PDMP based risk models

Stefan Thonhauser
Graz University of Technology
Research Seminar, 18.11.2022

FШF
Der Wissenschaftsfonds.

Overview

Risk Models

PDMPs

QMC integration

Outlook

Risk models and ruin concept

Surplus of insurance portfolio given by process $X=\left(X_{t}\right)_{t \geq 0}$

Determine:

time and probability of ruin ...classical risk measure (indication of problems with liquidity)

$$
\begin{aligned}
\tau & =\inf \left\{t>0 \mid X_{t}<0\right\} \\
\psi(x) & =P\left(\tau<\infty \mid X_{0}=x\right), \quad \psi(x, T)=P\left(\tau \leq T \mid X_{0}=x\right)
\end{aligned}
$$

or in general Gerber-Shiu functions:

$$
g(x):=\mathbb{E}_{x}\left(e^{-\delta \tau} w\left(X_{\tau-},\left|X_{\tau}\right|\right) \mathbb{1}_{\{\tau<\infty\}}\right)
$$

$w .$. function of time of, deficit at and surplus prior to ruin
\Rightarrow allows for mutual analysis of risk relevant quantities
(Gerber \& Shiu 1998-classical, 2005-renewal)

Classical risk or Cramér-Lundberg model

Use $X=\left(X_{t}\right)_{t \geq 0}$ of the form

$$
X_{t}=x+c t-\sum_{k=1}^{N_{t}} Y_{k}, \quad t \geq 0
$$

Ingredients:

- deterministic initial capital $x \geq 0$ and premium rate $c \geq 0$
- counting process $N=\left(N_{t}\right)_{t \geq 0}$ homogeneous Poisson process with intensity $\lambda>0$
- claims $\left\{Y_{k}\right\}_{k \in \mathbb{N}}, Y_{k} \stackrel{i i d}{\sim} F_{Y}$ with $F_{Y}(0)=0, \mathbb{E}\left(Y_{1}\right)=\mu$
- crucial assumption: N and $\left\{Y_{k}\right\}$ are independent
(Lundberg 1903, Cramér 1955, net profit condition: $c>\lambda \mu$)

Sample paths

Surplus paths with Exp and Par distributed claims

Asymptotic behaviour of ruin probability

Classical results depend on nature of claims

- light-tailed claims $\left(\exists s>0\right.$ with $\left.\mathbb{E}\left[e^{s Y_{1}}\right]<\infty\right)$

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} e^{R x} \psi(x)=C \\
& \text { with } R>0 \text { s.t. } \lambda\left(\mathbb{E}\left[e^{R Y_{1}}\right]-1\right)-c R=0
\end{aligned}
$$

- heavy tailed claims (if $\left.F_{I}(x)=\frac{1}{\mu} \int_{0}^{x}\left(1-F_{Y}(y)\right) d y \in \mathcal{S}\right)$

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{\psi(x)}{1-F_{I}(x)}=\frac{\rho}{1-\rho} \\
& \psi(x) \sim \frac{\rho}{\alpha(1-\rho)}\left(\frac{x}{c}\right)^{-(\alpha-1)} \\
& \quad \ldots \text { if } f_{Y}(x)=\frac{\alpha}{c}\left(\frac{c}{x}\right)^{\alpha+1}(x>c>0)
\end{aligned}
$$

Excursion: reinsurance control

Goal: minimize penalty function

$$
\begin{aligned}
\Phi(x) & =\inf _{u \in \mathcal{U}} \Phi^{u}(x):=\inf _{u \in \mathcal{U}} \mathbb{E}_{x}\left[e^{-\delta \tau_{x}^{u}} w\left(X_{\tau_{x}^{u}-}^{u},\left|X_{\tau_{x}^{u}}^{u}\right|\right)\right] \\
X_{t}^{u} & =x+\int_{0}^{t} c\left(u_{s}\right) d s-\sum_{i=1}^{N_{t}} r\left(Y_{i}, u_{T_{i}}\right)
\end{aligned}
$$

