Relative perturbation bounds for empirical covariance operators

Moritz Jirak, Universität Wien
(and Martin Wahl, Humboldt-Universität zu Berlin)

October 14, 2022

PCA in high dimensions

Let X, X_{1}, \ldots, X_{n} be i.i.d. centered random variables taking values in a p-dimensional Hilbert \mathcal{H} space with (empirical) covariance operator

$$
\Sigma=\mathbb{E} X \otimes X \quad \text { and } \quad \hat{\Sigma}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \otimes X_{i}
$$

$\left(\lambda_{j}\right)_{j=1}^{p}$: non-increasing sequence of eigenvalues of Σ
$\left(u_{j}\right)_{j=1}^{p}$: sequence of eigenvectors of Σ
$\left(P_{j}\right)_{j=1}^{p}$: sequence of spectral projectors of $\Sigma, P_{j}=u_{j} \otimes u_{j}$
Challenges: p increases in n (the same order as n) or even $p=\infty$

PCA in high dimensions

Let X, X_{1}, \ldots, X_{n} be i.i.d. centered random variables taking values in a p-dimensional Hilbert \mathcal{H} space with (empirical) covariance operator

$$
\Sigma=\mathbb{E} X \otimes X \quad \text { and } \quad \hat{\Sigma}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \otimes X_{i}
$$

$\left(\hat{\lambda}_{j}\right)_{j=1}^{p}$: non-increasing sequence of eigenvalues of $\hat{\Sigma}$
$\left(\hat{u}_{j}\right)_{j=1}^{p}$: sequence of eigenvectors of $\hat{\Sigma}$
$\left(\hat{P}_{j}\right)_{j=1}^{p}$: sequence of spectral projectors of $\hat{\Sigma}, \hat{P}_{j}=\hat{u}_{j} \otimes \hat{u}_{j}$
Challenges: p increases in n (the same order as n) or even $p=\infty$

How close are $\hat{\lambda}_{j}, \hat{P}_{j}$ to their population counterparts λ_{j}, P_{j} ?

High-dimensional phenomena in the spiked model

Theorem 1 (Baik \& Silverstein '06, Paul '07, Nadler '08, etc.)
Suppose that X is Gaussian and that

- $\Sigma=\operatorname{diag}\left(\lambda_{1}, 1, \ldots, 1\right) \in \mathbb{R}^{p \times p}$ with $\lambda_{1}>1$ fixed

Then, as $p / n \rightarrow \gamma>0$, almost surely,

$$
\begin{aligned}
\hat{\lambda}_{1} & \rightarrow \begin{cases}\lambda_{1}+\gamma \frac{\lambda_{1}}{\lambda_{1}-1} & \text { if } \frac{\gamma}{\left(\lambda_{1}-1\right)^{2}}<1 \\
(1+\sqrt{\gamma})^{2} & \text { otherwise }\end{cases} \\
\left\|\hat{P}_{1}-P_{1}\right\|_{2}^{2} & \rightarrow \begin{cases}c_{1} \frac{\gamma \lambda_{1}}{\left(\lambda_{1}-1\right)^{2}} & \text { if } \frac{\gamma}{\left(\lambda_{1}-1\right)^{2}}<1 \\
2 & \text { otherwise }\end{cases}
\end{aligned}
$$

Related results hold for more complicated spiked models.

- Extensions to general eigenvalue settings?
- Extensions to more general distributional settings?

Covariance operators in infinite dimensions

- Key feature in functional data analysis and kernel-based learning: spectral decay of Σ
- polynomial decay: $\lambda_{j}=j^{-\alpha}, j \geq 1$
- exponential decay: $\lambda_{j}=e^{-\alpha j}, j \geq 1$
- theory less developed:

$$
\frac{\hat{\lambda}_{j}-\lambda_{j}}{\lambda_{j}} \xrightarrow{w} \mathcal{N}(0,1), \quad \text { which } j ?
$$

- S. Fischer and I. Steinwart. "Sobolev norm learning rates for regularized least-squares algorithms". In: J. Mach. Learn. Res. ()
- P. L. Bartlett et al. "Benign overfitting in linear regression". In: Proc. Natl. Acad. Sci. USA ()
- P. Hall and J.L. Horowitz (Feb. 2007). "Methodology and convergence rates for functional linear regression". In: The Annals of Statistics 35.1, pp. 70-91

Functional regression

- Given $\left(X_{k}\right)_{k \in \mathbb{Z}},\left(Y_{k}\right)_{k \in \mathbb{Z}}$, consider

$$
X_{k}=\Phi\left(Y_{k}\right)+\epsilon_{k}, \quad k \in \mathbb{Z},
$$

where Φ is an unknown linear operator, and $\left(\epsilon_{k}\right)_{k \in \mathbb{Z}}$ is a noise sequence.

- A common estimator for Φ is (with sample size n)

$$
\widehat{\Phi}^{b}(\cdot)=\sum_{j=1}^{b} \frac{1}{n} \sum_{k=1}^{n} \frac{\left\langle Y_{k}, \widehat{u}_{j}^{y}\right\rangle X_{k}}{\widehat{\lambda}_{j}^{y}}\left\langle\widehat{u}_{j}^{y}, \cdot\right\rangle, \quad b=b_{n} \rightarrow \infty .
$$

Optimal choice of b_{n} (depends on $\left(\lambda_{j}^{y}\right)_{j \in \mathbb{N}}$) leads to minimax rates, but requires good control of $\widehat{\lambda}_{j}^{y}$ and \widehat{u}_{j}^{y} for $j \leq b_{n}$.

- P. Hall and J.L. Horowitz (Feb. 2007). "Methodology and convergence rates for functional linear regression". In: The Annals of Statistics 35.1, pp. 70-91

Functional $\operatorname{AR}(1)$

- If $Y_{k}=X_{k-1}$, functional regression becomes the functional $\operatorname{AR}(1)$ model

$$
X_{k}=\Phi\left(X_{k-1}\right)+\epsilon_{k}, \quad k \in \mathbb{Z}
$$

- More generally, we can consider $\operatorname{AR}(q)$ in \mathcal{H} processes

$$
X_{k}=\sum_{i=1}^{q} \Phi_{i}\left(X_{k-i}\right)+\epsilon_{k}, \quad k \in \mathbb{Z}
$$

where Φ_{j} are unknown linear operators.

- Can even let $q=\infty$.
- In all those cases, estimation crucially depends on $\hat{u}_{j}, \hat{\lambda}_{j}$.

