On convex polyhedron computations using floating point arithmetic

Andreas Löhne
Friedrich Schiller University Jena, Germany

WU Wien, October, 7, 2022

Polyhedra vs. Polytopes

Polyhedron: $P=\left\{x \in \mathbb{R}^{d} \mid A x \leq b\right\}$
Polytope: bounded polyhedron
Many aspects for polyhedra can be formulated in terms of polytopes:

If P is a line-free polyhedron in \mathbb{R}^{d}, then cl cone $(P \times\{1\})$ is a line-free polyhedral cone in \mathbb{R}^{d+1}, which is given by a bounded base B, which is a polytope in \mathbb{R}^{d}.

Vertex Enumeration and Convex Hull Problem

Vertex Enumeration: H-represented polytope P with $0 \in \operatorname{int} P$:

$$
P=\left\{x \in \mathbb{R}^{d} \mid A x \leq \mathbb{1}\right\} .
$$

Goal: compute a V-representation:

$$
P=\operatorname{conv}\left\{v_{1}, \ldots, v_{k}\right\}
$$

Convex hull problem: V-represented polytope P with $0 \in \operatorname{int} P$:

$$
P=\operatorname{conv}\left\{v_{1}, \ldots, v_{k}\right\}
$$

Goal: compute a H -representation:

$$
P=\left\{x \in \mathbb{R}^{d} \mid A x \leq \mathbb{1}\right\} .
$$

Both problems are equivalent by polarity.

2-polytopes

Properties of 2-polytopes P :

- $v=e$
- The (vertex-edge) graph is a cycle

\rightarrow very simple structure

3-polytopes

Properties of 3-polytopes:

- $v-e+f=2$ (Euler's formula)
- The (vertex-edge) graph is planar and 3-connected

More properties of 3-polytopes

Steinitz's theorem: A graph G is the vertex-edge graph of a 3-polytope if and only if G is planar and 3-connected.

- Ernst Steinitz (1871-1928)
- "the most important and deepest known result on 3-polytopes" (Branko Grünbaum)
- One of many consequences: Every 3-polytope can be realized by integer coordinates
- No similar result for higher dimensions !

More properties of 3-polytopes

Theorem: (follows from Steinitz's th., e.g. [Richter-Gebert])
The realization space of a 3-polytope is an open ball (of dimension $e-6$)

Example: cube, one realization has coordinates

More properties of 3-polytopes

Theorem: (follows from Steinitz's th., e.g. [Richter-Gebert])
The realization space of a 3-polytope is an open ball (of dimension $e-6$)

Example: cube, one realization has coordinates

$$
\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) .
$$

More properties of 3-polytopes

Theorem: (follows from Steinitz's th., e.g. [Richter-Gebert])
The realization space of a 3-polytope is an open ball (of dimension $e-6$)

Example: cube, one realization has coordinates

$$
\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) .
$$

fix a base (as affine transformations are not of interest)

More properties of 3-polytopes

Theorem: (follows from Steinitz's th., e.g. [Richter-Gebert])
The realization space of a 3-polytope is an open ball (of dimension $e-6$)

Example: cube, one realization has coordinates

$$
\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) .
$$

fix a base (as affine transformations are not of interest)
fixed to maintain combinatorics

More properties of 3-polytopes

Theorem: (follows from Steinitz's th., e.g. [Richter-Gebert])
The realization space of a 3-polytope is an open ball (of dimension $e-6$)

Example: cube, one realization has coordinates

$$
\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right),\left(\begin{array}{c}
z_{1} \\
z_{2} \\
0
\end{array}\right),\left(\begin{array}{c}
z_{3} \\
0 \\
z_{4}
\end{array}\right),\left(\begin{array}{c}
0 \\
z_{5} \\
z_{6}
\end{array}\right),\left(\begin{array}{l}
? \\
? \\
?
\end{array}\right) .
$$

fix a base (as affine transformations are not of interest)
fixe these entries to maintain combinatorics
variable, to maintain convexity, we need
$z_{1}+z_{2}>1, z_{3}+z_{4}>1, z_{5}+z_{6}>1, z_{1}>0, \ldots, z_{6}>0$

