Relative perturbation bounds for empirical covariance operators

Moritz Jirak, Universität Wien (and Martin Wahl, Humboldt-Universität zu Berlin)

October 14, 2022

PCA in high dimensions

Let X, X_1, \ldots, X_n be i.i.d. centered random variables taking values in a *p*-dimensional Hilbert \mathcal{H} space with (empirical) covariance operator

$$\Sigma = \mathbb{E} X \otimes X$$
 and $\hat{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} X_i \otimes X_i$

 $(\lambda_j)_{j=1}^p$: non-increasing sequence of eigenvalues of Σ $(u_j)_{j=1}^p$: sequence of eigenvectors of Σ $(P_j)_{j=1}^p$: sequence of spectral projectors of Σ , $P_j = u_j \otimes u_j$

Challenges: p increases in n (the same order as n) or even $p = \infty$

PCA in high dimensions

Let X, X_1, \ldots, X_n be i.i.d. centered random variables taking values in a *p*-dimensional Hilbert \mathcal{H} space with (empirical) covariance operator

$$\Sigma = \mathbb{E} X \otimes X$$
 and $\hat{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} X_i \otimes X_i$

 $(\hat{\lambda}_j)_{j=1}^p$: non-increasing sequence of eigenvalues of $\hat{\Sigma}$ $(\hat{u}_j)_{j=1}^p$: sequence of eigenvectors of $\hat{\Sigma}$ $(\hat{P}_j)_{j=1}^p$: sequence of spectral projectors of $\hat{\Sigma}$, $\hat{P}_j = \hat{u}_j \otimes \hat{u}_j$ Challenges: *p* increases in *n* (the same order as *n*) or even $p = \infty$

How close are $\hat{\lambda}_j$, \hat{P}_j to their population counterparts λ_j , P_j ?

High-dimensional phenomena in the spiked model

Theorem 1 (Baik & Silverstein '06, Paul '07, Nadler '08, etc.) Suppose that X is Gaussian and that

• $\Sigma = diag(\lambda_1, 1, \dots, 1) \in \mathbb{R}^{p \times p}$ with $\lambda_1 > 1$ fixed

Then, as $p/n
ightarrow \gamma > 0$, almost surely,

$$\begin{split} \hat{\lambda}_{1} \rightarrow \begin{cases} \lambda_{1} + \gamma \frac{\lambda_{1}}{\lambda_{1}-1} & \text{if } \frac{\gamma}{(\lambda_{1}-1)^{2}} < 1\\ (1+\sqrt{\gamma})^{2} & \text{otherwise} \end{cases}\\ \|\hat{P}_{1} - P_{1}\|_{2}^{2} \rightarrow \begin{cases} c_{1} \frac{\gamma \lambda_{1}}{(\lambda_{1}-1)^{2}} & \text{if } \frac{\gamma}{(\lambda_{1}-1)^{2}} < 1\\ 2 & \text{otherwise} \end{cases} \end{split}$$

Related results hold for more complicated spiked models.

- Extensions to general eigenvalue settings?
- Extensions to more general distributional settings?

Covariance operators in infinite dimensions

- Key feature in functional data analysis and kernel-based learning: spectral decay of Σ
- polynomial decay: $\lambda_j = j^{-lpha}$, $j \geq 1$
- exponential decay: $\lambda_j = e^{-lpha j}$, $j \geq 1$
- theory less developed:

$$rac{\hat{\lambda}_j - \lambda_j}{\lambda_j} \stackrel{w}{ o} \mathcal{N}(0,1), \quad ext{which} \, j \, \widehat{\gamma}$$

- S. Fischer and I. Steinwart. "Sobolev norm learning rates for regularized least-squares algorithms". In: J. Mach. Learn. Res. ()
- P. L. Bartlett et al. "Benign overfitting in linear regression". In: Proc. Natl. Acad. Sci. USA ()
- P. Hall and J.L. Horowitz (Feb. 2007). "Methodology and convergence rates for functional linear regression". In: *The Annals of Statistics* 35.1, pp. 70–91

Functional regression

• Given $(X_k)_{k\in\mathbb{Z}}$, $(Y_k)_{k\in\mathbb{Z}}$, consider

$$X_k = \Phi(Y_k) + \epsilon_k, \quad k \in \mathbb{Z},$$

where Φ is an unknown linear operator, and $(\epsilon_k)_{k\in\mathbb{Z}}$ is a noise sequence.

• A common estimator for Φ is (with sample size n)

$$\widehat{\Phi}^{b}(\cdot) = \sum_{j=1}^{b} \frac{1}{n} \sum_{k=1}^{n} \frac{\langle Y_{k}, \widehat{u}_{j}^{y} \rangle X_{k}}{\widehat{\lambda}_{j}^{y}} \langle \widehat{u}_{j}^{y}, \cdot \rangle, \quad b = b_{n} \to \infty.$$

Optimal choice of b_n (depends on $(\lambda_j^y)_{j \in \mathbb{N}}$) leads to minimax rates, but requires good control of $\widehat{\lambda}_i^y$ and \widehat{u}_i^y for $j \leq b_n$.

• P. Hall and J.L. Horowitz (Feb. 2007). "Methodology and convergence rates for functional linear regression". In: *The Annals of Statistics* 35.1, pp. 70–91

Functional AR(1)

If Y_k = X_{k-1}, functional regression becomes the functional AR(1) model

$$X_k = \Phi(X_{k-1}) + \epsilon_k, \quad k \in \mathbb{Z}.$$

• More generally, we can consider AR(q) in \mathcal{H} processes

$$X_k = \sum_{i=1}^q \Phi_i(X_{k-i}) + \epsilon_k, \quad k \in \mathbb{Z},$$

where Φ_i are unknown linear operators.

- Can even let $q = \infty$.
- In all those cases, estimation crucially depends on \hat{u}_j , $\hat{\lambda}_j$.