Classical math tools for thinking about spectral methods

Weyl bound

We have $\left|\hat{\lambda}_{j}-\lambda_{j}\right| \leq\|E\|_{\infty}$ with $\|\cdot\|_{\infty}$ operator norm and $E=\hat{\Sigma}-\Sigma$

Davis-Kahan $\sin \Theta$ bound

We have

$$
\left\|\hat{P}_{j}-P_{j}\right\|_{2} \leq \frac{2 \sqrt{2}\|E\|_{\infty}}{g_{j}}
$$

with spectral gap $g_{j}=\min \left(\lambda_{j-1}-\lambda_{j}, \lambda_{j}-\lambda_{j+1}\right)$ and HS norm $\|\cdot\|_{2}$

- applied to kernel PCA (Blanchard et al. '05), functional PCA (Horváth \& Kokoszka '12), sparse PCA (Vu \& Lei '13), robust PCA (Minsker \& Wei '17), distributed PCA (Fan et al. '19)

Classical math tools for thinking about spectral methods

Definition 2

The reduced resolvent of Σ at λ_{j} is defined by $R_{j}=\sum_{k \neq j} \frac{1}{\lambda_{k}-\lambda_{j}} P_{k}$
Linear perturbation expansion
If

$$
\gamma_{j}:=\frac{\|E\|_{\infty}}{g_{j}}<1 / 2
$$

then

$$
\left\|\hat{P}_{j}-P_{j}+R_{j} E P_{j}+P_{j} E R_{j}\right\|_{2} \leq \frac{4 \gamma_{j}^{2}}{1-2 \gamma_{j}}
$$

More generally $\hat{\lambda}_{j}, \hat{P}_{j}$ admit a Taylor series in E provided that $\gamma_{j}<1 / 2$

- T. Hsing and R. Eubank (2015). Theoretical foundations of functional data analysis. John Wiley \& Sons

Relative idea for thinking about spectral methods

Relative $\sin \Theta$ bound (J. \& W.)

We have

$$
\left\|\hat{P}_{j}-P_{j}\right\|_{2} \leq C\left\|\left(\left|R_{j}\right|^{1 / 2}+g_{j}^{-1 / 2} P_{j}\right) E\left(\left|R_{j}\right|^{1 / 2}+g_{j}^{-1 / 2} P_{j}\right)\right\|_{\infty}
$$

for some absolute constant $C>0$.

Previous work and different approach:

- A. Mas and F. Ruymgaart. "High-dimensional principal projections". In: Complex Anal. Oper. Theory ()

Relative idea for thinking about spectral methods

Let $\mathcal{J}=\{1, \ldots, J\}$ (write j if $\mathcal{J}=\{j\}$). We write

$$
\begin{gathered}
P_{\mathcal{J}}=\sum_{j \in \mathcal{J}} P_{j}, \quad P_{\mathcal{J} c}=\sum_{k \in \mathcal{J}^{c}} P_{k}, \quad R_{\mathcal{J} c}=\sum_{k \in \mathcal{J}^{c}} \frac{1}{\lambda_{k}-\lambda_{j}} P_{k} . \\
\delta_{\mathcal{J}}=\delta_{\mathcal{J}}(E):=\left\|\left(\left|R_{\mathcal{J} c}\right|^{1 / 2}+g_{J}^{-1 / 2} P_{\mathcal{J}}\right) E\left(\left|R_{\mathcal{J} c}\right|^{1 / 2}+g_{J}^{-1 / 2} P_{\mathcal{J}}\right)\right\|_{\infty} .
\end{gathered}
$$

Moreover, for a Hilbert-Schmidt operator A on \mathcal{H} we define

$$
L_{\mathcal{J}} A=\sum_{j \in \mathcal{J}} \sum_{k \in \mathcal{J}^{c}} \frac{1}{\lambda_{j}-\lambda_{k}}\left(P_{k} A P_{j}+P_{j} A P_{k}\right) .
$$

Relative idea for thinking about spectral methods

Theorem 3 (J. \& W.)
We have

$$
\begin{equation*}
\left\|P_{\mathcal{J}}-\hat{P}_{\mathcal{J}}\right\|_{2}^{2} \leq 32 \min \left(|\mathcal{J}|,\left|\mathcal{J}^{c}\right|\right) \delta_{\mathcal{J}}^{2} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\hat{P}_{\mathcal{J}}-P_{\mathcal{J}}-L_{\mathcal{J}} E\right\|_{2}^{2} \leq 48 \min \left(|\mathcal{J}|,\left|\mathcal{J}^{c}\right|\right)^{2} \delta_{\mathcal{J}}^{4} . \tag{2}
\end{equation*}
$$

Possible to replace $\delta_{\mathcal{J}}$ by $\min \left(\delta_{\mathcal{J}}, \delta_{\mathcal{J}^{c}}\right)$.

- Eigenvalues, and eigenvectors?
- Control of γ_{j} and $\delta_{\mathcal{J}}$?

Effective versus relative rank setting

The effective rank (Koltchinkii \& Lounici '17) and the relative rank (J. \& W. '18) are defined by

$$
\begin{aligned}
& \mathrm{e}_{j}(\Sigma)=\frac{\operatorname{tr}(\Sigma)}{g_{j}} \quad \text { literature } \mathrm{r}! \\
& \mathrm{r}_{j}(\Sigma)=\sum_{k \neq j} \frac{\lambda_{k}}{\left|\lambda_{j}-\lambda_{k}\right|}+\frac{\lambda_{j}}{g_{j}}
\end{aligned}
$$

While the effective rank grows reciprocally with the gap, the relative rank remains largely unaffected

upper bounds	$\lambda_{j}=j^{-\alpha}$	$\lambda_{j}=e^{-\alpha j}$
$\mathrm{r}_{j}(\Sigma)$	$j \log j$	j
$\mathrm{e}_{j}(\Sigma)$	$j^{\alpha+1}$	$e^{\alpha j}$

Note on convexity

- Convexity condition: There is a convex function

$$
\begin{equation*}
\lambda: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}, \quad \text { such that } \quad \lambda(j)=\lambda_{j} \tag{3}
\end{equation*}
$$

at least for j large enough.

- Exploiting the convexity, it follows that

$$
r_{j}(\Sigma) \leq C_{1} \sum_{k \neq j} \frac{\lambda_{k}}{\left|\lambda_{j}-\lambda_{k}\right|} \leq C_{2} j \log j \quad \text { and } \quad \sum_{k \neq j} \frac{\lambda_{k} \lambda_{j}}{\left(\lambda_{j}-\lambda_{k}\right)^{2}} \leq C j^{2}
$$

where C is a constant which only depends on $\operatorname{tr}(\Sigma)$.

- The convexity condition is quite general, valid in particular for polynomial and exponential decay of eigenvalues.
- H. Cardot, A. Mas, and P. Sarda (2007). "CLT in functional linear regression models". In: Probab. Theory Related Fields

Relative bound for eigenvalues

$$
\text { Key: } \quad \bar{\eta}_{k l}=\frac{\left\langle u_{k}, E u_{l}\right\rangle}{\sqrt{\lambda_{k} \lambda_{l}}}=\frac{\left\langle u_{k},(\hat{\Sigma}-\Sigma) u_{l}\right\rangle}{\sqrt{\lambda_{k} \lambda_{l}}}, \quad k, l \geq 1 .
$$

Theorem 4 (J. \& W.)

