F$,
 $x \in \Omega$.

We know that:

$$\operatorname{argwMin}_{x}(\mathcal{MP}_{1}) \subseteq \operatorname{argwMin}^{\prime}(F, \Omega, \mathbb{R}^{m}_{+}).$$

Vectorization Scheme

For $p \in \mathbb{N}$:

$$\min_{\substack{x,y^1,\ldots,y^p \\ y^p \\ \text{s.t } (x,y^1) \in \text{gph } F, \\ \vdots \\ (x,y^p) \in \text{gph } F, \\ x \in \Omega. } (\mathcal{MP}_p)$$

Question:

$$\operatorname{argwMin}_{x}(\mathcal{MP}_{p}) \stackrel{?}{\subseteq} \operatorname{argwMin}^{\prime}(F, \Omega, \mathbb{R}^{m}_{+}).$$

Relationships between (MP_p) and (SOP')

Theorem

The following inclusions hold:

$$\bigcup_{p\in\mathbb{N}}\operatorname{argwMin}_{x}(\mathcal{MP}_{p})\subseteq\operatorname{argwMin}^{\prime}(\mathcal{F},\Omega,\mathbb{R}^{m}_{+})=\bigcap_{\varepsilon>0}\bigcup_{p\in\mathbb{N}}\varepsilon\operatorname{argwMin}_{x}(\mathcal{MP}_{p}).$$

Relationships between (MP_p) and (SOP')

Theorem

The following inclusions hold:

$$\bigcup_{p\in\mathbb{N}}\operatorname{argwMin}_{x}(\mathcal{MP}_{p})\subseteq\operatorname{argwMin}^{\prime}(\mathcal{F},\Omega,\mathbb{R}^{m}_{+})=\bigcap_{\varepsilon>0}\bigcup_{p\in\mathbb{N}}\varepsilon\operatorname{argwMin}_{x}(\mathcal{MP}_{p}).$$

Corollary

$\forall \varepsilon > 0, \exists \ p \in \mathbb{N}: \ \operatorname{argwMin}_{x}(\mathcal{MP}_{p}) \subseteq \operatorname{argwMin}'(\mathcal{F}, \Omega, \mathbb{R}^{m}_{+}) \subseteq \varepsilon \operatorname{argwMin}_{x}(\mathcal{MP}_{p}).$

Solutions of (\mathcal{MP}_p) in the Image Space

We have:

$$\bigcup_{\rho \in \mathbb{N}} \operatorname{argwMin}_{x} \left(\mathcal{MP}_{\rho} \right) \subseteq \operatorname{argwMin}^{l}(F, \Omega, \mathbb{R}^{m}_{+})$$

Theorem

Suppose that Ω is compact and gph F is closed. Then,

$$\forall x \in \Omega, \ \exists \ \bar{x} \in \mathsf{cl} \ \left(\bigcup_{\rho \in \mathbb{N}} \mathsf{argwMin}_x \left(\mathcal{MP}_\rho \right) \right) : \ F(\bar{x}) \preceq^l F(x).$$

Finite Dimensional Vectorization Property

We have:

$$\bigcup_{\rho \in \mathbb{N}} \operatorname{argwMin}_{x} \left(\mathcal{MP}_{\rho} \right) \subseteq \operatorname{argwMin}^{l}(F, \Omega, \mathbb{R}^{m}_{+})$$

Finite Dimensional Vectorization Property

We have:

$$\bigcup_{\rho \in \mathbb{N}} \operatorname{argwMin}_{x} \left(\mathcal{MP}_{\rho} \right) \subseteq \operatorname{argwMin}^{l}(F, \Omega, \mathbb{R}^{m}_{+})$$

Definition

We say that (SOP') satisfies the finite dimensional vectorization property (FDVP) if

 $\exists p \in \mathbb{N} : \operatorname{argwMin}_{\times}(\mathcal{MP}_p) = \operatorname{argwMin}^{l}(F, \Omega, \mathbb{R}^{m}_{+}).$

(FDVP) for (SOP¹): Discrete Case

Theorem

(a) Suppose that $|\Omega| < +\infty$. Then,

(SOP^I) satisfies (FDVP) with $p = |\Omega| - 1$.