Classical math tools for thinking about spectral methods

Weyl bound

We have $|\hat{\lambda}_j - \lambda_j| \le \|E\|_{\infty}$ with $\|\cdot\|_{\infty}$ operator norm and $E = \hat{\Sigma} - \Sigma$

Davis-Kahan sin
$$\Theta$$
 bound
We have
 $\|\hat{P}_j - P_j\|_2 \leq \frac{2\sqrt{2}\|E\|_{\infty}}{g_j}$
with spectral gap $g_j = \min(\lambda_{j-1} - \lambda_j, \lambda_j - \lambda_{j+1})$ and HS norm $\|\cdot\|_2$

• applied to kernel PCA (Blanchard et al. '05), functional PCA (Horváth & Kokoszka '12), sparse PCA (Vu & Lei '13), robust PCA (Minsker & Wei '17), distributed PCA (Fan et al. '19)

Classical math tools for thinking about spectral methods

Definition 2

The reduced resolvent of Σ at λ

$$\lambda_j$$
 is defined by $R_j = \sum_{k
eq j} rac{1}{\lambda_k - \lambda_j} P_k$

Linear perturbation expansion

lf

$$\gamma_j := \frac{\|E\|_{\infty}}{g_j} < 1/2$$

then

$$\|\hat{P}_j - P_j + R_j E P_j + P_j E R_j\|_2 \le \frac{4\gamma_j^2}{1 - 2\gamma_j}$$

More generally $\hat{\lambda}_i$, \hat{P}_i admit a Taylor series in E provided that $\gamma_i < 1/2$

• T. Hsing and R. Eubank (2015). Theoretical foundations of functional data analysis. John Wiley & Sons

Relative idea for thinking about spectral methods

Relative $\sin \Theta$ bound (J. & W.)

We have

$$\|\hat{P}_j - P_j\|_2 \le C \|(|R_j|^{1/2} + g_j^{-1/2}P_j)E(|R_j|^{1/2} + g_j^{-1/2}P_j)\|_{\infty}$$

for some absolute constant C > 0.

Previous work and different approach:

• A. Mas and F. Ruymgaart. "High-dimensional principal projections". In: Complex Anal. Oper. Theory ()

Relative idea for thinking about spectral methods

Let $\mathcal{J} = \{1, \dots, J\}$ (write *j* if $\mathcal{J} = \{j\}$). We write

$$P_{\mathcal{J}} = \sum_{j \in \mathcal{J}} P_j, \qquad P_{\mathcal{J}^c} = \sum_{k \in \mathcal{J}^c} P_k, \qquad R_{\mathcal{J}^c} = \sum_{k \in \mathcal{J}^c} \frac{1}{\lambda_k - \lambda_j} P_k.$$

$$\delta_{\mathcal{J}} = \delta_{\mathcal{J}}(E) := \left\| \left(|R_{\mathcal{J}^c}|^{1/2} + g_J^{-1/2} P_{\mathcal{J}} \right) E \left(|R_{\mathcal{J}^c}|^{1/2} + g_J^{-1/2} P_{\mathcal{J}} \right) \right\|_{\infty}.$$

Moreover, for a Hilbert-Schmidt operator A on \mathcal{H} we define

$$L_{\mathcal{J}}A = \sum_{j \in \mathcal{J}} \sum_{k \in \mathcal{J}^c} \frac{1}{\lambda_j - \lambda_k} (P_k A P_j + P_j A P_k).$$

-1

Relative idea for thinking about spectral methods

Theorem 3 (J. & W.)

We have

$$\|P_{\mathcal{J}} - \hat{P}_{\mathcal{J}}\|_2^2 \le 32\min(|\mathcal{J}|, |\mathcal{J}^c|)\delta_{\mathcal{J}}^2 \tag{1}$$

and

$$\|\hat{P}_{\mathcal{J}} - P_{\mathcal{J}} - L_{\mathcal{J}}E\|_2^2 \leq 48\min(|\mathcal{J}|, |\mathcal{J}^c|)^2\delta_{\mathcal{J}}^4.$$

Possible to replace $\delta_{\mathcal{J}}$ by $\min(\delta_{\mathcal{J}}, \delta_{\mathcal{J}^c})$.

- Eigenvalues, and eigenvectors?
- Control of γ_i and $\delta_{\mathcal{J}}$?

(2)

Effective versus relative rank setting

The effective rank (Koltchinkii & Lounici '17) and the relative rank (J. & W. '18) are defined by

While the effective rank grows reciprocally with the gap, the relative rank remains largely unaffected

upper bounds	$\lambda_j = j^{-\alpha}$	$\lambda_j = e^{-\alpha j}$
$r_j(\Sigma)$	j log j	j
$e_j(\Sigma)$	$j^{\alpha+1}$	$e^{\alpha j}$

Note on convexity

• Convexity condition: There is a convex function

 $\lambda : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}, \quad \text{such that} \quad \lambda(j) = \lambda_j,$ (3)

at least for j large enough.

• Exploiting the convexity, it follows that

$$\mathsf{r}_j(\Sigma) \leq C_1 \sum_{k \neq j} \frac{\lambda_k}{|\lambda_j - \lambda_k|} \leq C_2 j \log j \quad \text{and} \quad \sum_{k \neq j} \frac{\lambda_k \lambda_j}{(\lambda_j - \lambda_k)^2} \leq C j^2,$$

where C is a constant which only depends on $tr(\Sigma)$.

- The convexity condition is quite general, valid in particular for polynomial and exponential decay of eigenvalues.
- H. Cardot, A. Mas, and P. Sarda (2007). "CLT in functional linear regression models". In: *Probab. Theory Related Fields*

Relative bound for eigenvalues

Key:
$$\bar{\eta}_{kl} = \frac{\langle u_k, Eu_l \rangle}{\sqrt{\lambda_k \lambda_l}} = \frac{\langle u_k, (\hat{\Sigma} - \Sigma)u_l \rangle}{\sqrt{\lambda_k \lambda_l}}, \quad k, l \ge 1.$$

Theorem 4 (J. & W.)

Let $j \ge 1$. Suppose that λ_j is a simple eigenvalue, meaning that $\lambda_j \ne \lambda_k$ for all $k \ne j$. Let x > 0 be such that $|\bar{\eta}_{kl}| \le x$ for all $k, l \ge 1$. Suppose that

$$\mathsf{r}_{j}(\Sigma) = \sum_{k \neq j} \frac{\lambda_{k}}{|\lambda_{j} - \lambda_{k}|} + \frac{\lambda_{j}}{g_{j}} \leq 1/(3x). \tag{4}$$

Then we have

$$|\hat{\lambda}_j - \lambda_j - \lambda_j \bar{\eta}_{jj}| / \lambda_j \le C x^2 r_j(\Sigma).$$
 (5)

Relative bound for eigenvectors

Theorem 5 (J. & W.)

