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What is Set Optimization?
• Minimizing a scalar-valued objective function f : Ω→ R over a non-empty set Ω:

x̄ ∈ Ω minimal solution ⇔ f (x̄) ≤ f (x) for all x ∈ Ω .

• Multiobjective optimization: Minimizing a vector-valued objective function

f : Ω→ Rm

over a non-empty set Ω:

x̄ ∈ Ω efficient solution ⇔ ({f (x̄)} − Rm
+) ∩ f (Ω) = {f (x̄)}.

• Set optimization: Minimizing a set-valued objective function

F : Ω⇒ Rm, F (x) ⊆ Rm .
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Why Set Optimization?
• transport robots, finance, socio economics, . . .
• Bilevel optimization: upper level function
F (x) = {fu(x , y) ∈ Rm | y solves lower level problem P(x)}
• Uncertain values F (x) = {f (x)}+ B(0, r(x))
• Robust multiobjective optimization F (x) = {f (x , ξ) ∈ Rm | ξ ∈ U}, e.g.,
F (x) = {f (x + z) ∈ Rm | z ∈ Z} (see later in this talk)

Khan, Tammer, Zălinescu,
Set-valued optimization – an introduction with applications, Springer 2015.
Hamel, Heyde, Löhne, Rudloff, Schrage,
Set Optimization: A Rather Short Introduction, In: Set Optimization and Applications —
The State of the Art, Springer 2015.
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Outline

• Multiobjective Optimization and Optimality Notions
• Set Optimization and Optimality Notions
• Example: Uncertain Multiobjective Optimization
• Multiobjective Replacements
• Vectorization I (for convex-valued problems)
• Vectorization II
• Uncertain Multiobjective Optimization
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Multiobjective Optimization Problem (MOP)

min


f1(x)
...

fm(x)

 s.t. x ∈ Ω (MOP)

with functions fj : Rn → R, j = 1, . . . ,m and feasible set Ω ⊆ Rn.

Applications are for instance
• optimal portfolio with minimal risk and maximal return
• optimal design with minimal weight, maximal stability
• optimal treatment plan in medicine which destroys tumour, spares healthy organs
• optimal mixing with minimal energy and maximal mixing quality
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Optimal Solutions of a MOP

In general, there is no point x̄ ∈ Ω with

x̄ ∈ argmin{fj(x) | x ∈ Ω} for all j ∈ {1, . . . ,m}

at the same time!

Equivalent conditions in single-objective optimization for a minimal solution x̄ ∈ Ω:
• f (x̄) ≤ f (x) for all x ∈ Ω (for MOP strongly efficient point, in general there is none)

• x ∈ Ω with f (x) ≤ f (x̄) implies f (x) = f (x̄) (for MOP efficient point, next slide)

• there is no x ∈ Ω with f (x) < f (x̄) (for MOP weakly efficient point, soon)
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Efficient Points of a MOP
A point x̄ ∈ X is efficient for minx∈Ω f (x) if it
holds for all x ∈ Ω with

fi (x) ≤ fi (x̄) for all i = 1, . . . ,m

that f (x) = f (x̄),

i.e., there is no x ∈ Ω with
fi (x) ≤ fi (x̄), i = 1, . . . ,m and with

fj(x) < fj(x̄) for at least one j ∈ {1, . . . ,m}.

Equivalently: ({f (x̄)} − Rm
+) ∩ f (Ω) = {f (x̄)} .

Then we call f (x̄) nondominated.

f2

f1

f (x̄)− R2
+

f (x̄)

f (Ω)
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Efficient and Weakly Efficient of a MOP
A point x̄ ∈ Ω is efficient for minx∈Ω f (x) if there is no x ∈ Ω with

fi (x) ≤ fi (x̄) for all i = 1, . . . ,m,
and fj(x) < fj(x̄) for at least one j ∈ {1, . . . ,m},

i.e., if
({f (x̄)} − Rm

+) ∩ f (Ω) = {f (x̄)} .

