
On convex polyhedron computations using
floating point arithmetic

Andreas Löhne

Friedrich Schiller University Jena, Germany

WU Wien, October, 7, 2022

Polyhedra vs. Polytopes

Polyhedron: P = {x ∈ Rd | Ax ≤ b}

Polytope: bounded polyhedron

Many aspects for polyhedra can be formulated in terms of
polytopes:

If P is a line-free polyhedron in Rd , then cl cone(P × {1}) is a
line-free polyhedral cone in Rd+1, which is given by a bounded
base B, which is a polytope in Rd .

Vertex Enumeration and Convex Hull Problem

Vertex Enumeration: H-represented polytope P with 0 ∈ intP:

P = {x ∈ Rd | Ax ≤ 1}.

Goal: compute a V-representation:

P = conv{v1, . . . , vk}

Convex hull problem: V-represented polytope P with 0 ∈ intP:

P = conv{v1, . . . , vk}

Goal: compute a H-representation:

P = {x ∈ Rd | Ax ≤ 1}.

Both problems are equivalent by polarity.

2-polytopes

Properties of 2-polytopes P:

• v = e

• The (vertex-edge) graph is a cycle

P G (P)

→ very simple structure

3-polytopes

Properties of 3-polytopes:

• v − e + f = 2 (Euler’s formula)

• The (vertex-edge) graph is planar and 3-connected

More properties of 3-polytopes

Steinitz’s theorem: A graph G is the vertex-edge graph of a
3-polytope if and only if G is planar and 3-connected.

• Ernst Steinitz (1871 – 1928)

• “the most important and deepest known result on
3-polytopes” (Branko Grünbaum)

• One of many consequences: Every 3-polytope can be realized
by integer coordinates

• No similar result for higher dimensions !

More properties of 3-polytopes

Theorem: (follows from Steinitz’s th., e.g. [Richter-Gebert])

The realization space of a 3-polytope is an open ball (of dimension
e − 6)

Example: cube, one realization has coordinates

More properties of 3-polytopes

Theorem: (follows from Steinitz’s th., e.g. [Richter-Gebert])

The realization space of a 3-polytope is an open ball (of dimension
e − 6)

Example: cube, one realization has coordinates0
0
0

 ,

1
0
0

 ,

0
1
0

 ,

0
0
1

 ,

1
1
0

 ,

1
0
1

 ,

0
1
1

 ,

1
1
1

 .

More properties of 3-polytopes

Theorem: (follows from Steinitz’s th., e.g. [Richter-Gebert])

The realization space of a 3-polytope is an open ball (of dimension
e − 6)

Example: cube, one realization has coordinates0
0
0

 ,

1
0
0

 ,

0
1
0

 ,

0
0
1

 ,

1
1
0

 ,

1
0
1

 ,

0
1
1

 ,

1
1
1

 .

fix a base (as affine transformations are not of interest)

More properties of 3-polytopes

Theorem: (follows from Steinitz’s th., e.g. [Richter-Gebert])

The realization space of a 3-polytope is an open ball (of dimension
e − 6)

Example: cube, one realization has coordinates0
0
0

 ,

1
0
0

 ,

0
1
0

 ,

0
0
1

 ,

1
1
0

 ,

1
0
1

 ,

0
1
1

 ,

1
1
1

 .

fix a base (as affine transformations are not of interest)

fixed to maintain combinatorics

More properties of 3-polytopes

Theorem: (follows from Steinitz’s th., e.g. [Richter-Gebert])

The realization space of a 3-polytope is an open ball (of dimension
e − 6)

Example: cube, one realization has coordinates0
0
0

 ,

1
0
0

 ,

0
1
0

 ,

0
0
1

 ,

z1
z2
0

 ,

z3
0
z4

 ,

 0
z5
z6

 ,

?
?
?