Let $j \ge 1$. Suppose that λ_j is a simple eigenvalue. Let x > 0 be such that $|\bar{\eta}_{kl}| \le x$ for all $k, l \ge 1$. Suppose that Condition (4) holds. Then we have

$$\left\|\hat{u}_{j}-u_{j}-\sum_{k\neq j}\frac{\sqrt{\lambda_{j}\lambda_{k}}}{\lambda_{j}-\lambda_{k}}\bar{\eta}_{jk}u_{k}\right\|\leq Cx^{2}\mathsf{r}_{j}(\Sigma)\sqrt{\sum_{k\neq j}\frac{\lambda_{j}\lambda_{k}}{(\lambda_{j}-\lambda_{k})^{2}}}$$
(6)

and

$$\left|\|\hat{u}_{j}-u_{j}\|^{2}-\sum_{k\neq j}\frac{\lambda_{j}\lambda_{k}}{(\lambda_{j}-\lambda_{k})^{2}}\bar{\eta}_{jk}^{2}\right|\leq Cx^{3}\mathsf{r}_{j}(\Sigma)\sum_{k\neq j}\frac{\lambda_{j}\lambda_{k}}{(\lambda_{j}-\lambda_{k})^{2}}.$$
 (7)

In (6) and (7), the sign of u_j is chosen such that $\langle \hat{u}_j, u_j \rangle > 0$.

Effective versus relative rank setting

Write $X = \sum_{j \ge 1} \lambda_j^{1/2} u_j \eta_j$ with Karhunen-Loéve coefficients η_1, η_2, \ldots

Setting 1

For some q > 4 we have $\sup_{j \ge 1} \mathbb{E} |\eta_j|^q \lesssim 1$

- $\gamma_j < 1/2$ w.h.p. if $\frac{1}{\sqrt{n}} e_j(\Sigma) \lesssim 1$
- $\delta_j < 1/2$ w.h.p. if $\frac{1}{\sqrt{n}} \mathsf{r}_j(\Sigma) \lesssim 1$
- Control $\{|\bar{\eta}_{kl}| \leq x\}$ w.h.p., $x \approx n^{-1/2}$ (essentially).
- S. V. Nagaev (1979). "Large deviations of sums of independent random variables". In: *Ann. Probab.*
- U. Einmahl and D. Li. "Characterization of LIL behavior in Banach space". In: *Trans. Amer. Math. Soc.* ()

High-dimensional phenomena under spectral decay

Theorem 6 (J. & W.) Let $X = X^{(n)}$ be a sequence on r.v. in Setting 1 with covariances $\Sigma = \Sigma^{(n)}$. If

$$\frac{1}{\sqrt{n}}$$
r_j $(\Sigma) \to 0$ as $n \to \infty$ (8)

then

$$g_i^{-1}(\hat{\lambda}_j - \lambda_j) \xrightarrow{\mathbb{P}} 0$$
 (9)

$$\|\hat{P}_j - P_j\|_2 \xrightarrow{\mathbb{P}} 0 \tag{10}$$

$$(\sqrt{n}(\hat{\lambda}_j - \lambda_j/\lambda_j) \text{ is tight.}$$
(11)

Moreover, for j = 1 there is a sequence of r.v. $X = X^{(n)}$ in Setting 1 with covariance operators $\Sigma^{(n)}$ such that (8), (9), (10) and (11) are equivalent.

Example for Setting 1

$$\mathsf{Key:} \quad \bar{\eta}_{kl} = \frac{\langle u_k, Eu_l \rangle}{\sqrt{\lambda_k \lambda_l}} = \frac{\langle u_k, (\hat{\Sigma} - \Sigma) u_l \rangle}{\sqrt{\lambda_k \lambda_l}}, \quad k, l \ge 1.$$

This can be written as a sum of (i.i.d.) random variables

$$\sqrt{n}\bar{\eta}_{kl}=\frac{1}{\sqrt{n}}\sum_{i=1}^{n}\left(\eta_{ik}\eta_{il}-\mathbb{E}\eta_{ik}\eta_{il}\right).$$

Union bound and (standard) concentration inequalities provide control of $(p = \dim(\mathcal{H}))$

$$\mathbb{P}\Big(\max_{1\leq k,l\leq p} \left|\bar{\eta}_{kl}\right| \geq x\Big) \leq \sum_{1\leq i,j\leq p} \mathbb{P}\Big(\left|\bar{\eta}_{kl}\right| \leq x\Big)$$

Example for Setting 1

For example, Fuk-Nagaev inequality yields

$$\mathbb{P}\Big(\max_{1\leq k,l\leq d} \big|\bar{\eta}_{kl}\big| \geq \frac{C\sqrt{\log n}}{\sqrt{n}}\Big) \lesssim p^2 n^{1-q/4}.$$

Using a more refined argument one can drastically reduce dependence on \ensuremath{p} here. Hence, if

$$\frac{\sqrt{\log n}}{\sqrt{n}} \max_{1 \le j \le J} \mathsf{r}_j(\Sigma) \lesssim 1,$$

we get (for instance)

$$ig| \hat{\lambda}_j - \lambda_j - \lambda_j \bar{\eta}_{jj} ig| / \lambda_j \lesssim rac{\sqrt{\log n}}{\sqrt{n}}, \quad 1 \leq j \leq J,$$

with high probability. No spatial dependence assumption on $(\eta_j)_{j\geq 1}$ here!