A point x̄ ∈ Ω is weakly efficient for minx∈Ω f (x) if there is no x ∈ Ω with

fi (x) < fi (x̄) for all i = 1, . . . ,m,

i.e., if
({f (x̄)} − int(Rm

+)) ∩ f (Ω) = ∅ .
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Weakly Efficient Points of a MOP

A point x̄ ∈ Ω is weakly efficient for minx∈Ω f (x)
if there is no x ∈ Ω with

fi (x) < fi (x̄) for all i = 1, . . . ,m

i.e., if

({f (x̄)} − int(Rm
+)) ∩ f (Ω) = ∅ .

Then we call f (x̄) weakly nondominated and
write x̄ ∈ argwMin(f ,Ω,Rm

+).

f1

f2

images of efficient points
nondominated points

weakly
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Approximate Weakly Efficient Points of a MOP

Let ε > 0. A point x̄ ∈ X is ε-weakly efficient for minx∈Ω f (x) if there is no x ∈ Ω with

fi (x) < fi (x̄)− ε for all i = 1, . . . ,m,

i.e., if
({f (x̄)− ε e} − int(Rm

+)) ∩ f (Ω) = ∅ .

For ε ≥ 0, we write εargwMin(f ,Ω,Rm
+), and call its elements ε-weakly efficient solutions.

For ε = 0, we write argwMin(f ,Ω,Rm
+), and call its elements weakly efficient solutions.
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Set Optimization Problem

min
x∈Ω

F (x) (SOP)

with
• Ω ⊆ Rn nonempty and closed,
• F : Rn ⇒ Rm a given set-valued map such that Ω ⊆ domF and
• F (x) compact for all x ∈ Ω (and sometimes: convex)
• sometimes

⋃
x∈Ω F (x) bounded,

• C ⊆ Rm a closed, pointed, solid and convex cone, here: C = Rm
+, and e ∈ intC , here:

e = (1, . . . , 1)> ∈ Rm
+, a given element.
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Binary Relations for Set Optimization

We take in the talk as ordering cone C = Rm
+ in Y = Rm, but results apply for any closed,

pointed, convex and solid cone C ⊆ Rm.

(i) the u-less order relation is defined by: A 4u B :⇔ A ⊆ B − C ,

(ii) the l-less order relation is defined by: A 4l B :⇔ B ⊆ A + C ,and
(iii) the set less order relation is defined by: A 4s B :⇔ A 4u B and A 4l B.

B

A

B � C

A

A + C

B

A

A + C

BB � C
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Optimality Notion in Set Optimization
Definition
Let ∗ ∈ {l , u, s}. We denote x̄ ∈ Ω a minimal solution of (SOP∗) if

∀ x ∈ Ω : F (x) 4∗ F (x̄) =⇒ F (x̄) 4∗ F (x).

We denote x̄ ∈ Ω a weakly minimal solution of (SOP∗) if there is no x ∈ Ω with

F (x) ≺∗ F (x̄)

where
A ≺l B :⇐⇒ B ⊆ A + int(Rm

+), A ≺u B :⇐⇒ A ⊆ B − int(Rm
+)

A ≺s B :⇐⇒ A ≺l B ∧ A ≺u B.
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Uncertain Multiobjective Optimization

Let:
• f : Rn × Rk → Rm be continuous,

• Ω ⊆ Rn be nonempty and closed,

• U ⊆ Rk be nonempty and compact (the so called uncertainty set).
The uncertain multiobjective problem associated to this data is:{

min
x

f (x , u)
s.t. x ∈ Ω

∣∣∣ u ∈ U} (UMP)
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The Scalar Case

Let m = 1. {
min

x
f (x , u)

s.t. x ∈ Ω

∣∣∣ u ∈ U} (UMP)

Robust counterpart problem:

min
x

sup
u ∈ U

f (x , u)

s.t. x ∈ Ω
(RCP)

Solutions of (RCP) are called robust for (UMP).
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Robust Counterpart Problem for m ≥ 2

Consider FU : Rn ⇒ Rm given by FU (x) := {f (x , u) ∈ Rm | u ∈ U} .