Control by dynamic reinsurance, where

- parametrized retention function

$$
r:[0, \infty) \times U \rightarrow[0, \infty) \text { with } 0 \leq r(y, u) \leq y
$$

- admissible controls

$$
\mathcal{U}=\left\{u=\left(u_{t}\right)_{t \geq 0} \mid u_{t} \in U \text { and } u \text { is } \mathcal{F}^{X} \text { previsible }\right\}
$$

(Preischl \& Th. 2019)

HJB-equation:

$$
\begin{aligned}
0=\inf _{u \in U} & \left\{c(u) f^{\prime}(x)-(\delta+\lambda) f(x)+\lambda \int_{0}^{\rho(x, u)} f(x-r(y, u)) d F_{Y}(y)\right. \\
& \left.+\lambda \int_{\rho(x, u)}^{\infty} w(x, r(y, u)-x) d F_{Y}(y)\right\}
\end{aligned}
$$

Operator for uniqueness:

$$
\begin{aligned}
\mathcal{G} f(x):=\inf _{u \in \mathcal{U}}\{ & \mathbb{E}_{x}\left[e^{-\delta T_{1}} f\left(X_{T_{1}}^{u}\right) \mathbb{1}_{\left\{T_{1}<\tau_{x}^{u}\right\}}\right]+\mathbb{E}_{x}\left[e^{-\delta T_{1}} w\left(X_{T_{1}-}^{u},\left|X_{T_{1}}^{u}\right|\right) \mathbb{1}_{\left\{T_{1}=\tau_{x}^{u}\right\}}\right] \\
& \left.+\mathbb{E}_{x}\left[e^{-\delta \tau_{x}^{u}} w(0,0) \mathbb{1}_{\left\{T_{1}>\tau_{x}^{u}\right\}}\right]\right\} \ldots \text { contraction on } \mathcal{C}^{+, b}[0, \infty)
\end{aligned}
$$

Theorem

In $\mathcal{C}^{+, b}[0, \infty), \Phi$ is unique fixed point of \mathcal{G} and unique positive, (Lipschitz) continuous solution to HJB-equation that is not greater than $w(0,0)$.

Why do we need more general processes?

- numerical approach via policy iteration: fix u_{0}, compute $V^{u_{0}} \rightarrow$ improve control, fix u_{1}, compute $V^{u_{1}} \ldots$
- Markovian controls $u_{t}=u\left(X_{t-}\right)$ lead to controlled processes of PDMP type
- on the way we need classical cost functions

$$
v^{i}(x)=\mathbb{E}_{x}\left[\int_{0}^{\tau} e^{-\delta t} \ell\left(X_{t}^{u_{i}}\right) d t+e^{-\delta \tau} \Psi\left(X_{\tau}^{u_{i}}\right)\right]
$$

- also here $v^{i}(0)$ is crucial
- use MC simulations for approximation of $v^{i}(0)$ $\left(\rightarrow\right.$ approximate $\left(\mathcal{G}^{u_{i}}\right)^{n} f(0)$ with MC)

Illustration of results

$$
F_{Y}(x)=1-(1+x)^{-3}, \delta=0.1 \text { and penalty } w_{2}(x, y)=\min \left\{10^{10},(x+0.5)(y+1)^{2}\right\}
$$

Figure: Optimal strategy for Pareto claims

Figure: Functions $\Phi^{u_{2}}$ to $\Phi^{u_{5}}$

Need for model extensions

- analyze risk models in unified framwork
- keep Markov property
(at least by adding not too many components)
- allow for flexible behaviour between jumps
- include more complex jumps
(intensity and jump size distributions)
- incorporate control opportunities

Piecewise deterministic Markov processes

... introduced as finite variation sample path alternative to diffusions
Construction of $X=\left(X_{t}\right)_{t \geq 0}$:

- state space $E=\left\{(k, y) \mid k \in K\right.$ and $\left.y \in E_{k}\right\}$ (K finite set, $E_{k} \subset \mathbb{R}^{d_{k}}$)
- $\phi=\left\{\phi_{k}\right\} \ldots$ deterministic trajectories (ϕ_{k} specified by vector field \mathcal{X}_{k} on E_{k})

$$
X_{t}=\left(k, \phi_{k}(y, t)\right), \quad X_{0}=(k, y), \quad \frac{\partial}{\partial t} \phi_{k}(y, t)=g_{k}\left(\phi_{k}(y, t)\right)
$$