Example for Setting 1: weak dependence

Let $(\epsilon_i)_{i\in\mathbb{Z}}$ be i.i.d. For f taking values in \mathcal{H} , consider the Bernoulli-shift sequence

$$X_i = f(\epsilon_i, \epsilon_{i-1}, \dots), \quad i \in \mathbb{N},$$

Recall $X_i = \sum_{j\geq 1} \sqrt{\lambda_j} u_j \eta_{ij}$, where $\eta_{ij} = \lambda_j^{-1/2} \langle X_i, u_j \rangle$. ϵ'_0 independent copy of ϵ_0 , independent of $(\epsilon_i)_{i\in\mathbb{Z}}$. Coupling X'_i of X_i defined as

$$X'_i = f(\epsilon_i, \ldots, \epsilon_1, \epsilon'_0, \epsilon_{-1}, \ldots), \quad i \in \mathbb{N}.$$

For $j \ge 1$, let $\eta'_{ij} = \lambda_j^{-1/2} \langle X'_i, u_j \rangle$. Coupling distance

$$\theta_{iq} = \sup_{j \ge 1} \mathbb{E}^{1/p} \big| \eta_{ij} - \eta_{ij}' \big|^q.$$
(12)

- I. A. Ibragimov (1966). "On the accuracy of approximation by the normal distribution of distribution functions of sums of independent random variables". In: *Teor. Verojatnost. i Primenen* 11, pp. 632–655
- W. B. Wu (Jan. 2011). "Asymptotic theory for stationary processes". In: Statistics and its Interface 4, pp. 207–226

Corollary 7 (J. & W.)

Suppose we are in Setting 1 with $q \ge 16$. If (3) holds, then

 $\mathbb{E}\|\hat{P}_j - P_j\|_{\infty}^2 \leq \mathbb{E}\|\hat{P}_j - P_j\|_2^2 \leq Cj^2/n, \quad 1 \leq j \leq C\sqrt{n}(\log n)^{-5/2}.$

• This result is (up to log terms) optimal in the case where $\lambda_j = j^{-\alpha-1}$, $\alpha > 0$ in a certain sense.

- This result is (up to log terms) optimal in the case where $\lambda_j = C j^{-\alpha-1}$, $\alpha > 0$ in a certain sense.
- For such a polynomial decay, given that $\sup_{j\geq 1} \mathbb{E}|\eta_j|^{2q} \leq q! C^q$ for all $q\geq 1$, it has been shown that for any $j\geq 1$ (exists also information theoretic bound)

$$\mathbb{E} \| \hat{P}_j - P_j \|_{\infty}^2 \geq c(j^2/n) \wedge 1.$$

- We obtain the optimal bound for almost the whole range (up to the factor (log n)^{-5/2}) where the trivial bound 2 does not apply. Moreover, only require mild conditions.
- Note: The stochastic behaviour of the scores (η_j)_{j≥1} in terms of their dependence structure is irrelevant for the optimal algebraic structure conditions. In other words, this result **cannot** be improved assuming that (η_j)_{j≥1} are independent.

Effective versus relative rank setting

Write $X = \sum_{j \ge 1} \lambda_j^{1/2} u_j \eta_j$ with Karhunen-Loéve coefficients η_1, η_2, \ldots

Sub-gaussian setting

 η_1,η_2,\ldots are independent and sub-Gaussian, i.e. $\sup_{j\geq 1}\|\eta_j\|_{\psi_2}\lesssim 1$

•
$$\gamma_j < 1/2$$
 w.h.p. if $\frac{\lambda_j}{g_i} \frac{e_j(\Sigma)}{n} \lesssim 1$

•
$$\delta_j < 1/2$$
 w.h.p. if $\frac{\lambda_j}{g_j} \frac{\mathsf{r}_j(\Sigma)}{n} \lesssim 1$

- V. Koltchinskii and K. Lounici. "Normal approximation and concentration of spectral projectors of sample covariance". In: Ann. Statist. ()
- V. Koltchinskii. "Asymptotically efficient estimation of smooth functionals of covariance operators". In: J. Eur. Math. Soc. ()

Effective versus relative rank setting

Setting 2

- (i) For some q>4 we have $\sup_{j\geq 1}\mathbb{E}|\eta_j|^q\lesssim 1$
- (ii) For some $m \ge 4$ we have $\mathbb{E}\eta_{i_1}\eta_{i_2}\ldots\eta_{i_m} = 0$ whenever one of the indices $i_1,\ldots,i_m \ge 1$ occurs only once

•
$$\gamma_j < 1/2$$
 w.h.p. if $\frac{\lambda_j}{g_j} \frac{e_j(\Sigma)}{n} \lesssim 1$
• $\delta_j < 1/2$ w.h.p. if $\frac{\lambda_j}{g_j} \frac{r_j(\Sigma)}{n} \lesssim 1$

regimes	$\lambda_j = j^{-lpha}$	$\lambda_j = e^{-lpha j}$
relative	$j^2 \log j \lesssim n$	$j\lesssim n$
effective	$j^{2+lpha}\lesssim n$	$j \lesssim \log n$

High-dimensional phenomena under spectral decay

Theorem 8 (J. & W.)

Assume Setting 2 with m = 4.

• If $\frac{\lambda_j}{g_j} \frac{r_j(\Sigma)}{n} \to 0$ then $g_j^{-1}(\hat{\lambda}_j - \lambda_j) \xrightarrow{\mathbb{P}} 0$ and $\|\hat{P}_j - P_j\|_2 \xrightarrow{\mathbb{P}} 0$

- Current work: If $n^{\epsilon} \frac{\lambda_j}{g_j} \frac{r_j(\Sigma)}{n} \to 0$, $\epsilon > 0$ arbitrarily small, then limit theorems and much more are possible (higher order expansions).
- Subject to appropriate Assumptions, replace n^ε with something weaker (log^q n, more structure).
- Can extend everything to: longrun covariance operator, autocovariance operators, robust empirical covariance operators.

Spectral decay versus spiked models

bound	$\lambda_j = j^{-\alpha - 1}$	$\lambda_j = e^{-\alpha j}$
relative regime	$j^2 \log j \lesssim n$	$j \lesssim n$
$ \hat{\lambda}_j - \lambda_j /\lambda_j$	$\frac{1}{\sqrt{n}} + \frac{j \log j}{n}$	$\frac{1}{\sqrt{n}} + \frac{j}{n}$
$\ \hat{P}_j - P_j\ _2$	$\frac{j}{\sqrt{n}}$	$\frac{1}{\sqrt{n}}$
effective regime	$j^{2+2lpha} \lesssim n$	$j \lesssim \log n$

PCA and RMT	$\lambda_1 > 1 = \cdots = 1, \ \frac{p}{n} \to \gamma$	general (λ_j)
phase transition	$rac{\gamma}{(\lambda_1-1)^2} < 1$	$rac{\lambda_1}{g_1} rac{r_1(\Sigma)}{n} \lesssim 1$
eigenvalue bias	$\gamma rac{\lambda_1}{\lambda_1 - 1}$	$\frac{\lambda_1}{n} r_1(\Sigma)$