Robust counterpart problem:
min

x
FU (x)

s.t. x ∈ Ω
(RCP)

Recall: x̄ ∈ Ω is a weakly minimal solution of the set optimization problem (RCP) w.r.t.
∗ = u if

@ x ∈ Ω : FU (x) ⊆ FU (x̄)− int(Rm
+).
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Uncertain Multiobjective Optimization Problem
{

min
x

f (x , u)
s.t. x ∈ Ω

∣∣∣ u ∈ U} (UMP)

Definition (Ehrgott, Ide, Schöbel 2014, Ide, Köbis, Kuroiwa, Schöbel, Tammer 2014)

x̄ ∈ Ω is a robust weakly minimal solution of (UMP) if it is a weakly minimal solution
of (RCP) (w.r.t. ∗ = u), i.e,

@ x ∈ Ω : FU (x) ⊆ FU (x̄)− int(Rm
+),

where
FU (x) = {f (x , u) ∈ Rm | u ∈ U} .
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State of the Art for Set Optimization

There are just a few approaches to numerically solve set optimization problems, for instance
• for polyhedral convex sets [Schrage, Löhne 2013]
• scalarization based, e.g., [Köbis, Köbis 2016]
• for finite families of sets [Günther, Köbis, Popovici 2019]
• derivative-free descent method [Jahn, 2015]

We propose approaches based on solving (finite dimensional) multiobjective replacement
problems.
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Replacement Problem for Ball-valued maps

Theorem
Let c : Ω→ Rm and r : Ω→ R+. Let the ball-valued map F : Ω⇒ Rm be defined by

F (x) := {c(x)}+ {y ∈ Rm | ‖y‖2 ≤ r(x)} for all x ∈ Ω.

Then x̄ ∈ Ω is a minimal solution of (SOPs) if and only if x̄ is an efficient solution of

min
x∈Ω

(
Im e
Im −e

)(
c(x)
r(x)

)

w.r.t. the ordering cone R2m
+ , where Im is the m-dimensional identity matrix and e is the

m-dimensional all-one vector.
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How to Solve Set Optimization Problems?
For F (x) convex for all x ∈ Ω, similar to a result in [Jahn, 2015], it holds for x1, x2 ∈ Ω:

F (x1) 4l F (x2) ⇔ ∀ ` ∈ Rm
+ \ {0} : min

y∈F (x1)
`>y ≤ min

y∈F (x2)
`>y .

Theorem
(a) x̄ ∈ Ω is a minimal solution of (SOPl) if and only if there is no x ∈ Ω such that

∀` ∈ Rm
+ \ {0} : min

y∈F (x)
`>y ≤ min

ȳ∈F (x̄)
`>ȳ and ∃ˆ̀∈ Rm

+ \ {0} : min
y∈F (x)

ˆ̀>y < min
ȳ∈F (x̄)

ˆ̀>ȳ .

(b) x̄ ∈ Ω is a weakly minimal solution of (SOPl) if and only if there is no x ∈ Ω such that

∀` ∈ Rm
+ \ {0} : min

y∈F (x)
`>y < min

ȳ∈F (x̄)
`>ȳ .
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Minimal Value Function

Let ` ∈ Rm
+ \ {0} be given. The corresponding minimal value function `min : Ω→ R is

defined by
`min(x) := min

y∈F (x)
`>y .

A simple first sufficient condition for a minimal solution x̄ ∈ Ω:
If it holds `min(x̄) < `min(x) for all x ∈ Ω \ {x̄}, then x̄ is a minimal solution of (SOPl).

Hence, by solving minx∈Ω `min(x) we can determine (weakly) minimal solutions of the set
optimization problem!
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optimization problem!

21 Gabriele Eichfelder | Vienna | 16.12.2022



Example I
F : [π, 5

2π]⇒ R2 with

F (x) =
{
y ∈ R2

∣∣∣∣∣ y = 2
(

cos(x)
sin(x)

)
+ r

(
cos(t)
sin(t)

)
, r ∈ [0,R(x)] , t ∈ [0, 2π]

}

where the radii of the balls are given by R(x) = 1 + 4
5(( 2

πx − 3)2 − 1).
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Example II
For `1 := (1, 0)>, `2 := (0, 1)>, `3 := 1√