Let $j \geq 1$. Suppose that λ_{j} is a simple eigenvalue, meaning that $\lambda_{j} \neq \lambda_{k}$ for all $k \neq j$. Let $x>0$ be such that $\left|\bar{\eta}_{k}\right| \leq x$ for all $k, l \geq 1$. Suppose that

$$
\begin{equation*}
r_{j}(\Sigma)=\sum_{k \neq j} \frac{\lambda_{k}}{\left|\lambda_{j}-\lambda_{k}\right|}+\frac{\lambda_{j}}{g_{j}} \leq 1 /(3 x) \tag{4}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
\left|\hat{\lambda}_{j}-\lambda_{j}-\lambda_{j} \bar{\eta}_{j j}\right| / \lambda_{j} \leq C x^{2} r_{j}(\Sigma) \tag{5}
\end{equation*}
$$

Relative bound for eigenvectors

Theorem 5 (J. \& W.)

Let $j \geq 1$. Suppose that λ_{j} is a simple eigenvalue. Let $x>0$ be such that $\left|\bar{\eta}_{k l}\right| \leq x$ for all $k, I \geq 1$. Suppose that Condition (4) holds. Then we have

$$
\begin{equation*}
\left\|\hat{u}_{j}-u_{j}-\sum_{k \neq j} \frac{\sqrt{\lambda_{j} \lambda_{k}}}{\lambda_{j}-\lambda_{k}} \bar{\eta}_{j k} u_{k}\right\| \leq C x^{2} r_{j}(\Sigma) \sqrt{\sum_{k \neq j} \frac{\lambda_{j} \lambda_{k}}{\left(\lambda_{j}-\lambda_{k}\right)^{2}}} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\left\|\hat{u}_{j}-u_{j}\right\|^{2}-\sum_{k \neq j} \frac{\lambda_{j} \lambda_{k}}{\left(\lambda_{j}-\lambda_{k}\right)^{2}} \bar{\eta}_{j k}^{2}\right| \leq C x^{3} r_{j}(\Sigma) \sum_{k \neq j} \frac{\lambda_{j} \lambda_{k}}{\left(\lambda_{j}-\lambda_{k}\right)^{2}} . \tag{7}
\end{equation*}
$$

In (6) and (7), the sign of u_{j} is chosen such that $\left\langle\hat{u}_{j}, u_{j}\right\rangle>0$.

Effective versus relative rank setting

Write $X=\sum_{j \geq 1} \lambda_{j}^{1 / 2} u_{j} \eta_{j}$ with Karhunen-Loéve coefficients $\eta_{1}, \eta_{2}, \ldots$

Setting 1

For some $q>4$ we have $\sup _{j \geq 1} \mathbb{E}\left|\eta_{j}\right|^{q} \lesssim 1$

- $\gamma_{j}<1 / 2$ w.h.p. if $\frac{1}{\sqrt{n}} \mathrm{e}_{j}(\Sigma) \lesssim 1$
- $\delta_{j}<1 / 2$ w.h.p. if $\frac{1}{\sqrt{n}} r_{j}(\Sigma) \lesssim 1$
- Control $\left\{\left|\bar{\eta}_{k}\right| \leq x\right\}$ w.h.p., $x \approx n^{-1 / 2}$ (essentially).
- S. V. Nagaev (1979). "Large deviations of sums of independent random variables". In: Ann. Probab.
- U. Einmahl and D. Li. "Characterization of LIL behavior in Banach space". In: Trans. Amer. Math. Soc. ()

High-dimensional phenomena under spectral decay

Theorem 6 (J. \& W.)
Let $X=X^{(n)}$ be a sequence on r.v. in Setting 1 with covariances $\Sigma=\Sigma^{(n)}$. If

$$
\begin{equation*}
\frac{1}{\sqrt{n}} r_{j}(\Sigma) \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty \tag{8}
\end{equation*}
$$

then

$$
\begin{gather*}
g_{j}^{-1}\left(\hat{\lambda}_{j}-\lambda_{j}\right) \xrightarrow{\mathbb{P}} 0 \tag{9}\\
\left\|\hat{P}_{j}-P_{j}\right\|_{2} \xrightarrow{\mathbb{P}} 0 \tag{10}\\
\left(\sqrt{n}\left(\hat{\lambda}_{j}-\lambda_{j} / \lambda_{j}\right) \quad\right. \text { is tight. } \tag{11}
\end{gather*}
$$

Moreover, for $j=1$ there is a sequence of r.v. $X=X^{(n)}$ in Setting 1 with covariance operators $\Sigma^{(n)}$ such that (8), (9), (10) and (11) are equivalent.

Example for Setting 1

$$
\text { Key: } \quad \bar{\eta}_{k l}=\frac{\left\langle u_{k}, E u_{l}\right\rangle}{\sqrt{\lambda_{k} \lambda_{l}}}=\frac{\left\langle u_{k},(\hat{\Sigma}-\Sigma) u_{l}\right\rangle}{\sqrt{\lambda_{k} \lambda_{l}}}, \quad k, I \geq 1 .
$$

This can be written as a sum of (i.i.d.) random variables

$$
\sqrt{n} \bar{\eta}_{k l}=\frac{1}{\sqrt{n}} \sum_{i=1}^{n}\left(\eta_{i k} \eta_{i l}-\mathbb{E} \eta_{i k} \eta_{i l}\right)
$$

Union bound and (standard) concentration inequalities provide control of ($p=\operatorname{dim}(\mathcal{H})$)

$$
\mathbb{P}\left(\max _{1 \leq k, l \leq p}\left|\bar{\eta}_{k l}\right| \geq x\right) \leq \sum_{1 \leq i, j \leq p} \mathbb{P}\left(\left|\bar{\eta}_{k l}\right| \leq x\right)
$$

Example for Setting 1

For example, Fuk-Nagaev inequality yields

$$
\mathbb{P}\left(\max _{1 \leq k, l \leq d}\left|\bar{\eta}_{k l}\right| \geq \frac{C \sqrt{\log n}}{\sqrt{n}}\right) \lesssim p^{2} n^{1-q / 4}
$$

Using a more refined argument one can drastically reduce dependence on p here. Hence, if

$$
\frac{\sqrt{\log n}}{\sqrt{n}} \max _{1 \leq j \leq J} r_{j}(\Sigma) \lesssim 1
$$

we get (for instance)

$$
\left|\hat{\lambda}_{j}-\lambda_{j}-\lambda_{j} \bar{\eta}_{j j}\right| / \lambda_{j} \lesssim \frac{\sqrt{\log n}}{\sqrt{n}}, \quad 1 \leq j \leq J
$$

with high probability. No spatial dependence assumption on $\left(\eta_{j}\right)_{j \geq 1}$ here!