But remember: phase transitions can already occur for $\frac{r_1(\Sigma)}{\sqrt{n}} \ge c!$

Quantitative limit theorems in high dimensions

- $T_j = n \|\hat{P}_j P_j\|_2^2$ (results actually apply to \mathcal{J} .)
- $S_j = \|L_j(Z)\|_2^2 = \|R_j Z P_j + P_j Z R_j\|_2^2$
- Z Gaussian r.v. with $cov(Z) = cov(X \otimes X)$
- uniform metric:

$$U(T_j, S_j) = \sup_{x \in \mathbb{R}} |\mathbb{P}(T_j \le x) - \mathbb{P}(S_j \le x)|$$

- A. Naumov, V. Spokoiny, and V. Ulyanov. "Bootstrap confidence sets for spectral projectors of sample covariance". In: Probab. Theory Related Fields ()
- V. Koltchinskii and K. Lounici. "Normal approximation and concentration of spectral projectors of sample covariance". In: Ann. Statist. ()

Quantitative limit theorems in high dimensions

Theorem 9 (J. & W.)

Assume Setting 2 with m = 4.

(i) If
$$\lambda_k = k^{-\alpha}$$
, $k \ge 1$, then

$$U(n\|\hat{P}_{j}-P_{j}\|_{2}^{2},\|L_{j}(Z)\|_{2}^{2}) \lesssim_{p,\alpha} rac{J}{\sqrt{n}} (\log j \log n)^{3/2}$$

(ii) If
$$\lambda_k = e^{-\alpha k}$$
, $k \ge 1$, then

$$U(n\|\hat{P}_{j}-P_{j}\|_{2}^{2},\|L_{j}(Z)\|_{2}^{2}) \lesssim_{\rho,\alpha} \left(\frac{j^{3}\log^{3}n}{n}\right)^{1/2}$$

- A. Naumov, V. Spokoiny, and V. Ulyanov. "Bootstrap confidence sets for spectral projectors of sample covariance". In: Probab. Theory Related Fields ()
- V. Koltchinskii and K. Lounici. "Normal approximation and concentration of spectral projectors of sample covariance". In: Ann. Statist. ()

Bootstrap approximations in high dimensions

Popular and powerful method are multiplier methods, which we also employ here. Let (w_i) be an i.i.d. sequence with

$$\mathbb{E}w_i^2 = 1, \quad \mathbb{E}w_i^{2q} < \infty.$$
(13)

Our bootstrap method is quite simple and given below.

Algorithm 1.1 (Bootstrap)

Given (X_i) and (w_i) , construct the sequence $(X_i)^* = (w_iX_i)$. Treat (X_i^*) as new sample, compute correspondingly:

- $\hat{\Sigma}^*$ and $\hat{P}_i^* = P_i(\hat{\Sigma}^*)$ bootstrapped versions
- $T_j^* = \frac{1}{2} \|\hat{P}_j^* \hat{P}_j\|_2^2$ and $T_j = \|\hat{P}_j P_j\|_2^2$

 A. Naumov, V. Spokoiny, and V. Ulyanov (2019). "Bootstrap confidence sets for spectral projectors of sample covariance". In: *Probab. Theory Related Fields* 174.3-4, pp. 1091–1132

Bootstrap approximations in high dimensions

- $\hat{\Sigma}^*$ and $\hat{P}_j^* = P_j(\hat{\Sigma}^*)$ bootstrapped versions
- $T_j^* = \frac{1}{2} \|\hat{P}_j^* \hat{P}_j\|_2^2$ and $T_j = \|\hat{P}_j P_j\|_2^2$

Theorem 10 (J. & W.)

Assume Setting 2 with m = 8.

(i) If the eigenvalues decay polynomially with $\alpha \ge 2$, then w.h.p.

$$\cup \left(\mathcal{L}(T_j^* | X_1, \dots, X_n), \mathcal{L}(T_j) \right) \lesssim_{p, \alpha} n^{-1/8} (\log j)^{3/4} + \frac{j}{\sqrt{n}} (\log j \log n)^{3/2}$$

(ii) If the eigenvalues decay exponentially, then w.h.p.

$$\mathsf{U}\big(\mathcal{L}(\mathcal{T}_j^*|X_1,\ldots,X_n),\mathcal{L}(\mathcal{T}_j)\big) \lesssim_{p,\alpha} n^{-1/8} + \Big(\frac{j^3\log^3 n}{n}\Big)^{1/2}$$

Pervasive Factor models

- Recall $\mathcal{J} = \{1, \dots, J\}$, where we assume $J \ge 6$.
- Literature (approximate, pervasive) factor models: assumes the first J eigenvalues diverge at rate ≍ d (with d = dim H), all remaining eigenvalues are bounded.
- We assume that there exist constants $0 < c \leq C < \infty$, such that

$$\lambda_1 \leq C\lambda_J, \qquad \lambda_J - \lambda_{J+1} \geq c\lambda_J, \qquad \frac{\operatorname{tr}_{\mathcal{J}^c}(\Sigma)}{\lambda_1} \leq C.$$
 (14)

Observe that this implies

$$\frac{\mathsf{tr}(\Sigma)}{\lambda_1} \asymp J,$$

which is the desired feature of pervasive factor models.

- J. Bai (2003). "Inferential theory for factor models of large dimensions". In: *Econometrica* 71.1, pp. 135–171
- James H. Stock and Mark W. Watson (2002). "Forecasting using principal components from a large number of predictors". In: J. Amer. Statist. Assoc. 97.460, pp. 1167–1179

Theorem 11 (J. & W.)

Assume Setting 2 with m = 8. Then for $j \in \mathcal{J}$ (i)

$$U\left(n\|\hat{P}_{j}-P_{j}\|_{2}^{2},\|L_{j}Z\|_{2}^{2}\right)\lesssim_{P}\left(\frac{J^{6}}{n}\right)^{1/2}\left((\log n)^{3/2}+J^{5/2}\right)$$

(ii) W.h.p. for $j \in \mathcal{J}$

$$\begin{split} \mathsf{U}\big(\mathcal{L}(T_{j}^{*}|X_{1},\ldots,X_{n}),\mathcal{L}(T_{j})\big) \lesssim_{p} \Big(\frac{J^{3}}{n}\Big)^{1/5} + \Big(\frac{J^{6}\log^{3}n}{n}\Big)^{1/2} \\ &+ \Big(\frac{Jp\log n}{n}\Big)^{1/2} + n^{(6-q)/12}. \end{split}$$

Take-home message

- While the size of $\|\hat{\Sigma} \Sigma\|_{\infty}$ is closely linked to the effective rank, the behavior of $\hat{\lambda}_i, \hat{P}_i, \hat{u}_i$ is closely linked to the so-called relative ranks
- Can use this to obtain limit theorems, concentration inequalities for $\hat{\lambda}_j, \hat{P}_j, \hat{u}_j$.

