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Introduction

Summary

In this talk we present:
1 time series copula processes with infinite-order partial dependence;

2 a parameterization of models using partial Kendall rank correlations;

3 a generalization of the classical concepts of causality and invertibility for
linear processes;

4 non-Gaussian generalizations of classical Gaussian processes such as
ARMA, seasonal ARMA, ARFIMA and FGN.

With the added flexibility we can obtain superior statistical fits in
real-world applications.
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Introduction

The copula approach to time series

Given data {x1, . . . , xn} the idea is to find an appropriate strictly
stationary stochastic process (Xt )t∈Z consisting of:

1 a continuous marginal distribution FX ;
2 a copula process (Ut)t∈Z satisfying Ut = FX (Xt) for all t .

The latter is a process of standard uniform random variables.

The main examples in the literature are first-order Markov copula
processes (Chen and Fan, 2006; Ibragimov, 2009) and their higher-order
d-vine generalizations (Smith, Min, Almeida, and Czado, 2010; Beare and
Seo, 2015; Brechmann and Czado, 2015; Nagler, Krüger, and Min, 2020).

These are based on pair copula decompositions described by Joe (1997)
and Bedford and Cooke (2002), i.e. models constructed from bivariate
copulas.
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S-vine copula processes

Notation for s-vines

Let (Ck )k∈N denote a sequence of bivariate copulas.

Assume throughout that every Ck ∈ C∞ and has density ck which is
strictly positive on (0,1)2. Can probably be weakened.

For k ∈ N let the forward and backward Rosenblatt functions

R(1)
k : (0,1)k × (0,1)→ (0,1) and R(2)

k : (0,1)k × (0,1)→ (0,1)

be defined in a recursive, interlacing fashion by R(1)
1 (u, x) = h(1)

1 (u, x),
R(2)

1 (u, x) = h(2)
1 (x ,u) and, for k ≥ 2,

R(1)
k (u, x) = h(1)

k

(
R(2)

k−1(u−1,u1),R(1)
k−1(u−1, x)

)
R(2)

k (u, x) = h(2)
k

(
R(2)

k−1(u−k , x),R(1)
k−1(u−k ,uk )

)
where h(i)

k (u1,u2) = ∂
∂ui

Ck (u1,u2) and u−i indicates the vector u with i th
component removed.
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S-vine copula processes

S-vine copulas

An n-dimensional s-vine copula C(n) has density of the form

c(n)(u1, . . . ,un) =
n−1∏
k=1

n∏
j=k+1

ck

(
R(2)

k−1(u[j−k+1,j−1],uj−k ),R(1)
k−1(u[j−k+1,j−1],uj )

)
(1)

where u[j−k+1,j−1] = (uj−k+1, . . . ,uj−1)>.
This is a a d-vine copula subject to translation invariance conditions.
A random vector (U1, . . . ,Un) following C(n) could be an excerpt from a
stationary process.
Moreover, for any k ∈ {1, . . . ,n − 1} and j ∈ {k + 1, . . . ,n},

R(1)
k (u, x) = P(Uj ≤ x | Uj−k = u1, . . . ,Uj−1 = uk )

R(2)
k (u, x) = P(Uj−k ≤ x | Uj−k+1 = u1, . . . ,Uj = uk ).

Where needed in formulas, R(1)
0 (·, x) = R(2)

0 (·, x) = x .
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S-vine copula processes

S-vine process

Definition (S-vine process)

A strictly stationary time series (Xt )t∈Z is an s-vine process if for every t ∈ Z
and n ≥ 2 the n-dimensional marginal distribution of the vector
(Xt , . . . ,Xt+n−1) is absolutely continuous and admits a unique copula C(n) with
a joint density c(n) of the form (1). An s-vine process (Ut )t∈Z is an s-vine
copula process if its univariate marginal distribution is standard uniform.

We refer to Ck as the k th partial copula of the process - copula of
conditional distribution of (Ut−k ,Ut ) given intervening variables.

Should be distinguished from the bivariate marginal copula C(k) of
(Ut−k ,Ut ). They are related by:

C(k)(v1, v2) =

∫
[0,1]k−1

Ck

(
R(2)

k−1(u, v1),R(1)
k−1(u, v2)

)
c(k−1)(u)du.
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Finite-order s-vine processes

Construction of finite-order process

Let {C1, . . . ,Cp} be a finite set of copulas. Think of these as first p terms
of sequence (Ck )k∈N where Ck = C⊥ (independence) for k > p.

Write the forward Rosenblatt functions as Rk = R(1)
k and note that they

have unique inverses satisfying R−1
k (u, z) = x ⇐⇒ Rk (u, x) = z.

Let (Zk )k∈N be a sequence of iid uniform innovations.

Set U1 = Z1 and

Uk = R−1
k−1

(
(U1, . . . ,Uk−1)>,Zk

)
, k ≥ 2. (2)

(U1, . . . ,Un) has copula density c(n) in (1) with ck (u, v) ≡ 1 for k > p.

Thus (U1, . . . ,Un) is a realization from an s-vine process (Ut )t∈Z.

The construction (2) is found in Joe (2015, page 145).
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Finite-order s-vine processes

Finite-order process as Markov process

For k > p we find that Rk (u, x) = Rp(u[k−p+1,k ], x).