- $\lambda=\left\{\lambda_{k}\right\} \ldots$ jump intensities

$$
\text { time of 1st jump } T_{1} \stackrel{d}{\sim} P_{k, y}\left(T_{1}>t\right)=e^{-\int_{0}^{t} \lambda_{k}\left(\phi_{k}(y, s)\right) d s}
$$

- $Q:(E, \mathcal{E}) \rightarrow[0,1] \ldots$ jump kernel

$$
X_{T_{1}} \stackrel{d}{\sim} Q\left(\phi_{k}\left(y, T_{1}\right), \cdot\right)
$$

- piecewise construction (starting anew in $X_{T_{1}}$)
(PDMPs introduced by Davis 1984)

Additional features

- active boundary Γ : points at boundary of E which can be reached along ODE paths (good for bing-bang controls)
- at time $t^{*}(x)=\inf \left\{t \geq 0 \mid \phi_{k}(t, \zeta) \in \Gamma\right\}(x=(k, \zeta))$ force jump

$$
T_{1} \stackrel{d}{\sim} P_{x}\left(T_{1}>t\right)=e^{-\int_{0}^{t} \lambda_{k}\left(\phi_{k}(\zeta, s)\right) d s} \mathbb{1}_{\left\{t<t^{*}(x)\right\}}
$$

- embedded pure jump Markov process η with

$$
\eta_{t}=\left(X_{T_{n}}, n\right) \quad \text { for } T \leq t<T_{n+1}
$$

(something to be exploited later)

Sometimes easier to deal with generator of X

Theorem (Davis 1984/92)

Let X be a PDMP with $\mathbb{E}_{x}\left[N_{t}\right]<\infty$ for all $t \geq 0, x \in E$. Then $\mathcal{D}(\mathcal{A})$ consists of functions f which fulfill

- $f(x)=\lim _{t \rightarrow 0} f\left(\phi_{\nu}(-t, \zeta)\right)$ for $x=(\nu, \zeta) \in E$,
- $t \mapsto f\left(\phi_{\nu}(t, \zeta)\right)$ is absolutely continuous for $x=(\nu, \zeta) \in E$,
- $f(x)=\int_{E} f(y) Q(x, d y)$ for $x \in \Gamma$,
- $\mathcal{B} f \in L_{1}^{\text {loc }}(p)$,
and $\mathcal{A f}$ is

$$
\mathcal{A} f(x)=\mathcal{X} f(x)+\lambda(x) \int_{E}(f(y)-f(x)) Q(x, d y) .
$$

$\left(p(t, A)=\sum_{i=1}^{\infty} \mathbb{1}_{\left\{T_{i} \leq t\right\}} \mathbb{1}_{\left\{X_{T_{i}} \in A\right\}}\right.$ and $\left.p^{*}(t)=\sum_{i=1}^{\infty} \mathbb{1}_{\left\{T_{i} \leq t\right\}} \mathbb{1}_{\left\{X_{\left.T_{i}-\in \Gamma\right\}}\right.}\right)$

Cost functions

Consider

- cemetery state $E^{c} \neq \emptyset$ (process absorbed)
- running reward/cost function $\ell: E \rightarrow \mathbb{R}$ with $\left.\ell\right|_{E^{c}} \equiv 0$
- terminal cost function $\Psi: E^{c} \rightarrow \mathbb{R}$ with $\left.\Psi\right|_{E \backslash E^{c}} \equiv 0$

Corresponding cost functional:

$$
\begin{aligned}
v(x) & =\mathbb{E}_{x}\left[\int_{0}^{\tau} e^{-\delta t} \ell\left(X_{t}\right) d t+e^{-\delta \tau} \Psi\left(X_{\tau}\right)\right] \\
\tau & =\inf \left\{t \geq 0: X_{t} \in E^{c}\right\}
\end{aligned}
$$