Thank you for your attention!

Corollary 12

Suppose we are in the i.i.d. setting with $p \ge 16$. If (3) holds, then

 $\mathbb{E}\|\hat{P}_j - P_j\|_{\infty}^2 \leq \mathbb{E}\|\hat{P}_j - P_j\|_2^2 \leq Cj^2/n, \quad 1 \leq j \leq C\sqrt{n}(\log n)^{-5/2}.$

• This result is (up to log terms) optimal in the case where $\lambda_j = C j^{-\alpha-1}$, $\alpha > 0$ in a certain sense.

Appendix

- This result is (up to log terms) optimal in the case where $\lambda_j = C j^{-\alpha-1}$, $\alpha > 0$ in a certain sense.
- For such a polynomial decay, given that $\sup_{j\geq 1} \mathbb{E}|\eta_j|^{2p} \leq p!C^p$ for all $p\geq 1$, it has been shown that for any $j\geq 1$ (exists also information theoretic bound)

 $\mathbb{E}\|\hat{P}_j-P_j\|_{\infty}^2\geq c(j^2/n)\wedge 1.$

Appendix

- This result is (up to log terms) optimal in the case where $\lambda_j = C j^{-\alpha-1}$, $\alpha > 0$ in a certain sense.
- For such a polynomial decay, given that $\sup_{j\geq 1} \mathbb{E}|\eta_j|^{2p} \leq p!C^p$ for all $p\geq 1$, it has been shown that for any $j\geq 1$ (exists also information theoretic bound)

$$\mathbb{E} \| \hat{P}_j - P_j \|_{\infty}^2 \geq c(j^2/n) \wedge 1.$$

 We obtain the optimal bound for almost the whole range (up to the factor (log n)^{-5/2}) where the trivial bound 2 does not apply. Moreover, only require mild conditions.

Appendix

- This result is (up to log terms) optimal in the case where $\lambda_j = C j^{-\alpha-1}$, $\alpha > 0$ in a certain sense.
- For such a polynomial decay, given that $\sup_{j\geq 1} \mathbb{E}|\eta_j|^{2p} \leq p!C^p$ for all $p\geq 1$, it has been shown that for any $j\geq 1$ (exists also information theoretic bound)

$$\mathbb{E} \| \hat{P}_j - P_j \|_{\infty}^2 \geq c(j^2/n) \wedge 1.$$

- We obtain the optimal bound for almost the whole range (up to the factor (log n)^{-5/2}) where the trivial bound 2 does not apply. Moreover, only require mild conditions.
- Note: The stochastic behaviour of the scores (η_j)_{j≥1} in terms of their dependence structure is irrelevant for the optimal algebraic structure conditions. In other words, this result **cannot** be improved assuming that (η_j)_{j≥1} are independent.

• Another prominent example ist the spiked covariance model.

- Another prominent example ist the spiked covariance model.
- Signature feature: Several eigenvalues are larger than the remaining. Typically one is interested in recovering these leading eigenvalues and their associated eigenvectors (spiked part), since these explain most variation of the data.

- Another prominent example ist the spiked covariance model.
- Signature feature: Several eigenvalues are larger than the remaining. Typically one is interested in recovering these leading eigenvalues and their associated eigenvectors (spiked part), since these explain most variation of the data.
- One possible way to define the model: Assume $\mathcal{H} = \mathbb{R}^d$, let f_1, \ldots, f_d $(||f_j|| = 1)$ be orthogonal vectors and A be a covariance matrix such that

 $C_A^{-1} \leq \lambda_d(A) \leq \lambda_1(A) \leq C_A.$

- Another prominent example ist the spiked covariance model.
- Signature feature: Several eigenvalues are larger than the remaining. Typically one is interested in recovering these leading eigenvalues and their associated eigenvectors (spiked part), since these explain most variation of the data.
- One possible way to define the model: Assume \$\mathcal{H} = \mathbb{R}^d\$, let \$f_1, \ldots, f_d\$
 (||f_j|| = 1) be orthogonal vectors and \$A\$ be a covariance matrix such that

$$C_A^{-1} \leq \lambda_d(A) \leq \lambda_1(A) \leq C_A.$$

 For a sequence of weights ω₁,..., ω_d, consider the spiked covariance model

$$\Sigma = F + A = \sum_{k=1}^{d} \omega_k^2 f_k f_k^\top + A,$$

where F denotes the 'spiked parts'.

Generating probabilistic model: F₁,..., F_d is a martingale difference sequence with EF²_k = 1 (factor loadings).

- Generating probabilistic model: F₁,..., F_d is a martingale difference sequence with EF²_k = 1 (factor loadings).
- Similarly: $Y = (Y_1, \ldots, Y_d)^{\top}$ is a random vector where Y_1, \ldots, Y_d form a martingale difference sequence.

- Generating probabilistic model: F₁,..., F_d is a martingale difference sequence with EF²_k = 1 (factor loadings).
- Similarly: $Y = (Y_1, \ldots, Y_d)^{\top}$ is a random vector where Y_1, \ldots, Y_d form a martingale difference sequence.
- *F* and *Y* are mutually uncorrelated, that is, all cross correlations are zero.