 .

fix a base (as affine transformations are not of interest)

fixe these entries to maintain combinatorics

variable, to maintain convexity, we need
z1 + z2 > 1, z3 + z4 > 1, z5 + z6 > 1, z1 > 0, . . . , z6 > 0

More properties of 3-polytopes

Theorem: (follows from Steinitz’s th., e.g. [Richter-Gebert])

The realization space of a 3-polytope is an open ball (of dimension
e − 6)

Example: cube, one realization has coordinates

0
0
0

 ,

1
0
0

 ,

0
1
0

 ,

0
0
1

 ,

z1
z2
0

 ,

z3
0
z4

 ,

 0
z5
z6

 ,

y1
y2
y3

 .

fix a base (as affine transformations are not of interest)

fixe these entries to maintain combinatorics

variable, to maintain convexity, we need
z1 + z2 > 1, z3 + z4 > 1, z5 + z6 > 1, z1 > 0, . . . , z6 > 0

fixed by the choice of z1, . . . , z6

4-polytopes

Universality theorem for 4-polytopes (Richter-Gebert, 1994):
For every primary semi-algebraic set V defined over Z there is a
4-polytope whose realization space is stably equivalent to V .

Some consequences:

• All algebraic numbers are needed to coordinatize all
4-polytopes.

• The realizability problem for 4-polytopes is NP-hard.

4-polytopes are much more complicated than 3-polytopes

Exact rational vs. Floating Point Arithmetic

[Avis; Bremner, Seidel (1997)]

How good are convex hull algorithms?

Contra exact rational arithmetic:
“In examples where input numbers are very large such as the
products of cyclic polytopes, cddr+ was thousands of times slower
than cddf+ on some inputs.”

Contra floating point arithmetic:
“The convex hull problem has the nice property that it is possible
to perform all computations in exact rational arithmetic; this is
especially desirable in applications such as combinatorial
optimization where an exact answer is desired rather than just an
approximation.”

Do we really obtain an “approximation”?

Other software using floating point arithmetic

Quickhull package: http://quickhull.org

[Barber, Dobkin, Huhdanpaa, 1996]
The Quickhull Algorithm for Convex Hulls

“In R2, there are several robust convex hull ... algorithms [Fortune
1989; Guibas et al. 1993; Li and Milenkovic 1990].”

“In R3, Sugihara [1992] and Dey et al. [1992] produce a
topologically robust convex hull and Delaunay triangulation. ...
The output may contain unbounded geometric faults.”

“We have implemented Quickhull for general dimension.”

An attempt ...

Approximate Vertex Enumeration

Given: P = {x ∈ Rd | Ax ≤ 1}

For ε ≥ 0, define: (1 + ε)P ..= {x ∈ Rd | Ax ≤ (1 + ε)1}.

Goal: construct iteratively an ε-approximate V-representation of
P, i.e. V = {v1, . . . , vk} ⊆ Rd such that

P ⊆ convV ⊆ (1 + ε)P.

Remark 1: For ε = 0 we obtain a V-represention of P.

Remark 2: P and convV are not required to be combinatorially
equivalent.

Double description method (DDM)

Iterative scheme for vertex enumeration:

Init: simplex, H- and V-representation known
Iteration: add one inequality and update V-representation

V0 ← V ∩ {x ∈ Rd | hT x = 1}
V+ ← V ∩ {x ∈ Rd | hT x > 1}
V− ← V ∩ {x ∈ Rd | hT x < 1}
foreach (v1, v2) ∈ V− × V+ do

if |J=(v1) ∩ J=(v2)| ≥ d − 1 then
compute v ∈ conv{v1, v2} ∩ H0

V ← V ∪ {v}
end

end
V ′ ← V \ V+

Double description method (DDM)

P
0

u1

u2

u3

u4

Double description method (DDM)

P

H0

H+

H−

0

u1

u2

u3

u4

Double description method (DDM)

P

V0

V+

V−

0

u1

u2

u3

u4

Double description method (DDM)

P

V0

V+

V−

0

u1

u2

u3

u4

u5

Double description method (DDM)

P
0

u1

u2

u3

u5

Approximate double description method (ADDM)

Iterative scheme for approximate vertex enumeration:

Init: simplex, H- and V-representation known
Iteration: add one inequality and update V-representation