Goal: determine $v(x)$ by means of integration instead of IDE

Iterated integrals

Exploit Markov property of $\left\{X_{T_{i}}\right\} \Rightarrow$

$$
\begin{aligned}
& v(x)=\mathbb{E}_{x} {\left[\left(\int_{0}^{T_{1}} e^{-\delta t} \ell(\phi(x, t)) d t+e^{-\delta T_{1}} v\left(X_{T_{1}}\right)\right) \mathbb{1}_{\left\{T_{1}<\tau\right\}}\right.} \\
&+\left(\int_{0}^{\tau} e^{-\delta t} \ell(\phi(x, t)) d t+e^{-\delta \tau} \Psi(\phi(x, \tau))\right) \mathbb{1}_{\left\{\tau<T_{1}\right\}} \\
&\left.+\left(\int_{0}^{T_{1}} e^{-\delta t} \ell(\phi(x, t)) d t+e^{-\delta T_{1}} \Psi\left(X_{T_{1}}\right)\right) \mathbb{1}_{\left\{T_{1}=\tau\right\}}\right] \\
&=: \mathcal{H}(x)+\mathcal{G} v(x)
\end{aligned}
$$

\mathcal{H}... collects costs/rewards between jumps
\mathcal{G}... shifts problem forward by one jump (time)
In total we arrive at:

$$
v(x)=\underbrace{\mathcal{G}^{n} v(x)}_{\rightarrow 0}+\sum_{i=1}^{n} \underbrace{\mathcal{G}^{i-1} \mathcal{H}(x)}_{2 i-1 \text { dim integral }}
$$

Identify integrand (unfortunately complicated):

$$
\begin{aligned}
& \mathcal{G}^{i-1} \mathcal{H}\left(x_{0}\right)= \\
& \int_{t_{1}=0}^{\infty} f_{W}\left(t_{1}, x_{0}\right) e^{-\delta t_{1}} \int_{x_{1} \in E} \int_{t_{2}=0}^{\infty} f_{W}\left(t_{2}, x_{1}\right) e^{-\delta t_{2}} \int_{x_{2} \in E} \cdots \int_{t_{i-1}=0}^{\infty} f_{W}\left(t_{i-1}, x_{i-2}\right) e^{-\delta t_{i-1}} \\
& \int_{x_{i-1} \in E} \mathcal{H}\left(x_{i-1}\right) Q\left(\phi\left(x_{i-2}, t_{i-1}\right), d x_{i-1}\right) d t_{i-1} \cdots Q\left(\phi\left(x_{0}, t_{1}\right), d x_{1}\right) d t_{1} \\
& =\int_{t_{1}=0}^{\infty} \int_{x_{1} \in E} \cdots \int_{t_{i-1}=0}^{\infty} \int_{x_{i-1} \in E}\left(\prod_{j=1}^{i-1} f_{W}\left(t_{j}, x_{j-1}\right) e^{-\delta t_{j}}\right) \\
& \mathcal{H}\left(x_{i-1}\right) Q\left(\phi\left(x_{i-2}, t_{i-1}\right), d x_{i-1}\right) d t_{i-1} \cdots Q\left(\phi\left(x_{0}, t_{1}\right), d x_{1}\right) d t_{1}
\end{aligned}
$$

... but still it can be beneficial to exploit

$$
v(x) \approx \sum_{i=1}^{n} \mathcal{G}^{i-1} \mathcal{H}(x)
$$

for some x - but certainly not too many

QMC integration

Numerically evaluate

$$
\int_{[0,1]^{s}} f(\boldsymbol{x}) d \boldsymbol{x} \quad \text { for } \quad f:[0,1]^{s} \rightarrow \mathbb{R}
$$

using point set $\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N}\right\} \subset[0,1]^{s}, N \in \mathbb{N}$
Quality of points measured by D_{N}^{*} (distance to uniformity):

$$
D_{N}^{*}=\sup _{J \subset[0,1]^{s}}\left|\frac{1}{N} \sharp\left\{n \leq N: \boldsymbol{x}_{n} \in J\right\}-\lambda(J)\right|
$$