(FDVP) for (SOP'): Discrete Case

Theorem

- (a) Suppose that $|\Omega| < +\infty$. Then, (SOP^I) satisfies (FDVP) with $p = |\Omega| - 1$.
- (b) Suppose that $\sup_{x \in \Omega} |Min(F(x), \mathbb{R}^m_+)| < +\infty$ (in particular if the values of the set-valued objective mapping have finite cardinality). Then, (SOP^I) satisfies (FDVP) with $p = \sup_{x \in \Omega} |Min(F(x), \mathbb{R}^m_+)|$.

(FDVP) for (SOP¹): Discrete Case

Theorem

- (a) Suppose that $|\Omega| < +\infty$. Then, (SOP^I) satisfies (FDVP) with $p = |\Omega| - 1$.
- (b) Suppose that $\sup_{x \in \Omega} |Min(F(x), \mathbb{R}^m_+)| < +\infty$ (in particular if the values of the set-valued objective mapping have finite cardinality). Then, (SOP^I) satisfies (FDVP) with $p = \sup_{x \in \Omega} |Min(F(x), \mathbb{R}^m_+)|$.

Example: $F(x) := \{f(x, u) \mid u \in \mathcal{U}\}, \text{ where } f : \mathbb{R}^n \times \mathcal{U} \to \mathbb{R}^m \text{ and } |\mathcal{U}| < \infty.$

(FDVP) for (SOP¹): Polytope Case

Theorem

Suppose that F is polytope-valued and that $\sup_{x\in\Omega}|\mathrm{ext}(F(x))|<+\infty$. Then,

(SOP¹) satisfies (FDVP) with
$$p = \sup_{x \in \Omega} |ext(F(x))|$$
.

(FDVP) for (SOP'): Polytope Case

Theorem

Suppose that F is polytope-valued and that $\sup_{x \in \Omega} |ext(F(x))| < +\infty$. Then,

(SOP^I) satisfies (FDVP) with
$$p = \sup_{x \in \Omega} |ext(F(x))|$$
.

Example: $F(x) := \{y \in \mathbb{R}^m \mid Ay \le f(x)\}$, where $A \in \mathbb{R}^{k \times m}$ and $f : \mathbb{R}^n \to \mathbb{R}^k$.

(FDVP) for (SOP¹): Convex Case

Theorem

Suppose additionally that Ω is convex, gph F is convex, F is locally bounded around any point in Ω .

Then,

(SOP^I) satisfies (FDVP) with p := n + 1.

Scalarization of $(MOP_{\mathcal{L}})$ -Relation to (\mathcal{MP}_p)

For $v \in \mathbb{R}^p_+$ consider

$$\min_{x\in\Omega}\left(v_1\min_{y\in F(x)}\ell^1(y)+\ldots+v_p\min_{y\in F(x)}\ell^p(y)\right)$$

Scalarization of $(MOP_{\mathcal{L}})$ -Relation to (\mathcal{MP}_p)

For $v \in \mathbb{R}^p_+$ consider

$$\min_{x \in \Omega} \left(v_1 \min_{y \in F(x)} \ell^1(y) + \dots + v_p \min_{y \in F(x)} \ell^p(y) \right)$$

=
$$\min_{x \in \Omega} \left(\min_{y^1 \in F(x)} (v_1 \ell^1)(y^1) + \dots + \min_{y^p \in F(x)} (v_p \ell^p)(y^p) \right)$$

Scalarization of $(MOP_{\mathcal{L}})$ -Relation to (\mathcal{MP}_{p})