V0 ← V ∩ {x ∈ Rd | 1 ≤ hT x ≤ 1 + ε}
V+ ← V ∩ {x ∈ Rd | hT x > 1 + ε}
V− ← V ∩ {x ∈ Rd | hT x < 1}
foreach (v1, v2) ∈ V− × V+ do

if |J≥(v1) ∩ J≥(v2)| ≥ d − 1 then
compute v ∈ conv{v1, v2} ∩ H0

V ← V ∪ {v}
end

end
V ′ ← V \ V+

Example

P
0

Example

P

(1 + ε)P

0

Example

P

(1 + ε)P

0

v1

v2

v3

v5

Example

P

(1 + ε)P

H0

0

v1

v2

v3

v5

Example

P
0

Example

P
0

v1

v2

v3

v5

Example

P

H0

0

v1

v2

v3

v5

Example

P

H0

v1

v2

v3

v5

v7

Example

P ′

H0

v1

v2

v3

v5

v7

Example

P ′

H0

v1

v3

v7v7

Is ADDM correct?

• Yes, for d = 2.

• Yes, for d = 3.

• Open, for d ≥ 4.

Example

P
0

Example

P
0

v1

v2

v3

v4

Example

P
0

u1

u2

u3

u4

v1

v2

v3

v4

Example

P
0

v1

v2

v3

v4

Example

P

H0

0

v1

v2

v3

v4

v5

Example

P ′
0

v1

v2

v3

v5

Example

P ′
0

v1

v2

v3

v5

Example

P ′
0

v1

v2

v3

v5

Proof of Correctness

How to prove correctness for d ∈ {2, 3}?

Why does the proof only works for d ∈ {2, 3}?

Sketch:

• second algorithm for approximate VE: graph algorithm

• prove correctness of graph algorithm

• show that ADDM computes a superset of vertices computed
by graph algorithm

Core of the graph algorithm (d = 3)

Iteration 1

Core of the graph algorithm (d = 3)

Iteration 1

Core of the graph algorithm (d = 3)

Iteration 1

Core of the graph algorithm (d = 3)

Iteration 1

Graph algorithm vs. ADDM

graph algorithm approximate DDM

2, 3 1, 3

1, 2

2, 4 1, 4, 5

2, 5

3, 53, 6

2, 6

5, 6

5, 6

Theorem: The graph algorithm computes a subgraph of the graph
computed by ADDM.

Using imprecise arithmetic

E ... error of coordinates caused by using imprecise arithmetic
(difficult to quantify)

δ > 0 ... radius of ball around origin contained in P

Theorem: Variants of both algorithms remain correct if imprecise
arithmetic is used and:

E ≤ εδ

4
.

Numerical results

Results of the graph algorithm for
ε ∈ {100, 10−1, 10−2, 10−3, 10−4, 10−5}

Numerical results

10−310−210−1100

0

0.2

0.4

0.6

0.8

1

ε

ru
n

ti
m

e
in

se
co

n
d

s

GA
ADDM

10−310−210−1100

0 k

0.5 k

1 k

ε
n

u
m

b
er

of
ve

rt
ic

es

GA
ADDM

Numerical results

The graph algorithm produces non-convex objects;
above example for ε = 2, different viewpoints

Numerical results

Example: P0 regular simplex in R3, edge length 1 symmetrically
placed around origin. Pi is defined as Minkowski sum of Pi−1 and
the polar of Pi−1.
Pictures: P1, . . . ,P6

Numerical results

Results of graph algorithm: P6 for ε ∈ {10−1, . . . , 10−6}

Numerical results

10−1510−1210−910−610−3100

0

0.5

1

ε

ru
n

ti
m

e
in

se
co

n
d

s

GA
ADDM

10−1510−1210−910−610−3100

0 k

1 k

2 k

ε
n

u
m

b
er

of
ve

rt
ic

es

GA
ADDM

Numerical results

above example for ε = 10−9

102 103 104

10−3

10−2

10−1

100

101

102

number of vertices + number of facets

ru
n

ti
m

e
in

se
co

n
d

s

GA
ADDM

Conclusions and open problems

Conclusions:

• Floating point implementations for vertex enumeration /
convex hull problem can produce wrong results

• We introduced the approximate vertex enumeration problem
and two solution methods

• Both methods were shown to be correct for d = 2, 3 for
floating point arithmetic if the imprecision is not too high.

Open Problems:

• Is ADDM correct for d ≥ 4?

• Is there any other practically relevant correct method for the
approximate vertex enumeration problem for d ≥ 4?

• Do floating point implementations of vertex enumeration
methods fail in practice? In particular for d ≥ 4?