...sup taken over axis-aligned boxes J with one vertex in $\mathbf{0}$
Koksma-Hlawka inequality provides error bound:

$$
\left|\frac{1}{N} \sum_{n=1}^{N} f\left(\boldsymbol{x}_{n}\right)-\int_{[0,1]^{s}} f(\boldsymbol{x}) d \boldsymbol{x}\right| \leq \mathcal{V}(f) D_{N}^{*}
$$

(low discrepancy sequence achieve $D_{N}^{*} \leq C(\ln N)^{s} N^{-1}$)

Comparison of point sets

Figure: 1000 Sobol points

Figure: $1000 U\left([0,1]^{2}\right)$ points

Complications

Form of error bound appealing:

- contribution of point set via D_{N}^{*}
- contribution of integrand via its variation $\mathcal{V}(f)$

Drawback: $\mathcal{V}(f)$ in Hardy-Krause sense is hard to deal with
\ldots best case $f:[0,1]^{s} \rightarrow \mathbb{R}$ continuous derivatives up to order s, then

$$
\sum_{\emptyset \neq u \subset\{1, \ldots, s\}} \int_{[0,1]^{|u|}}\left|\frac{\partial^{|u|}}{\partial \mathbf{x}_{u}} f\left(\mathbf{x}_{u}, \mathbf{1}\right)\right| d \mathbf{x}_{u}
$$

- difficult to estimate
- many integrands are known to have unbounded variation

Modified approach

For $f \in \mathcal{C}^{2}\left([0,1]^{s}\right)$ one gets:

$$
V_{\mathcal{K}}(f) \leq \sup f-\inf f+\frac{s}{16} \sup \left\{\|\operatorname{Hess}(f, x)\| \mid x \in[0,1]^{s}\right\}
$$

such that error bound is

$$
\begin{aligned}
& \left|\int_{[0,1]^{s}} f(\boldsymbol{x}) d \boldsymbol{x}-\frac{1}{N} \sum_{i=1}^{N} f\left(\boldsymbol{x}_{i}\right)\right| \leq \\
& \quad\left(\sup _{\boldsymbol{x} \in[0,1]^{s}} f(\boldsymbol{x})-\inf _{\boldsymbol{x} \in[0,1]^{s}} f(\boldsymbol{x})+\frac{s}{16} \sup \left\{\|\operatorname{Hess}(f, \boldsymbol{x})\| \mid \boldsymbol{x} \in[0,1]^{s}\right\}\right) \tilde{D}_{N}
\end{aligned}
$$

with isotropic discrepancy

$$
\tilde{D}_{N}=\sup _{J \in \mathcal{K}}\left|\frac{1}{N} \sharp\left\{n \leq N: \boldsymbol{x}_{n} \in J\right\}-\lambda(J)\right|
$$

(notice $D_{N}^{*} \leq \tilde{D}_{N} \leq(4 s \sqrt{s}+1)\left(D_{N}^{*}\right)^{1 / s}$, concept due to Pausinger \& Svane 2015)

Observations

Message: integrand part of $\mathcal{G}^{i} \mathcal{H}(x)$ should be \mathcal{C}^{2} includes: first i jump times and $i-1$ post-jump locations
\Rightarrow interplay between ODE sensitivities

$$
\frac{\partial}{\partial t} \phi(y, t), \frac{\partial^{2}}{\partial t^{2}} \phi(y, t), \frac{\partial}{\partial y} \phi(y, t), \frac{\partial^{2}}{\partial t \partial y} \phi(y, t), \frac{\partial^{2}}{\partial y^{2}} \phi(y, t)
$$

and probabilistic ingredients (λ, Q)

We have 2 choices:
Let $\left\{X^{n}\right\}_{n \in \mathbb{N}}$ be smooth-coefficient-approximating PDMPs

- Use weak convergence to show convergence of expected values
- Show directly $\lim _{n \rightarrow \infty} v^{n}(x) \rightarrow v(x)$

Theorem (Kritzer et al. 2019)