For $v \in \mathbb{R}^p_+$ consider

$$\min_{x \in \Omega} \left(v_1 \min_{y \in F(x)} \ell^1(y) + ... + v_p \min_{y \in F(x)} \ell^p(y) \right)$$

=
$$\min_{x \in \Omega} \left(\min_{y^1 \in F(x)} (v_1 \ell^1)(y^1) + ... + \min_{y^p \in F(x)} (v_p \ell^p)(y^p) \right)$$

=
$$\min_{(x, y^1, ..., y^p) \in gph F^p} w^\top (y^1, ..., y^p)^\top,$$

where $w := (v_1 \ell^1, ..., v_p \ell^p)^\top \in (\mathbb{R}^m_+)^p$ and $\operatorname{gph} F^p := \{(x, y^1, ..., y^p) \mid \forall i \in [p] : (x, y^i) \in \operatorname{gph} F\}.$

Uncertain Multiobjective Optimization Problem

Definition (Ehrgott et al. 2014)

 $\bar{x} \in \Omega$ is a robust weakly minimal solution of (\mathcal{UMP}) if it is a solution of (\mathcal{RCP}) , i.e.,

$$\exists x \in \Omega : F_{\mathcal{U}}(x) \prec_u F_{\mathcal{U}}(\bar{x}),$$

where $F_{\mathcal{U}}(x) = \{f(x, u) \mid u \in \mathcal{U}\}$. The set of robust weakly minimal solutions is denoted by $\operatorname{argwMin}(\mathcal{UMP})$.

Uncertain Multiobjective Optimization Problem

Definition (Ehrgott et al. 2014)

 $\bar{x} \in \Omega$ is a robust weakly minimal solution of (\mathcal{UMP}) if it is a solution of (\mathcal{RCP}) , i.e.,

$$\nexists x \in \Omega : F_{\mathcal{U}}(x) \prec_{u} F_{\mathcal{U}}(\bar{x}),$$

where $F_{\mathcal{U}}(x) = \{f(x, u) \mid u \in \mathcal{U}\}$. The set of robust weakly minimal solutions is denoted by $\operatorname{argwMin}(\mathcal{UMP})$.

$$A \prec_{u} B \iff (A - \mathbb{R}^{m}_{+})^{c} \prec_{I} (B - \mathbb{R}^{m}_{+})^{c}$$

Uncertain Multiobjective Optimization Problem

Definition (Ehrgott et al. 2014)

 $\bar{x} \in \Omega$ is a robust weakly minimal solution of (\mathcal{UMP}) if it is a solution of (\mathcal{RCP}) , i.e.,

$$\nexists x \in \Omega : F_{\mathcal{U}}(x) \prec_{u} F_{\mathcal{U}}(\bar{x}),$$

where $F_{\mathcal{U}}(x) = \{f(x, u) \mid u \in \mathcal{U}\}$. The set of robust weakly minimal solutions is denoted by $\operatorname{argwMin}(\mathcal{UMP})$.

$$A \prec_{u} B \iff (A - \mathbb{R}^{m}_{+})^{c} \prec_{l} (B - \mathbb{R}^{m}_{+})^{c}.$$

We need something like ... see Part 2

Literature

- G. Eichfelder and T. Gerlach, On classes of set optimization problems which are reducible to vector optimization problems and its impact on numerical test instances, Chapter 10 in: Variational Analysis and Set Optimization, CRC Press, 2019.
- G. Eichfelder and S. Rocktächel, Solving Set-valued Optimization Problems Using a Multiobjective Approach, Optimization, DOI: 10.1080/02331934.2021.1988596, 2021.
- G. Eichfelder, E. Quintana and S. Rocktäschel, A Vectorization Scheme for Nonconvex Set Optimization Problems. SIAM Journal on Optimization, 32(2), 1184-1209, 2022.
- G. Eichfelder, T. Gerlach, S. Rocktäschel, Convexity and Continuity of Specific Set-valued Maps and their Extremal Value Functions. Journal of Applied and Numerical Optimization, 2022.