2(1, 1)>: the graphs of `imin and the sets F (x̄ i ) to
the minimal solutions x̄ i .
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Boundaries of the image sets F (x̄ i ) of the unique minimal solutions x̄ i with
`imin(x̄ i ) = min

x∈S
`imin(x), i ∈ {1, 2, 3}.
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Main Idea:
Study

min
x∈Ω

 `1min(x)
`2min(x)
`3min(x)

 =

 miny∈F (x)(`1)>y
miny∈F (x)(`2)>y
miny∈F (x)(`3)>y
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The multiobjective replacement problem
To a finite nonempty list L = {`1, . . . , `k} ⊆ {y ∈ Rm

+ | ‖y‖ = 1} we assign the
multiobjective optimization problem

min
x∈Ω

fL(x) (MOPL)

with f L := (`1min, . . . , `
k
min)> : Rn → Rk , and, as before, `imin : Ω→ R,

`imin(x) := min
y∈F (x)

(`i )>y

for all i ∈ {1, . . . , k}.
• Gerlach, Rocktäschel, On convexity and quasiconvexity of extremal value functions in set optimization,

Applied Set-Valued Analysis and Optim., 2021.
• Eichfelder, Gerlach, Rocktäschel, Convexity and continuity of specific set-valued maps and their

extremal value functions, J. of Applied and Numerical Optim., 2022.
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How to Find Weakly Minimal Solutions of (SOP)?

Let L = {`1, . . . , `k} ⊆ {y ∈ Rm
+ | ‖y‖ = 1}.

Theorem
The weakly efficient solutions of (MOPL) are weakly minimal solutions of (SOPl), i.e.,

argwMin(fL,Ω,Rk
+) ⊆ argwMinl (F ,Ω,Rm

+).

We do not have:
• argMin(fL,Ω,Rk

+) ⊆ argMinl (F ,Ω,Rm
+)

• argwMin(fL,Ω,Rk
+) ⊇ argwMinl (F ,Ω,Rm

+)
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Weakly Minimal Solutions of (SOP) - Example

Example

• Choose L = {(1, 0)>, ( 1√
2 ,

1√
2)>, (0, 1)>} (three or more)

• Ω = {x1, x2}
• F (x1) = {y ∈ R2 | ||y ||2 ≤ 1}
• F (x2) = conv({(1 + ε)(−1, 0)>, (1 + ε)(−1√

2 ,
−1√

2)>, (1 + ε)(0,−1)>}), where

ε := 1
2

(
1−

√
1− 1

4 min
i 6=j
||`i − `j ||22

)
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Weakly Minimal Solutions of (SOP) - Example

F (x1)

y1

y2

F (x 2)

−`1

−`3−`2
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Is There a Nice ’ε-connection’?

Theorem
For every ε > 0 there exists a finite L = L(ε) such that,

argwMinl (F ,Ω,Rm
+) ⊆ εargwMin(fL,Ω,R|L|+ ).

It follows:

argwMin(fL,Ω,R|L|+ ) ⊆ argwMinl (F ,Ω,Rm
+) ⊆ εargwMin(fL,Ω,R|L|+ ).
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F (x1)

y1

y2

F (x 2)

−`1

−`3−`2

• x1 ∈ argwMin(F ,Ω,R2
+)

• x1 /∈ argwMin(fL,Ω,R3
+)

• x2 ∈ argwMin(F ,Ω,R2
+)

• x2 ∈ argwMin(fL,Ω,R3
+)

• We see: x1 ∈ εargwMin(fL,Ω,R3
+),

ε ≈ 0.04
• We can prove:

x1 ∈ argwMin(F ,Ω,R2
+) ⊆

εargwMin(fL,Ω,R3
+)

for ε ≈ 1.12
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A Hint on Choosing L

Theorem
Suppose that

ū := sup

‖y‖ | y ∈ ⋃
x∈Ω

Min(F (x),Rm
+)

 < +∞.

Let ε > 0 be given and L be a finite set with

{y ∈ Rm
+ | ‖y‖ = 1} ⊂ L+ ε

4ūB.