Let X be a Feller PDMP with local characteristics (ϕ, λ, Q) and let $X^{n}, n \in \mathbb{N}$, be Feller PDMPs with local characteristics $\left(\phi^{n}, \lambda^{n}, Q^{n}\right)$. Further, let the following assumptions hold:
(i) $g^{n} \rightarrow g$ and $\lambda^{n} \rightarrow \lambda$ as $n \rightarrow \infty$, uniformly in $x \in E$,
(ii) for all $f \in C_{b}^{\infty}(E, \mathbb{R})$,

$$
\lim _{n \rightarrow \infty} \sup _{x \in E}\left|\int_{E} f(y) Q^{n}(d y, x)-\int_{E} f(y) Q(d y, x)\right|=0
$$

(iii) $X_{0}^{n} \xrightarrow{d} X_{0}$ in E.

Then $X^{n} \xrightarrow{d} X$ in $D([0, \infty), E)$ and if ℓ, Ψ are bounded and continuous

$$
\begin{aligned}
& \mathbb{E}_{x}\left(\int_{0}^{\tau} e^{-\delta t} \ell\left(X_{t}^{n}\right) d t+e^{-\delta \tau} \Psi\left(X_{\tau}^{n}\right)\right) \rightarrow \mathbb{E}_{x}\left(\int_{0}^{\tau} e^{-\delta t} \ell\left(X_{t}\right) d t+e^{-\delta \tau} \Psi\left(X_{\tau}\right)\right) \\
& \text { as } n \rightarrow \infty
\end{aligned}
$$

Current work and outlook

Use PDMP techniques to analyze risk models with stochastic intensities
Surplus process $(X, \lambda, \cdot)=\left(\left(X_{t}, \lambda_{t}, t\right)\right)_{t \geq 0}$ with generators:

$$
\begin{aligned}
\mathcal{A}^{S N} f(x, \lambda, t)= & c \frac{\partial f(x, \lambda, t)}{\partial x}-\delta \lambda \frac{\partial f(x, \lambda, t)}{\partial \lambda}+\frac{\partial f(x, \lambda, t)}{\partial t}-(\lambda+\rho) f(x, \lambda, t) \\
& +\lambda \int_{0}^{\infty} f(x-u, \lambda, t) d F_{U}(u)+\rho \int_{0}^{\infty} f(x, \lambda+y, t) d F_{Y}(y) \\
\mathcal{A}^{H} f(x, \lambda, t)= & c \frac{\partial f(x, \lambda, t)}{\partial x}+\delta(a-\lambda) \frac{\partial f(x, \lambda, t)}{\partial \lambda}+\frac{\partial f(x, \lambda, t)}{\partial t}-\lambda f(x, \lambda, t) \\
& +\lambda \int_{0}^{\infty} \int_{0}^{\infty} f(x-u, \lambda+y, t) d F_{U}(u) d F_{Y}(y)
\end{aligned}
$$

(Shot-noise: Pojer \& Th. 2022, Hawkes: Palmowski, Pojer \& Th. 2022 working paper)

Figure: Surplus with stochastic intensity
(Plot by Simon Pojer: Hawkes or Shot-Noise?)

Under meaningful assumptions on parameters we can derive:

$$
\lim _{x \rightarrow \infty} e^{R x} \psi(x, \lambda)=C^{\lambda}
$$

Proofs use:

- exponential martingales and suitable change of measure
- recurrence of intensities to get rid of λ_{t}
- renewal theorem of Schmidli (1997) for the equation

$$
Z(u)=z(u)+\int_{0}^{u} Z(u-y)(1-p(u, y)) B(d y)
$$

(results are surprising, since suitable renewal structure is not obvious)

References

Kritzer, Leobacher, Szölgyenyi \& Th., Approximation methods for piecewise deterministic Markov processes and their costs, 2019.

Preischl \& Th., Optimal reinsurance for Gerber-Shiu functions in the Cramér-Lundberg model, 2019.

Pojer \& Th., Ruin probabilities in a Markovian shot-noise environment, 2022.

Thank you for your attention