Example for Setting 1: weak dependence

Let $\left(\epsilon_{i}\right)_{i \in \mathbb{Z}}$ be i.i.d. For f taking values in \mathcal{H}, consider the Bernoulli-shift sequence

$$
X_{i}=f\left(\epsilon_{i}, \epsilon_{i-1}, \ldots\right), \quad i \in \mathbb{N}
$$

Recall $X_{i}=\sum_{j \geq 1} \sqrt{\lambda}_{j} u_{j} \eta_{i j}$, where $\eta_{i j}=\lambda_{j}^{-1 / 2}\left\langle X_{i}, u_{j}\right\rangle . \epsilon_{0}^{\prime}$ independent copy of ϵ_{0}, independent of $\left(\epsilon_{i}\right)_{i \in \mathbb{Z}}$. Coupling X_{i}^{\prime} of X_{i} defined as

$$
X_{i}^{\prime}=f\left(\epsilon_{i}, \ldots, \epsilon_{1}, \epsilon_{0}^{\prime}, \epsilon_{-1}, \ldots\right), \quad i \in \mathbb{N}
$$

For $j \geq 1$, let $\eta_{i j}^{\prime}=\lambda_{j}^{-1 / 2}\left\langle X_{i}^{\prime}, u_{j}\right\rangle$. Coupling distance

$$
\begin{equation*}
\theta_{i q}=\sup _{j \geq 1} \mathbb{E}^{1 / p}\left|\eta_{i j}-\eta_{i j}^{\prime}\right|^{q} \tag{12}
\end{equation*}
$$

- I. A. Ibragimov (1966). "On the accuracy of approximation by the normal distribution of distribution functions of sums of independent random variables". In: Teor. Verojatnost. i Primenen 11, pp. 632-655
- W. B. Wu (Jan. 2011). "Asymptotic theory for stationary processes". In:

Corollary 7 (J. \& W.)

Suppose we are in Setting 1 with $q \geq 16$. If (3) holds, then

$$
\mathbb{E}\left\|\hat{P}_{j}-P_{j}\right\|_{\infty}^{2} \leq \mathbb{E}\left\|\hat{P}_{j}-P_{j}\right\|_{2}^{2} \leq C j^{2} / n, \quad 1 \leq j \leq C \sqrt{n}(\log n)^{-5 / 2} .
$$

- This result is (up to log terms) optimal in the case where $\lambda_{j}=j^{-\alpha-1}$, $\alpha>0$ in a certain sense.
- This result is (up to log terms) optimal in the case where $\lambda_{j}=C j^{-\alpha-1}, \alpha>0$ in a certain sense.
- For such a polynomial decay, given that $\sup _{j \geq 1} \mathbb{E}\left|\eta_{j}\right|^{2 q} \leq q!C^{q}$ for all $q \geq 1$, it has been shown that for any $j \geq 1$ (exists also information theoretic bound)

$$
\mathbb{E}\left\|\hat{P}_{j}-P_{j}\right\|_{\infty}^{2} \geq c\left(j^{2} / n\right) \wedge 1
$$

- We obtain the optimal bound for almost the whole range (up to the factor $(\log n)^{-5 / 2}$) where the trivial bound 2 does not apply. Moreover, only require mild conditions.
- Note: The stochastic behaviour of the scores $\left(\eta_{j}\right)_{j \geq 1}$ in terms of their dependence structure is irrelevant for the optimal algebraic structure conditions. In other words, this result cannot be improved assuming that $\left(\eta_{j}\right)_{j \geq 1}$ are independent.

Effective versus relative rank setting

Write $X=\sum_{j \geq 1} \lambda_{j}^{1 / 2} u_{j} \eta_{j}$ with Karhunen-Loéve coefficients $\eta_{1}, \eta_{2}, \ldots$

Sub-gaussian setting

$\eta_{1}, \eta_{2}, \ldots$ are independent and sub-Gaussian, i.e. $\sup _{j \geq 1}\left\|\eta_{j}\right\|_{\psi_{2}} \lesssim 1$

- $\gamma_{j}<1 / 2$ w.h.p. if $\frac{\lambda_{j}}{g_{j}} \frac{e_{j}(\Sigma)}{n} \lesssim 1$
- $\delta_{j}<1 / 2$ w.h.p. if $\frac{\lambda_{j}}{g_{j}} \frac{r_{j}(\Sigma)}{n} \lesssim 1$
- V. Koltchinskii and K. Lounici. "Normal approximation and concentration of spectral projectors of sample covariance". In: Ann. Statist. ()
- V. Koltchinskii. "Asymptotically efficient estimation of smooth functionals of covariance operators". In: J. Eur. Math. Soc. ()

Effective versus relative rank setting

Setting 2

(i) For some $q>4$ we have $\sup _{j \geq 1} \mathbb{E}\left|\eta_{j}\right|^{q} \lesssim 1$
(ii) For some $m \geq 4$ we have $\mathbb{E} \eta_{i_{1}} \eta_{i_{2}} \ldots \eta_{i_{m}}=0$ whenever one of the indices $i_{1}, \ldots, i_{m} \geq 1$ occurs only once

- $\gamma_{j}<1 / 2$ w.h.p. if $\frac{\lambda_{j}}{g_{j}} \frac{e_{j}(\Sigma)}{n} \lesssim 1$
- $\delta_{j}<1 / 2$ w.h.p. if $\frac{\lambda_{j}}{g_{j}} \frac{r_{j}(\Sigma)}{n} \lesssim 1$

regimes	$\lambda_{j}=j^{-\alpha}$	$\lambda_{j}=e^{-\alpha j}$
relative	$j^{2} \log j \lesssim n$	$j \lesssim n$
effective	$j^{2+\alpha} \lesssim n$	$j \lesssim \log n$

High-dimensional phenomena under spectral decay

Theorem 8 (J. \& W.)
Assume Setting 2 with $m=4$.

- If $\frac{\lambda_{j}}{g_{j}} \frac{\mathrm{r}_{j}(\Sigma)}{n} \rightarrow 0$ then $g_{j}^{-1}\left(\hat{\lambda}_{j}-\lambda_{j}\right) \xrightarrow{\mathbb{P}} 0$ and $\left\|\hat{P}_{j}-P_{j}\right\|_{2} \xrightarrow{\mathbb{P}} 0$
- Current work: If $n^{\epsilon} \frac{\lambda_{j}}{g_{j}} \frac{r_{j}(\Sigma)}{n} \rightarrow 0, \epsilon>0$ arbitrarily small, then limit theorems and much more are possible (higher order expansions).
- Subject to appropriate Assumptions, replace n^{ϵ} with something weaker $\left(\log ^{q} n\right.$, more structure).
- Can extend everything to: longrun covariance operator, autocovariance operators, robust empirical covariance operators.

Spectral decay versus spiked models

bound	$\lambda_{j}=j^{-\alpha-1}$	$\lambda_{j}=e^{-\alpha j}$		
relative regime	$j^{2} \log j \lesssim n$	$j \lesssim n$		
$\left\|\hat{\lambda}_{j}-\lambda_{j}\right\| / \lambda_{j}$	$\frac{1}{\sqrt{n}}+\frac{j \log j}{n}$	$\frac{1}{\sqrt{n}}+\frac{j}{n}$		
$\left\\|\hat{P}_{j}-P_{j}\right\\|_{2}$	$\frac{j}{\sqrt{n}}$	$\frac{1}{\sqrt{n}}$		
effective regime	$j^{2+2 \alpha} \lesssim n$	$j \lesssim \log n$		

PCA and RMT	$\lambda_{1}>1=\cdots=1, \frac{p}{n} \rightarrow \gamma$	general $\left(\lambda_{j}\right)$
phase transition	$\frac{\gamma}{\left(\lambda_{1}-1\right)^{2}}<1$	$\frac{\lambda_{1}}{g_{1}} \frac{r_{1}(\Sigma)}{n} \lesssim 1$
eigenvalue bias	$\gamma \frac{\lambda_{1}}{\lambda_{1}-1}$	$\frac{\lambda_{1}}{n} r_{1}(\Sigma)$

But remember: phase transitions can already occur for $\frac{r_{1}(\Sigma)}{\sqrt{n}} \geq c$!