Then
argwMin(fL,Ω,Rk

+) ⊆ argwMinl (F ,Ω,Rm
+) ⊆ εargwMin(fL,Ω,Rk

+).
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Finite Dimensional Vectorization Property (FDVP)

Definition
We say that (MOPL) satisfies the finite dimensional vectorization property (FDVP) if

∀x ∈ argwMinl (F ,Ω,Rm
+) ∃L ⊆ Rm

+ \ {0} : |L| <∞∧ x ∈ argwMin(fL,Ω,R|L|+ )

Theorem
Let Ω be convex, Ω ⊆ int(domF ). If gphF is convex, then (MOPL) satisfies (FDVP).

32 Gabriele Eichfelder | Vienna | 16.12.2022



Finite Dimensional Vectorization Property (FDVP)

Definition
We say that (MOPL) satisfies the finite dimensional vectorization property (FDVP) if

∀x ∈ argwMinl (F ,Ω,Rm
+) ∃L ⊆ Rm

+ \ {0} : |L| <∞∧ x ∈ argwMin(fL,Ω,R|L|+ )

Theorem
Let Ω be convex, Ω ⊆ int(domF ). If gphF is convex, then (MOPL) satisfies (FDVP).

32 Gabriele Eichfelder | Vienna | 16.12.2022



And Other Set Order Relations?
For F (x) convex for all x ∈ Ω, similar to a result in [Jahn, 2015], it holds for x1, x2 ∈ Ω:

F (x1) 4u F (x2) ⇔ ∀ ` ∈ Rm
+ \ {0} : max

y∈F (x1)
`>y ≤ max

y∈F (x2)
`>y .

Theorem
(a) x̄ ∈ Ω is a minimal solution of (SOPu) if and only if there is no x ∈ Ω such that

∀` ∈ Rm
+ \ {0} : max

y∈F (x)
`>y ≤ max

ȳ∈F (x̄)
`>ȳ and ∃ˆ̀∈ Rm

+ \ {0} : max
y∈F (x)

ˆ̀>y < max
ȳ∈F (x̄)

ˆ̀>ȳ .

(b) x̄ ∈ Ω is a weakly minimal solution of (SOPu) if and only if there is no x ∈ Ω such that

∀` ∈ Rm
+ \ {0} : max

y∈F (x)
`>y < max

ȳ∈F (x̄)
`>ȳ .
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ˆ̀>ȳ .

(b) x̄ ∈ Ω is a weakly minimal solution of (SOPu) if and only if there is no x ∈ Ω such that

∀` ∈ Rm
+ \ {0} : max

y∈F (x)
`>y < max
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(MOP) for Other Set Relations

For finite, nonempty sets L = {`1, ..., `p},U = {`p+1, ..., `p+q} ⊆ Rm
+ \ {0} we define the

multiobjective optimization problem:

min
x∈Ω

fL,U (x) :=



miny∈F (x) `
1(y)

...
miny∈F (x) `

p(y)
maxy∈F (x) `

p+1(y)
...

maxy∈F (x) `
p+q(y)


w.r.t. Rp+q

+ (MOP(L,U))
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And for Nonconvex Sets F (x)? Motivation:

Definition
x̄ is a vector approach weakly minimal solution of (SOP) if there exists ȳ ∈ F (x̄) such
that (x̄ , ȳ) is a weakly efficient solution of the multiobjective optimization problem

min
x ,y

y

s.t. (x , y) ∈ gph F ,
x ∈ Ω.

(MP1)

We know that:

x̄ vector approach weakly minimal solution =⇒ x̄ ∈ argwMinl (F ,Ω,Rm
+).
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And for Nonconvex Sets F (x)? Motivation:

Definition
x̄ is a vector approach weakly minimal solution of (SOP) if there exists ȳ ∈ F (x̄) such
that (x̄ , ȳ) is a weakly efficient solution of the multiobjective optimization problem

min
x ,y1

y1

s.t. (x , y1) ∈ gph F ,
x ∈ Ω.

(MP1)

argwMinx (MP1) := {x ∈ Rn | ∃ y ∈ Rm : (x , y) ∈ argwMin (MP1)} ⊆ argwMinl (F ,Ω,Rm
+).
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Vectorization II—Motivation

min
x ,y1,y2

(
y1

y2

)

s.t (x , y1) ∈ gph F ,
(x , y2) ∈ gph F ,
x ∈ Ω.