- Generating probabilistic model: F₁,..., F_d is a martingale difference sequence with EF²_k = 1 (factor loadings).
- Similarly: $Y = (Y_1, \ldots, Y_d)^{\top}$ is a random vector where Y_1, \ldots, Y_d form a martingale difference sequence.
- *F* and *Y* are mutually uncorrelated, that is, all cross correlations are zero.
- Idiosyncratic error ϵ and canonical factor model are defined as

$$X = \sum_{k=1}^{d} \omega_k F_k f_k + \epsilon, \quad \epsilon = A^{1/2} Y.$$

- Generating probabilistic model: F₁,..., F_d is a martingale difference sequence with EF²_k = 1 (factor loadings).
- Similarly: $Y = (Y_1, \ldots, Y_d)^{\top}$ is a random vector where Y_1, \ldots, Y_d form a martingale difference sequence.
- *F* and *Y* are mutually uncorrelated, that is, all cross correlations are zero.
- Idiosyncratic error ϵ and canonical factor model are defined as

$$X = \sum_{k=1}^{d} \omega_k F_k f_k + \epsilon, \quad \epsilon = A^{1/2} Y.$$

• Obviously, X has covariance matrix Σ .

• Apply results: Need to control moments of $\eta_j = \lambda_j^{-1/2} \langle X, u_j \rangle$.

- Apply results: Need to control moments of $\eta_j = \lambda_j^{-1/2} \langle X, u_j \rangle$.
- We have a connection between moments of η_j and F, Y via the following result.

- Apply results: Need to control moments of $\eta_j = \lambda_j^{-1/2} \langle X, u_j \rangle$.
- We have a connection between moments of η_j and F, Y via the following result.

Proposition 3.1

For $p \geq 2$, suppose that

 $\mathbb{E}|F_k|^{p} \leq C_F, \quad \mathbb{E}|Y_k|^{p} \leq C_Y$

for all k = 1, ..., d. Then the conditions above imply $\mathbb{E}\eta_j = 0$ and

 $\max_{j\geq 1} \mathbb{E}|\eta_j|^p \leq C_{\eta},$

where C_{η} only depends on C_F , C_Y and C_A .

- Apply results: Need to control moments of $\eta_j = \lambda_i^{-1/2} \langle X, u_j \rangle$.
- We have a connection between moments of η_j and F, Y via the following result.

Proposition 3.1

For $p \geq 2$, suppose that

$$\mathbb{E}|F_k|^p \leq C_F, \quad \mathbb{E}|Y_k|^p \leq C_Y$$

for all k = 1, ..., d. Then the conditions above imply $\mathbb{E}\eta_i = 0$ and

 $\max_{j\geq 1} \mathbb{E} |\eta_j|^p \leq C_{\eta},$

where C_{η} only depends on C_F , C_Y and C_A .

Now get CLT and concentration inequalities.

• Consider the standard time series model for financial data

 $X_i = v_i \epsilon_i, \quad i \in \mathbb{N},$

where $(\epsilon_i)_{i \in \mathbb{N}} \in \mathcal{H}$ are i.i.d. random variables, $(v_i^2)_{i \in \mathbb{N}} \in \mathbb{R}$ is a stationary, ergodic sequence that exhibits long memory and is independent of $(\epsilon_i)_{i \in \mathbb{N}}$.

• Consider the standard time series model for financial data

 $X_i = v_i \epsilon_i, \quad i \in \mathbb{N},$

where $(\epsilon_i)_{i \in \mathbb{N}} \in \mathcal{H}$ are i.i.d. random variables, $(v_i^2)_{i \in \mathbb{N}} \in \mathbb{R}$ is a stationary, ergodic sequence that exhibits long memory and is independent of $(\epsilon_i)_{i \in \mathbb{N}}$.

• To be more precise, assume

$$b_n^{-1}\sum_{i=1}^n \left(v_i^2 - \mathbb{E}v_i^2\right) \xrightarrow{d} W_b,$$

where $b_n = n^b L(n)$ for $b \in (1/2, 1)$ and some slowly varying function L(x). W_b is a nondegenerate random variable. Well-known example: W_b corresponds to a fractional Brownian motion, hence a normal distribution.

• What is a natural operator of interest here?

- What is a natural operator of interest here?
- Note: $(X_i)_{i \in \mathbb{N}}$ for a martingale sequence $(X_i = \epsilon_i v_i)$.

- What is a natural operator of interest here?
- Note: $(X_i)_{i \in \mathbb{N}}$ for a martingale sequence $(X_i = \epsilon_i v_i)$.
- Subject to some additional regularity assumptions, the Martingale-CLT implies

$$\frac{1}{\sqrt{n}}\sum_{i=1}^{n}X_{i}\xrightarrow{d}\mathcal{N}(0,\Sigma), \ \Sigma=\mathbb{E}X_{i}\otimes X_{i}=\mathbb{E}v_{0}^{2}\Sigma_{\epsilon},$$

where Σ_{ϵ} is the covariance operator of ϵ .

- What is a natural operator of interest here?
- Note: $(X_i)_{i \in \mathbb{N}}$ for a martingale sequence $(X_i = \epsilon_i v_i)$.
- Subject to some additional regularity assumptions, the Martingale-CLT implies

$$\frac{1}{\sqrt{n}}\sum_{i=1}^{n}X_{i}\xrightarrow{d}\mathcal{N}(0,\Sigma), \ \Sigma=\mathbb{E}X_{i}\otimes X_{i}=\mathbb{E}v_{0}^{2}\Sigma_{\epsilon},$$

where Σ_{ϵ} is the covariance operator of ϵ .

• So the 'standard' covariance operator Σ and the empirical counterpart $\hat{\Sigma}$ are still of high interest, where we recall

$$\hat{\Sigma} = \hat{\Sigma}_n = \frac{1}{n} \sum_{i=1}^n X_i \otimes X_i.$$

Need some assumptions: Suppose that $\mathbb{E} \|\epsilon_i\|^2 < \infty$, let Σ_{ϵ} be the covariance operator of ϵ_i , and

$$\epsilon_i = \sum_{j\geq 1} \sqrt{\lambda_j^{\epsilon}} u_j \eta_{ij}^{\epsilon}, \quad i \in \mathbb{N}.$$

Need some assumptions: Suppose that $\mathbb{E} \|\epsilon_i\|^2 < \infty$, let Σ_{ϵ} be the covariance operator of ϵ_i , and

$$\epsilon_i = \sum_{j \ge 1} \sqrt{\lambda_j^{\epsilon}} u_j \eta_{ij}^{\epsilon}, \quad i \in \mathbb{N}.$$

Assumption 4.1

Suppose that for $p \ge 4$

 $\mathbb{E}\eta_{ij}^{\epsilon}=0, \quad \mathbb{E}|\eta_{ij}^{\epsilon}|^{p}\leq C_{\epsilon}, \quad \mathbb{E}v_{i}^{2}=1, \quad \mathbb{E}|v_{i}|^{p}\leq C_{v},$

for all $i, j \ge 1$. Moreover, we assume that

$$\mathbb{E} \Big| \sum_{i=1}^n \left(v_i^2 - \mathbb{E} v_i^2 \right) \Big|^2 \leq C_v b_n^2 \qquad b_n^{-1} \sum_{i=1}^n \left(v_i^2 - \mathbb{E} v_i^2 \right) \xrightarrow{w} W_b.$$

We now consider a triangular array of X₁⁽ⁿ⁾,...,X_n⁽ⁿ⁾ ∈ Hⁿ with covariance operator Σ⁽ⁿ⁾, n = 1, 2, ..., satisfying our previous long-memory setting.