Quantitative limit theorems in high dimensions

- $T_{j}=n\left\|\hat{P}_{j}-P_{j}\right\|_{2}^{2}$ (results actually apply to \mathcal{J}.)
- $S_{j}=\left\|L_{j}(Z)\right\|_{2}^{2}=\left\|R_{j} Z P_{j}+P_{j} Z R_{j}\right\|_{2}^{2}$
- Z Gaussian r.v. with $\operatorname{cov}(Z)=\operatorname{cov}(X \otimes X)$
- uniform metric:

$$
U\left(T_{j}, S_{j}\right)=\sup _{x \in \mathbb{R}}\left|\mathbb{P}\left(T_{j} \leq x\right)-\mathbb{P}\left(S_{j} \leq x\right)\right|
$$

- A. Naumov, V. Spokoiny, and V. Ulyanov. "Bootstrap confidence sets for spectral projectors of sample covariance". In: Probab. Theory Related Fields ()
- V. Koltchinskii and K. Lounici. "Normal approximation and concentration of spectral projectors of sample covariance". In: Ann. Statist. ()

Quantitative limit theorems in high dimensions

Theorem 9 (J. \& W.)
Assume Setting 2 with $m=4$.
(i) If $\lambda_{k}=k^{-\alpha}, k \geq 1$, then

$$
\mathrm{U}\left(n\left\|\hat{P}_{j}-P_{j}\right\|_{2}^{2},\left\|L_{j}(Z)\right\|_{2}^{2}\right) \lesssim_{p, \alpha} \frac{j}{\sqrt{n}}(\log j \log n)^{3 / 2}
$$

(ii) If $\lambda_{k}=e^{-\alpha k}, k \geq 1$, then

$$
U\left(n\left\|\hat{P}_{j}-P_{j}\right\|_{2}^{2},\left\|L_{j}(Z)\right\|_{2}^{2}\right) \lesssim_{p, \alpha}\left(\frac{j^{3} \log ^{3} n}{n}\right)^{1 / 2}
$$

- A. Naumov, V. Spokoiny, and V. Ulyanov. "Bootstrap confidence sets for spectral projectors of sample covariance". In: Probab. Theory Related Fields ()
- V. Koltchinskii and K. Lounici. "Normal approximation and concentration of spectral projectors of sample covariance". In: Ann. Statist. ()

Bootstrap approximations in high dimensions

Popular and powerful method are multiplier methods, which we also employ here. Let $\left(w_{i}\right)$ be an i.i.d. sequence with

$$
\begin{equation*}
\mathbb{E} w_{i}^{2}=1, \quad \mathbb{E} w_{i}^{2 q}<\infty \tag{13}
\end{equation*}
$$

Our bootstrap method is quite simple and given below.

Algorithm 1.1 (Bootstrap)

Given $\left(X_{i}\right)$ and $\left(w_{i}\right)$, construct the sequence $\left(X_{i}\right)^{*}=\left(w_{i} X_{i}\right)$. Treat $\left(X_{i}^{*}\right)$ as new sample, compute correspondingly:

- $\hat{\Sigma}^{*}$ and $\hat{P}_{j}^{*}=P_{j}\left(\hat{\Sigma}^{*}\right)$ bootstrapped versions
- $T_{j}^{*}=\frac{1}{2}\left\|\hat{P}_{j}^{*}-\hat{P}_{j}\right\|_{2}^{2}$ and $T_{j}=\left\|\hat{P}_{j}-P_{j}\right\|_{2}^{2}$
- A. Naumov, V. Spokoiny, and V. Ulyanov (2019). "Bootstrap confidence sets for spectral projectors of sample covariance". In: Probab. Theory Related Fields 174.3-4, pp. 1091-1132

Bootstrap approximations in high dimensions

- $\hat{\Sigma}^{*}$ and $\hat{P}_{j}^{*}=P_{j}\left(\hat{\Sigma}^{*}\right)$ bootstrapped versions
- $T_{j}^{*}=\frac{1}{2}\left\|\hat{P}_{j}^{*}-\hat{P}_{j}\right\|_{2}^{2}$ and $T_{j}=\left\|\hat{P}_{j}-P_{j}\right\|_{2}^{2}$

Theorem 10 (J. \& W.)
Assume Setting 2 with $m=8$.
(i) If the eigenvalues decay polynomially with $\alpha \geq 2$, then w.h.p.

$$
\mathrm{U}\left(\mathcal{L}\left(T_{j}^{*} \mid X_{1}, \ldots, X_{n}\right), \mathcal{L}\left(T_{j}\right)\right) \lesssim_{p, \alpha} n^{-1 / 8}(\log j)^{3 / 4}+\frac{j}{\sqrt{n}}(\log j \log n)^{3 / 2}
$$

(ii) If the eigenvalues decay exponentially, then w.h.p.

$$
\mathrm{U}\left(\mathcal{L}\left(T_{j}^{*} \mid X_{1}, \ldots, X_{n}\right), \mathcal{L}\left(T_{j}\right)\right) \lesssim_{p, \alpha} n^{-1 / 8}+\left(\frac{j^{3} \log ^{3} n}{n}\right)^{1 / 2}
$$

Pervasive Factor models

- Recall $\mathcal{J}=\{1, \ldots, J\}$, where we assume $J \geq 6$.
- Literature (approximate, pervasive) factor models: assumes the first J eigenvalues diverge at rate $\asymp d$ (with $d=\operatorname{dim} \mathcal{H}$), all remaining eigenvalues are bounded.
- We assume that there exist constants $0<c \leq C<\infty$, such that

$$
\begin{equation*}
\lambda_{1} \leq C \lambda_{J}, \quad \lambda_{J}-\lambda_{J+1} \geq c \lambda_{J}, \quad \frac{\operatorname{tr}_{\mathcal{J} c}(\Sigma)}{\lambda_{1}} \leq C . \tag{14}
\end{equation*}
$$

- Observe that this implies

$$
\frac{\operatorname{tr}(\Sigma)}{\lambda_{1}} \asymp J
$$

which is the desired feature of pervasive factor models.

- J. Bai (2003). "Inferential theory for factor models of large dimensions". In: Econometrica 71.1, pp. 135-171
- James H. Stock and Mark W. Watson (2002). "Forecasting using principal components from a large number of predictors". In: J. Amer. Statist. Assoc. 97.460, pp. 1167-1179

Theorem 11 (J. \& W.)