(MP2)

We know that:

argwMinx (MP1) ⊆ argwMinl (F ,Ω,Rm
+).
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Vectorization Scheme
For p ∈ N :

min
x ,y1,...,yp


y1

...
yp


s.t (x , y1) ∈ gph F ,

...
(x , yp) ∈ gph F ,
x ∈ Ω.

(MPp)

Question:

argwMinx (MPp)
?
⊆ argwMinl (F ,Ω,Rm

+).
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Relationships between (MPp) and (SOPl)

Theorem
The following inclusions hold:⋃

p∈N
argwMinx (MPp) ⊆ argwMinl (F ,Ω,Rm

+) =
⋂
ε>0

⋃
p∈N

ε argwMinx (MPp).

Corollary

∀ ε > 0,∃ p ∈ N : argwMinx (MPp) ⊆ argwMinl (F ,Ω,Rm
+) ⊆ ε argwMinx (MPp).
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Solutions of (MPp) in the Image Space

We have: ⋃
p∈N

argwMinx (MPp) ⊆ argwMinl (F ,Ω,Rm
+)

Theorem
Suppose that Ω is compact and gph F is closed. Then,

∀ x ∈ Ω, ∃ x̄ ∈ cl

⋃
p∈N

argwMinx (MPp)

 : F (x̄) �l F (x).
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Finite Dimensional Vectorization Property

We have: ⋃
p∈N

argwMinx (MPp) ⊆ argwMinl (F ,Ω,Rm
+)

Definition
We say that (SOPl) satisfies the finite dimensional vectorization property (FDVP) if

∃ p ∈ N : argwMinx (MPp) = argwMinl (F ,Ω,Rm
+).
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(FDVP) for (SOPl): Discrete Case

Theorem

(a) Suppose that |Ω| < +∞. Then,
(SOPl) satisfies (FDVP) with p = |Ω| − 1.

(b) Suppose that sup
x∈Ω
|Min(F (x),Rm

+)| < +∞ (in particular if the values of the set-valued

objective mapping have finite cardinality). Then,
(SOPl) satisfies (FDVP) with p = sup

x∈Ω
|Min(F (x),Rm

+)|.

Example: F (x) := {f (x , u) | u ∈ U} , where f : Rn × U → Rm and |U| <∞.
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(FDVP) for (SOPl): Polytope Case

Theorem
Suppose that F is polytope-valued and that sup

x∈Ω
|ext(F (x))| < +∞. Then,

(SOPl) satisfies (FDVP) with p = sup
x∈Ω
|ext(F (x))|.

Example: F (x) := {y ∈ Rm | Ay ≤ f (x)} , where A ∈ Rk×m and f : Rn → Rk .
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(FDVP) for (SOPl): Convex Case

Theorem
Suppose additionally that Ω is convex, gph F is convex, F is locally bounded around any
point in Ω.
Then,

(SOPl) satisfies (FDVP) with p := n + 1.
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Scalarization of (MOPL)-Relation to (MPp)

For v ∈ Rp
+ consider

min
x∈Ω

(
v1 min

y∈F (x)
`1(y) + ...+ vp min

y∈F (x)
`p(y)

)

= min
x∈Ω

(
min

y1∈F (x)
(v1`

1)(y1) + ...+ min
yp∈F (x)

(vp`
p)(yp)

)
= min

(x ,y1,...,yp)∈gphF p
w>(y1, ..., yp)>,

where w := (v1`
1, ..., vp`

p)> ∈ (Rm
+)p and

gphF p := {(x , y1, ..., yp) | ∀i ∈ [p] : (x , y i ) ∈ gphF}.
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Uncertain Multiobjective Optimization Problem

Definition (Ehrgott et al. 2014)

x̄ ∈ Ω is a robust weakly minimal solution of (UMP) if it is a solution of (RCP), i.e.,

@ x ∈ Ω : FU (x) ≺u FU (x̄),

where FU (x) = {f (x , u) | u ∈ U} . The set of robust weakly minimal solutions is denoted
by argwMin(UMP).

A ≺u B ⇐⇒
(
A− Rm

+
)c ≺l

(
B − Rm

+
)c
.

We need something like . . . see Part 2
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