More properties of 3-polytopes

Theorem: (follows from Steinitz's th., e.g. [Richter-Gebert])
The realization space of a 3-polytope is an open ball (of dimension $e-6$)

Example: cube, one realization has coordinates

$$
\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right),\left(\begin{array}{c}
z_{1} \\
z_{2} \\
0
\end{array}\right),\left(\begin{array}{c}
z_{3} \\
0 \\
z_{4}
\end{array}\right),\left(\begin{array}{c}
0 \\
z_{5} \\
z_{6}
\end{array}\right),\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right) .
$$

fix a base (as affine transformations are not of interest)
fixe these entries to maintain combinatorics
variable, to maintain convexity, we need
$z_{1}+z_{2}>1, z_{3}+z_{4}>1, z_{5}+z_{6}>1, z_{1}>0, \ldots, z_{6}>0$
fixed by the choice of z_{1}, \ldots, z_{6}

4-polytopes

Universality theorem for 4-polytopes (Richter-Gebert, 1994): For every primary semi-algebraic set V defined over \mathbb{Z} there is a 4-polytope whose realization space is stably equivalent to V.

Some consequences:

- All algebraic numbers are needed to coordinatize all 4-polytopes.
- The realizability problem for 4-polytopes is NP-hard.

4-polytopes are much more complicated than 3-polytopes

Exact rational vs. Floating Point Arithmetic

[Avis; Bremner, Seidel (1997)]
How good are convex hull algorithms?
Contra exact rational arithmetic:
"In examples where input numbers are very large such as the products of cyclic polytopes, cddr+ was thousands of times slower than cddf+ on some inputs."

Contra floating point arithmetic:

"The convex hull problem has the nice property that it is possible to perform all computations in exact rational arithmetic; this is especially desirable in applications such as combinatorial optimization where an exact answer is desired rather than just an approximation."

Do we really obtain an "approximation"?

Other software using floating point arithmetic

Quickhull package: http://quickhull.org
[Barber, Dobkin, Huhdanpaa, 1996]
The Quickhull Algorithm for Convex Hulls
"In \mathbb{R}^{2}, there are several robust convex hull ... algorithms [Fortune 1989; Guibas et al. 1993; Li and Milenkovic 1990]."
"In \mathbb{R}^{3}, Sugihara [1992] and Dey et al. [1992] produce a topologically robust convex hull and Delaunay triangulation. ...
The output may contain unbounded geometric faults."
"We have implemented Quickhull for general dimension."

An attempt ...

Cornell University

ヨエVㄴ math > arXiv:2007.06325
Mathematics > Optimization and Control
[Submitted on 13 Jul 2020 (v1), last revised 4 Jul 2022 (this version, v3)]

Approximate Vertex Enumeration

Andreas Löhne

Approximate Vertex Enumeration

Given: $P=\left\{x \in \mathbb{R}^{d} \mid A x \leq \mathbb{1}\right\}$
For $\varepsilon \geq 0$, define: $(1+\varepsilon) P:=\left\{x \in \mathbb{R}^{d} \mid A x \leq(1+\varepsilon) \mathbb{1}\right\}$.
Goal: construct iteratively an ε-approximate V-representation of P, i.e. $V=\left\{v_{1}, \ldots, v_{k}\right\} \subseteq \mathbb{R}^{d}$ such that

$$
P \subseteq \operatorname{conv} V \subseteq(1+\varepsilon) P
$$

Remark 1: For $\varepsilon=0$ we obtain a V -represention of P.
Remark 2: P and conv V are not required to be combinatorially equivalent.

Double description method (DDM)

Iterative scheme for vertex enumeration:
Init: simplex, H - and V -representation known
Iteration: add one inequality and update V -representation

$$
\begin{aligned}
& V_{0} \leftarrow V \cap\left\{x \in \mathbb{R}^{d} \mid h^{T} x=1\right\} \\
& V_{+} \leftarrow V \cap\left\{x \in \mathbb{R}^{d} \mid h^{T} x>1\right\} \\
& V_{-} \leftarrow V \cap\left\{x \in \mathbb{R}^{d} \mid h^{T} x<1\right\}
\end{aligned}
$$

foreach $\left(v_{1}, v_{2}\right) \in V_{-} \times V_{+}$do
if $\left|J_{=}\left(v_{1}\right) \cap J_{=}\left(v_{2}\right)\right| \geq d-1$ then
compute $v \in \operatorname{conv}\left\{v_{1}, v_{2}\right\} \cap H_{0}$ $V \leftarrow V \cup\{v\}$
end
end
$V^{\prime} \leftarrow V \backslash V_{+}$