Assume Setting 2 with $m=8$. Then for $j \in \mathcal{J}$
(i)

$$
\mathrm{U}\left(n\left\|\hat{P}_{j}-P_{j}\right\|_{2}^{2},\left\|L_{j} Z\right\|_{2}^{2}\right) \lesssim_{p}\left(\frac{J^{6}}{n}\right)^{1 / 2}\left((\log n)^{3 / 2}+J^{5 / 2}\right)
$$

(ii) W.h.p. for $j \in \mathcal{J}$

$$
\begin{gathered}
\mathrm{U}\left(\mathcal{L}\left(T_{j}^{*} \mid X_{1}, \ldots, X_{n}\right), \mathcal{L}\left(T_{j}\right)\right) \lesssim_{p}\left(\frac{J^{3}}{n}\right)^{1 / 5}+\left(\frac{J^{6} \log ^{3} n}{n}\right)^{1 / 2} \\
+\left(\frac{J p \log n}{n}\right)^{1 / 2}+n^{(6-q) / 12}
\end{gathered}
$$

Take-home message

- While the size of $\|\hat{\Sigma}-\Sigma\|_{\infty}$ is closely linked to the effective rank, the behavior of $\hat{\lambda}_{j}, \hat{P}_{j}$, \hat{u}_{j} is closely linked to the so-called relative ranks
- Can use this to obtain limit theorems, concentration inequalities for $\hat{\lambda}_{j}, \hat{P}_{j}, \hat{u}_{j}$.

Thank you for your attention!

Corollary 12

Suppose we are in the i.i.d. setting with $p \geq 16$. If (3) holds, then

$$
\mathbb{E}\left\|\hat{P}_{j}-P_{j}\right\|_{\infty}^{2} \leq \mathbb{E}\left\|\hat{P}_{j}-P_{j}\right\|_{2}^{2} \leq C j^{2} / n, \quad 1 \leq j \leq C \sqrt{n}(\log n)^{-5 / 2} .
$$

- This result is (up to log terms) optimal in the case where $\lambda_{j}=C j^{-\alpha-1}, \alpha>0$ in a certain sense.
- This result is (up to log terms) optimal in the case where $\lambda_{j}=C j^{-\alpha-1}, \alpha>0$ in a certain sense.
- For such a polynomial decay, given that $\sup _{j \geq 1} \mathbb{E}\left|\eta_{j}\right|^{2 p} \leq p!C^{p}$ for all $p \geq 1$, it has been shown that for any $j \geq 1$ (exists also information theoretic bound)

$$
\mathbb{E}\left\|\hat{P}_{j}-P_{j}\right\|_{\infty}^{2} \geq c\left(j^{2} / n\right) \wedge 1
$$

- This result is (up to log terms) optimal in the case where $\lambda_{j}=C j^{-\alpha-1}, \alpha>0$ in a certain sense.
- For such a polynomial decay, given that $\sup _{j \geq 1} \mathbb{E}\left|\eta_{j}\right|^{2 p} \leq p!C^{p}$ for all $p \geq 1$, it has been shown that for any $j \geq 1$ (exists also information theoretic bound)

$$
\mathbb{E}\left\|\hat{P}_{j}-P_{j}\right\|_{\infty}^{2} \geq c\left(j^{2} / n\right) \wedge 1
$$

- We obtain the optimal bound for almost the whole range (up to the factor $(\log n)^{-5 / 2}$) where the trivial bound 2 does not apply. Moreover, only require mild conditions.
- This result is (up to log terms) optimal in the case where $\lambda_{j}=C j^{-\alpha-1}, \alpha>0$ in a certain sense.
- For such a polynomial decay, given that $\sup _{j \geq 1} \mathbb{E}\left|\eta_{j}\right|^{2 p} \leq p!C^{p}$ for all $p \geq 1$, it has been shown that for any $j \geq 1$ (exists also information theoretic bound)

$$
\mathbb{E}\left\|\hat{P}_{j}-P_{j}\right\|_{\infty}^{2} \geq c\left(j^{2} / n\right) \wedge 1
$$

- We obtain the optimal bound for almost the whole range (up to the factor $(\log n)^{-5 / 2}$) where the trivial bound 2 does not apply. Moreover, only require mild conditions.
- Note: The stochastic behaviour of the scores $\left(\eta_{j}\right)_{j \geq 1}$ in terms of their dependence structure is irrelevant for the optimal algebraic structure conditions. In other words, this result cannot be improved assuming that $\left(\eta_{j}\right)_{j \geq 1}$ are independent.
- Another prominent example ist the spiked covariance model.
- Another prominent example ist the spiked covariance model.
- Signature feature: Several eigenvalues are larger than the remaining. Typically one is interested in recovering these leading eigenvalues and their associated eigenvectors (spiked part), since these explain most variation of the data.
- Another prominent example ist the spiked covariance model.
- Signature feature: Several eigenvalues are larger than the remaining. Typically one is interested in recovering these leading eigenvalues and their associated eigenvectors (spiked part), since these explain most variation of the data.
- One possible way to define the model: Assume $\mathcal{H}=\mathbb{R}^{d}$, let f_{1}, \ldots, f_{d} $\left(\left\|f_{j}\right\|=1\right)$ be orthogonal vectors and A be a covariance matrix such that

$$
C_{A}^{-1} \leq \lambda_{d}(A) \leq \lambda_{1}(A) \leq C_{A}
$$

- Another prominent example ist the spiked covariance model.
- Signature feature: Several eigenvalues are larger than the remaining. Typically one is interested in recovering these leading eigenvalues and their associated eigenvectors (spiked part), since these explain most variation of the data.
- One possible way to define the model: Assume $\mathcal{H}=\mathbb{R}^{d}$, let f_{1}, \ldots, f_{d} $\left(\left\|f_{j}\right\|=1\right)$ be orthogonal vectors and A be a covariance matrix such that

$$
C_{A}^{-1} \leq \lambda_{d}(A) \leq \lambda_{1}(A) \leq C_{A} .
$$

- For a sequence of weights $\omega_{1}, \ldots, \omega_{d}$, consider the spiked covariance model

$$
\Sigma=F+A=\sum_{k=1}^{d} \omega_{k}^{2} f_{k} f_{k}^{\top}+A
$$

where F denotes the 'spiked parts'.

- Generating probabilistic model: F_{1}, \ldots, F_{d} is a martingale difference sequence with $\mathbb{E} F_{k}^{2}=1$ (factor loadings).
- Generating probabilistic model: F_{1}, \ldots, F_{d} is a martingale difference sequence with $\mathbb{E} F_{k}^{2}=1$ (factor loadings).
- Similarly: $Y=\left(Y_{1}, \ldots, Y_{d}\right)^{\top}$ is a random vector where Y_{1}, \ldots, Y_{d} form a martingale difference sequence.
- Generating probabilistic model: F_{1}, \ldots, F_{d} is a martingale difference sequence with $\mathbb{E} F_{k}^{2}=1$ (factor loadings).
- Similarly: $Y=\left(Y_{1}, \ldots, Y_{d}\right)^{\top}$ is a random vector where Y_{1}, \ldots, Y_{d} form a martingale difference sequence.
- F and Y are mutually uncorrelated, that is, all cross correlations are zero.
- Generating probabilistic model: F_{1}, \ldots, F_{d} is a martingale difference sequence with $\mathbb{E} F_{k}^{2}=1$ (factor loadings).
- Similarly: $Y=\left(Y_{1}, \ldots, Y_{d}\right)^{\top}$ is a random vector where Y_{1}, \ldots, Y_{d} form a martingale difference sequence.
- F and Y are mutually uncorrelated, that is, all cross correlations are zero.
- Idiosyncratic error ϵ and canonical factor model are defined as

$$
X=\sum_{k=1}^{d} \omega_{k} F_{k} f_{k}+\epsilon, \quad \epsilon=A^{1 / 2} Y
$$