- We now consider a triangular array of X₁⁽ⁿ⁾,...,X_n⁽ⁿ⁾ ∈ Hⁿ with covariance operator Σ⁽ⁿ⁾, n = 1, 2, ..., satisfying our previous long-memory setting.
- Notation: everything gets an ⁽ⁿ⁾, for instance $\lambda_i^{(n)}$, and so on.

Theorem 4.2

Fix $j_0 \ge 1$. Suppose that $\lambda_j^{(n)}$, $1 \le j \le j_0$ are simple for all $n \ge 1$ and Assumption 4.1 holds with C_{ϵ} , C_{ν} independent of n. If

$$b_n n^{-1} \max_{1 \le j \le j_0} \sum_{k \ne j} \frac{\lambda_k^{(n)}}{|\lambda_j^{(n)} - \lambda_k^{(n)}|} o 0 \quad \text{as} \quad n o \infty$$

and $\lambda_{j_0}^{(n)} \leq \lambda_{i_0}^{(n)}/2$ for some fixed $i_0 > j_0$, then

$$nb_n^{-1}\left(\frac{\hat{\lambda}_1^{(n)}-\lambda_1^{(n)}}{\lambda_1^{(n)}},\ldots,\frac{\hat{\lambda}_{j_0}^{(n)}-\lambda_{j_0}^{(n)}}{\lambda_{j_0}^{(n)}}\right)^{\top} \xrightarrow{d} (W_b,\ldots,W_b)^{\top}.$$

• As one would expect, the long-memory behaviour transfers to the fluctuations of the empirical eigenvalues.

- As one would expect, the long-memory behaviour transfers to the fluctuations of the empirical eigenvalues.
- Somewhat surprising: all converge towards the identical limit. In particular, we have

$$nb_n^{-1}\max_{1\leq j,k\leq j_0}\left|\frac{\hat{\lambda}_j^{(n)}-\lambda_j^{(n)}}{\lambda_j^{(n)}}-\frac{\hat{\lambda}_k^{(n)}-\lambda_k^{(n)}}{\lambda_k^{(n)}}\right|\xrightarrow{\mathbb{P}}0,$$

a result of the dominating nature of the long-memory component.

- As one would expect, the long-memory behaviour transfers to the fluctuations of the empirical eigenvalues.
- Somewhat surprising: all converge towards the identical limit. In particular, we have

$$nb_n^{-1}\max_{1\leq j,k\leq j_0}\left|\frac{\hat{\lambda}_j^{(n)}-\lambda_j^{(n)}}{\lambda_j^{(n)}}-\frac{\hat{\lambda}_k^{(n)}-\lambda_k^{(n)}}{\lambda_k^{(n)}}\right|\xrightarrow{\mathbb{P}}0,$$

a result of the dominating nature of the long-memory component.Note the different normalization

$$b_n n^{-1} \max_{1 \le j \le j_0} \sum_{k \ne j} \frac{\lambda_k^{(n)}}{|\lambda_j^{(n)} - \lambda_k^{(n)}|} \to 0 \quad \text{as} \quad n \to \infty.$$

- As one would expect, the long-memory behaviour transfers to the fluctuations of the empirical eigenvalues.
- Somewhat surprising: all converge towards the identical limit. In particular, we have

$$nb_n^{-1}\max_{1\leq j,k\leq j_0}\left|\frac{\hat{\lambda}_j^{(n)}-\lambda_j^{(n)}}{\lambda_j^{(n)}}-\frac{\hat{\lambda}_k^{(n)}-\lambda_k^{(n)}}{\lambda_k^{(n)}}\right|\xrightarrow{\mathbb{P}}0,$$

a result of the dominating nature of the long-memory component.

• Note the different normalization

$$b_n n^{-1} \max_{1 \le j \le j_0} \sum_{k \ne j} \frac{\lambda_k^{(n)}}{|\lambda_j^{(n)} - \lambda_k^{(n)}|} \to 0 \quad \text{as} \quad n \to \infty.$$

• Most likely an artifact in this case.

Consider the case where $d = \dim \mathcal{H} < \infty$.

Theorem 4.3

In the previous setting, suppose that $\lambda_1^{(n)}$ is simple for all $n \ge 1$. If $d = d_n$ and the sequence $d_n (b_n n^{-1/2})^{-p/2}$ is bounded,

$$rac{1}{\sqrt{n}}\sum_{k>1}rac{\lambda_k^{(n)}}{\lambda_1^{(n)}-\lambda_k^{(n)}}
ightarrow 0 \quad ext{as} \quad n
ightarrow \infty,$$

then the sequence $nb_n^{-1}(\hat{\lambda}_1^{(n)} - \lambda_1^{(n)})/\lambda_1^{(n)}$ is tight.

Consider the case where $d = \dim \mathcal{H} < \infty$.

Theorem 4.3

In the previous setting, suppose that $\lambda_1^{(n)}$ is simple for all $n \ge 1$. If $d = d_n$ and the sequence $d_n (b_n n^{-1/2})^{-p/2}$ is bounded,

$$rac{1}{\sqrt{n}}\sum_{k>1}rac{\lambda_k^{(n)}}{\lambda_1^{(n)}-\lambda_k^{(n)}}
ightarrow 0 \quad ext{as} \quad n
ightarrow\infty,$$

then the sequence $nb_n^{-1}(\hat{\lambda}_1^{(n)}-\lambda_1^{(n)})/\lambda_1^{(n)}$ is tight.

• Convinced we can actually now prove a limit theorem.