Double description method (DDM)

Double description method (DDM)

Double description method (DDM)

Double description method (DDM)

Double description method (DDM)

Approximate double description method (ADDM)

Iterative scheme for approximate vertex enumeration:
Init: simplex, H- and V-representation known
Iteration: add one inequality and update V-representation

$$
\begin{aligned}
& V_{0} \leftarrow V \cap\left\{x \in \mathbb{R}^{d} \mid 1 \leq h^{T} x \leq 1+\varepsilon\right\} \\
& V_{+} \leftarrow V \cap\left\{x \in \mathbb{R}^{d} \mid h^{T} x>1+\varepsilon\right\} \\
& V_{-} \leftarrow V \cap\left\{x \in \mathbb{R}^{d} \mid h^{T} x<1\right\}
\end{aligned}
$$

foreach $\left(v_{1}, v_{2}\right) \in V_{-} \times V_{+}$do
if $\left|J_{\geq}\left(v_{1}\right) \cap J_{\geq}\left(v_{2}\right)\right| \geq d-1$ then compute $v \in \operatorname{conv}\left\{v_{1}, v_{2}\right\} \cap H_{0}$ $V \leftarrow V \cup\{v\}$
end
end
$V^{\prime} \leftarrow V \backslash V_{+}$

Example

Example

Example

Example

Example

Example

Example

Example

Example

Example

- Yes, for $d=2$.
- Yes, for $d=3$.
- Open, for $d \geq 4$.

Example

Example

Example

Example

Example

Example

Example

Example

Proof of Correctness

How to prove correctness for $d \in\{2,3\}$?
Why does the proof only works for $d \in\{2,3\}$?

Sketch:

- second algorithm for approximate VE: graph algorithm
- prove correctness of graph algorithm
- show that ADDM computes a superset of vertices computed by graph algorithm

Core of the graph algorithm $(d=3)$

Iteration 1

Core of the graph algorithm $(d=3)$

Iteration 1

Core of the graph algorithm $(d=3)$

Iteration 1

Core of the graph algorithm $(d=3)$

Iteration 1

Graph algorithm vs. ADDM

graph algorithm
approximate DDM

Theorem: The graph algorithm computes a subgraph of the graph computed by ADDM.

Using imprecise arithmetic

E ... error of coordinates caused by using imprecise arithmetic (difficult to quantify)
$\delta>0 \ldots$ radius of ball around origin contained in P
Theorem: Variants of both algorithms remain correct if imprecise arithmetic is used and:

$$
E \leq \frac{\varepsilon \delta}{4}
$$

Numerical results

Results of the graph algorithm for $\varepsilon \in\left\{10^{0}, 10^{-1}, 10^{-2}, 10^{-3}, 10^{-4}, 10^{-5}\right\}$

Numerical results

Numerical results

The graph algorithm produces non-convex objects; above example for $\varepsilon=2$, different viewpoints

Numerical results

Example: P_{0} regular simplex in \mathbb{R}^{3}, edge length 1 symmetrically placed around origin. P_{i} is defined as Minkowski sum of P_{i-1} and the polar of P_{i-1}.
Pictures: P_{1}, \ldots, P_{6}

Numerical results

Results of graph algorithm: P_{6} for $\varepsilon \in\left\{10^{-1}, \ldots, 10^{-6}\right\}$

Numerical results

above example for $\varepsilon=10^{-9}$

Conclusions and open problems

Conclusions:

- Floating point implementations for vertex enumeration / convex hull problem can produce wrong results
- We introduced the approximate vertex enumeration problem and two solution methods
- Both methods were shown to be correct for $d=2,3$ for floating point arithmetic if the imprecision is not too high.

Open Problems:

- Is ADDM correct for $d \geq 4$?
- Is there any other practically relevant correct method for the approximate vertex enumeration problem for $d \geq 4$?
- Do floating point implementations of vertex enumeration methods fail in practice? In particular for $d \geq 4$?