- Generating probabilistic model: F_{1}, \ldots, F_{d} is a martingale difference sequence with $\mathbb{E} F_{k}^{2}=1$ (factor loadings).
- Similarly: $Y=\left(Y_{1}, \ldots, Y_{d}\right)^{\top}$ is a random vector where Y_{1}, \ldots, Y_{d} form a martingale difference sequence.
- F and Y are mutually uncorrelated, that is, all cross correlations are zero.
- Idiosyncratic error ϵ and canonical factor model are defined as

$$
X=\sum_{k=1}^{d} \omega_{k} F_{k} f_{k}+\epsilon, \quad \epsilon=A^{1 / 2} Y
$$

- Obviously, X has covariance matrix Σ.
- Apply results: Need to control moments of $\eta_{j}=\lambda_{j}^{-1 / 2}\left\langle X, u_{j}\right\rangle$.
- Apply results: Need to control moments of $\eta_{j}=\lambda_{j}^{-1 / 2}\left\langle X, u_{j}\right\rangle$.
- We have a connection between moments of η_{j} and F, Y via the following result.
- Apply results: Need to control moments of $\eta_{j}=\lambda_{j}^{-1 / 2}\left\langle X, u_{j}\right\rangle$.
- We have a connection between moments of η_{j} and F, Y via the following result.

Proposition 3.1

For $p \geq 2$, suppose that

$$
\mathbb{E}\left|F_{k}\right|^{p} \leq C_{F}, \quad \mathbb{E}\left|Y_{k}\right|^{p} \leq C_{Y}
$$

for all $k=1, \ldots, d$. Then the conditions above imply $\mathbb{E} \eta_{j}=0$ and

$$
\max _{j \geq 1} \mathbb{E}\left|\eta_{j}\right|^{p} \leq C_{\eta},
$$

where C_{η} only depends on C_{F}, C_{Y} and C_{A}.

- Apply results: Need to control moments of $\eta_{j}=\lambda_{j}^{-1 / 2}\left\langle X, u_{j}\right\rangle$.
- We have a connection between moments of η_{j} and F, Y via the following result.

Proposition 3.1

For $p \geq 2$, suppose that

$$
\mathbb{E}\left|F_{k}\right|^{p} \leq C_{F}, \quad \mathbb{E}\left|Y_{k}\right|^{p} \leq C_{Y}
$$

for all $k=1, \ldots, d$. Then the conditions above imply $\mathbb{E} \eta_{j}=0$ and

$$
\max _{j \geq 1} \mathbb{E}\left|\eta_{j}\right|^{p} \leq C_{\eta},
$$

where C_{η} only depends on C_{F}, C_{Y} and C_{A}.
Now get CLT and concentration inequalities.

- Consider the standard time series model for financial data

$$
X_{i}=v_{i} \epsilon_{i}, \quad i \in \mathbb{N}
$$

where $\left(\epsilon_{i}\right)_{i \in \mathbb{N}} \in \mathcal{H}$ are i.i.d. random variables, $\left(v_{i}^{2}\right)_{i \in \mathbb{N}} \in \mathbb{R}$ is a stationary, ergodic sequence that exhibits long memory and is independent of $\left(\epsilon_{i}\right)_{i \in \mathbb{N}}$.

- Consider the standard time series model for financial data

$$
X_{i}=v_{i} \epsilon_{i}, \quad i \in \mathbb{N}
$$

where $\left(\epsilon_{i}\right)_{i \in \mathbb{N}} \in \mathcal{H}$ are i.i.d. random variables, $\left(v_{i}^{2}\right)_{i \in \mathbb{N}} \in \mathbb{R}$ is a stationary, ergodic sequence that exhibits long memory and is independent of $\left(\epsilon_{i}\right)_{i \in \mathbb{N}}$.

- To be more precise, assume

$$
b_{n}^{-1} \sum_{i=1}^{n}\left(v_{i}^{2}-\mathbb{E} v_{i}^{2}\right) \xrightarrow{d} W_{b}
$$

where $b_{n}=n^{b} L(n)$ for $b \in(1 / 2,1)$ and some slowly varying function $L(x) . W_{b}$ is a nondegenerate random variable. Well-known example: W_{b} corresponds to a fractional Brownian motion, hence a normal distribution.

- What is a natural operator of interest here?
- What is a natural operator of interest here?
- Note: $\left(X_{i}\right)_{i \in \mathbb{N}}$ for a martingale sequence $\left(X_{i}=\epsilon_{i} v_{i}\right)$.
- What is a natural operator of interest here?
- Note: $\left(X_{i}\right)_{i \in \mathbb{N}}$ for a martingale sequence $\left(X_{i}=\epsilon_{i} v_{i}\right)$.
- Subject to some additional regularity assumptions, the Martingale-CLT implies

$$
\frac{1}{\sqrt{n}} \sum_{i=1}^{n} X_{i} \xrightarrow{d} \mathcal{N}(0, \Sigma), \Sigma=\mathbb{E} X_{i} \otimes X_{i}=\mathbb{E} v_{0}^{2} \Sigma_{\epsilon}
$$

where Σ_{ϵ} is the covariance operator of ϵ.

- What is a natural operator of interest here?
- Note: $\left(X_{i}\right)_{i \in \mathbb{N}}$ for a martingale sequence $\left(X_{i}=\epsilon_{i} v_{i}\right)$.
- Subject to some additional regularity assumptions, the Martingale-CLT implies

$$
\frac{1}{\sqrt{n}} \sum_{i=1}^{n} X_{i} \xrightarrow{d} \mathcal{N}(0, \Sigma), \Sigma=\mathbb{E} X_{i} \otimes X_{i}=\mathbb{E} v_{0}^{2} \Sigma_{\epsilon}
$$

where Σ_{ϵ} is the covariance operator of ϵ.

- So the 'standard' covariance operator Σ and the empirical counterpart $\hat{\Sigma}$ are still of high interest, where we recall

$$
\hat{\Sigma}=\hat{\Sigma}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \otimes X_{i}
$$

Need some assumptions: Suppose that $\mathbb{E}\left\|\epsilon_{i}\right\|^{2}<\infty$, let Σ_{ϵ} be the covariance operator of ϵ_{i}, and

$$
\epsilon_{i}=\sum_{j \geq 1} \sqrt{\lambda_{j}^{\epsilon}} u_{j} \eta_{i j}^{\epsilon}, \quad i \in \mathbb{N} .
$$

Need some assumptions: Suppose that $\mathbb{E}\left\|\epsilon_{i}\right\|^{2}<\infty$, let Σ_{ϵ} be the covariance operator of ϵ_{i}, and

$$
\epsilon_{i}=\sum_{j \geq 1} \sqrt{\lambda_{j}^{\epsilon}} u_{j} \eta_{i j}^{\epsilon}, \quad i \in \mathbb{N}
$$

Assumption 4.1

Suppose that for $p \geq 4$

$$
\mathbb{E} \eta_{i j}^{\epsilon}=0, \quad \mathbb{E}\left|\eta_{i j}^{\epsilon}\right|^{p} \leq C_{\epsilon}, \quad \mathbb{E} v_{i}^{2}=1, \quad \mathbb{E}\left|v_{i}\right|^{p} \leq C_{v}
$$

for all $i, j \geq 1$. Moreover, we assume that

$$
\mathbb{E}\left|\sum_{i=1}^{n}\left(v_{i}^{2}-\mathbb{E} v_{i}^{2}\right)\right|^{2} \leq C_{v} b_{n}^{2} \quad b_{n}^{-1} \sum_{i=1}^{n}\left(v_{i}^{2}-\mathbb{E} v_{i}^{2}\right) \xrightarrow{w} W_{b} .
$$

- We now consider a triangular array of $X_{1}^{(n)}, \ldots, X_{n}^{(n)} \in \mathcal{H}^{n}$ with covariance operator $\Sigma^{(n)}, n=1,2, \ldots$, satisfying our previous long-memory setting.
- We now consider a triangular array of $X_{1}^{(n)}, \ldots, X_{n}^{(n)} \in \mathcal{H}^{n}$ with covariance operator $\Sigma^{(n)}, n=1,2, \ldots$, satisfying our previous long-memory setting.
- Notation: everything gets an ${ }^{(n)}$, for instance $\lambda_{j}^{(n)}$, and so on.

Theorem 4.2

Fix $j_{0} \geq 1$. Suppose that $\lambda_{j}^{(n)}, 1 \leq j \leq j_{0}$ are simple for all $n \geq 1$ and Assumption 4.1 holds with C_{ϵ}, C_{V} independent of n. If

$$
b_{n} n^{-1} \max _{1 \leq j \leq j_{0}} \sum_{k \neq j} \frac{\lambda_{k}^{(n)}}{\left|\lambda_{j}^{(n)}-\lambda_{k}^{(n)}\right|} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty
$$

and $\lambda_{j_{0}}^{(n)} \leq \lambda_{i_{0}}^{(n)} / 2$ for some fixed $i_{0}>j_{0}$, then

$$
n b_{n}^{-1}\left(\frac{\hat{\lambda}_{1}^{(n)}-\lambda_{1}^{(n)}}{\lambda_{1}^{(n)}}, \ldots, \frac{\hat{\lambda}_{j 0}^{(n)}-\lambda_{j 0}^{(n)}}{\lambda_{j_{0}}^{(n)}}\right)^{\top} \xrightarrow{d}\left(W_{b}, \ldots, W_{b}\right)^{\top} .
$$

- As one would expect, the long-memory behaviour transfers to the fluctuations of the empirical eigenvalues.
- As one would expect, the long-memory behaviour transfers to the fluctuations of the empirical eigenvalues.
- Somewhat surprising: all converge towards the identical limit. In particular, we have

$$
n b_{n}^{-1} \max _{1 \leq j, k \leq j_{0}}\left|\frac{\hat{\lambda}_{j}^{(n)}-\lambda_{j}^{(n)}}{\lambda_{j}^{(n)}}-\frac{\hat{\lambda}_{k}^{(n)}-\lambda_{k}^{(n)}}{\lambda_{k}^{(n)}}\right| \xrightarrow{\mathbb{P}} 0
$$

a result of the dominating nature of the long-memory component.

- As one would expect, the long-memory behaviour transfers to the fluctuations of the empirical eigenvalues.
- Somewhat surprising: all converge towards the identical limit. In particular, we have

$$
n b_{n}^{-1} \max _{1 \leq j, k \leq j_{0}}\left|\frac{\hat{\lambda}_{j}^{(n)}-\lambda_{j}^{(n)}}{\lambda_{j}^{(n)}}-\frac{\hat{\lambda}_{k}^{(n)}-\lambda_{k}^{(n)}}{\lambda_{k}^{(n)}}\right| \xrightarrow{\mathbb{P}} 0
$$

a result of the dominating nature of the long-memory component.

- Note the different normalization

$$
b_{n} n^{-1} \max _{1 \leq j \leq j_{0}} \sum_{k \neq j} \frac{\lambda_{k}^{(n)}}{\left|\lambda_{j}^{(n)}-\lambda_{k}^{(n)}\right|} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty
$$

- As one would expect, the long-memory behaviour transfers to the fluctuations of the empirical eigenvalues.
- Somewhat surprising: all converge towards the identical limit. In particular, we have

$$
n b_{n}^{-1} \max _{1 \leq j, k \leq j_{0}}\left|\frac{\hat{\lambda}_{j}^{(n)}-\lambda_{j}^{(n)}}{\lambda_{j}^{(n)}}-\frac{\hat{\lambda}_{k}^{(n)}-\lambda_{k}^{(n)}}{\lambda_{k}^{(n)}}\right| \xrightarrow{\mathbb{P}} 0
$$

a result of the dominating nature of the long-memory component.

- Note the different normalization

$$
b_{n} n^{-1} \max _{1 \leq j \leq j_{0}} \sum_{k \neq j} \frac{\lambda_{k}^{(n)}}{\left|\lambda_{j}^{(n)}-\lambda_{k}^{(n)}\right|} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty
$$

- Most likely an artifact in this case.

Consider the case where $d=\operatorname{dim} \mathcal{H}<\infty$.

Theorem 4.3

In the previous setting, suppose that $\lambda_{1}^{(n)}$ is simple for all $n \geq 1$. If $d=d_{n}$ and the sequence $d_{n}\left(b_{n} n^{-1 / 2}\right)^{-p / 2}$ is bounded,

$$
\frac{1}{\sqrt{n}} \sum_{k>1} \frac{\lambda_{k}^{(n)}}{\lambda_{1}^{(n)}-\lambda_{k}^{(n)}} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty
$$

then the sequence $n b_{n}^{-1}\left(\hat{\lambda}_{1}^{(n)}-\lambda_{1}^{(n)}\right) / \lambda_{1}^{(n)}$ is tight.

Consider the case where $d=\operatorname{dim} \mathcal{H}<\infty$.

Theorem 4.3

In the previous setting, suppose that $\lambda_{1}^{(n)}$ is simple for all $n \geq 1$. If $d=d_{n}$ and the sequence $d_{n}\left(b_{n} n^{-1 / 2}\right)^{-p / 2}$ is bounded,

$$
\frac{1}{\sqrt{n}} \sum_{k>1} \frac{\lambda_{k}^{(n)}}{\lambda_{1}^{(n)}-\lambda_{k}^{(n)}} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty
$$

then the sequence $n b_{n}^{-1}\left(\hat{\lambda}_{1}^{(n)}-\lambda_{1}^{(n)}\right) / \lambda_{1}^{(n)}$ is tight.

- Convinced we can actually now prove a limit theorem.