The recursive equation (2) defining the process satisfies

Uk = R−1
p

(
(Uk−p, . . . ,Uk−1)>,Zk

)
, k > p.

Thus the process is pth order Markov and can be treated as a Markov
process on the state space (0,1)p.

It is an example of the non-linear state (NSS) model of Meyn and Tweedie
(2009) and is a φ-irreducible, aperiodic, Harris-recurrent Markov chain.

It satisfies the ergodic theorem for Harris chains (Meyn and Tweedie,
2009, Theorem 13.3.3) but many questions remain concerning rates of
mixing and ergodic convergence for different sets of copulas C1, . . . ,Cp.
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Finite-order s-vine processes

Rosenblatt inverse functions

There is an implied set of functions Sk : (0,1)k × (0,1)→ (0,1) such that

Uk = R−1
k−1

(
(U1, . . . ,Uk−1)>,Zk

)
= Sk−1((Z1, . . . ,Zk−1)>,Zk ), k ≥ 2.

These functions satisfy S1(z1, x) = R−1
1 (z1, x) and

Sk (z , x) = R−1
k

((
z1,S1(z1, z2), . . . ,Sk−1(z[1,k−1], zk )

)
, x
)
, k ≥ 2.

We refer to them as Rosenblatt inverse functions.

We thus have two sets of equations expressing relationship between
(Zk )k∈N and (Uk )k∈N:

Uk = Sk−1((Z1, . . . ,Zk−1)>,Zk ) (causality)
Zk = Rk−1((U1, . . . ,Uk−1)>,Uk ) (invertibility).
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Gaussian processes

Gaussian processes and s-vines

By Gaussian processes we refer to processes whose finite-dimensional
marginal distributions are multivariate Gaussian distributions with non-singular
covariance matrices.

Theorem
1 Every stationary Gaussian process is an s-vine process.
2 Every s-vine process in which the pair copulas of the sequence (Ck )k∈N

are Gaussian and the marginal distribution FX is Gaussian, is a Gaussian
process.

The ideas behind the proof are in Joe (2015).
One implication is that every stationary Gaussian process can be treated
as an s-vine; this offers generic (though not necessarily efficient)
methods for simulation and estimation.
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Gaussian processes

Gaussian processes as s-vines

For instance, the following Gaussian processes can be easily recast as
s-vines:

ARMA
Seasonal ARMA (SARMA)
Fractional Gaussian Noise (FGN)
ARFIMA

The key logical steps are:
1 Calculation of the acf (ρk )k∈N.

2 Calculation of the pacf (partial autocorrelation function) (αk )k∈N
using well-known one-to-one mapping between acf and pacf.

3 Construction of the copula sequence (Ck )k∈N by setting Ck to be a Gauss
copula with parameter αk .
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Gaussian processes

New Gaussian processes from s-vines

It is natural to ask what are the constraints on the sequence of Gauss
copula parameters (αk )k∈N to obtain a well-behaved Gaussian process.

Obviously, we require |αk | < 1. The s-vine process will be stationary by
construction, but not necessarily ergodic.

A well known necessary and sufficient condition for a Gaussian process
to be mixing is that the acf satisfies ρk → 0 as k →∞ (Maruyama, 1970;
Cornfeld, Fomin, and Sinai, 1982).

Mixing implies ergodicity of the process.

However, αk → 0 is not sufficient for mixing behaviour. Counterexample
given by sequence αk = (k + 1)−1 which yields ρk = 0.5, for all k .

A sufficient (but not necessary) condition for mixing is that∑∞
k=1 |αk | <∞ (Debowski, 2007).
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Gaussian processes

Rosenblatt functions for Gaussian processes
The forward Rosenblatt functions for a mixing Gaussian process with pacf
(αk )k∈N can be calculated to be

Rk (u, x) = Φ

(
Φ−1(x)−

∑k
j=1 φ

(k)
j Φ−1(uk+1−j )

σk

)
,

where σ2
k =

∏i
j=1(1− α2

j ) and the coefficients φ(k)j are given recursively by

φ
(k)
j =

{
φ
(k−1)
j − αkφ

(k−1)
k−j , j ∈ {1, . . . , k − 1},

αk , j = k .

The inverse Rosenblatt functions can be calculated to be

Sk (z , x) = Φ

σk Φ−1(x) +
k∑

j=1

ψ
(k)
j Φ−1(zk+1−j )

 ,

where the coefficients ψ(k)
j are given recursively by ψ(k)

j =
∑j

i=1 φ
(k)
i ψ

(k−i)
j−i for

j ∈ {1, . . . , k} where ψ(k)
0 = σk for k ≥ 1 and ψ(0)

0 = 1.
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Gaussian processes

Causality and invertibility of Gaussian processes

Theorem

Let (Ut )t∈Z be a Gaussian s-vine copula process with absolutely summable
copula parameters (αk )k∈N. Then, almost surely, for all t ,

Ut = lim
k→∞

Sk ((Zt−k , . . . ,Zt−1)>,Zt )

Zt = lim
k→∞

Rk ((Ut−k , . . . ,Ut−1)>,Ut )

for an iid uniform innovation process (Zt )t∈Z.

Proof is adaptation of result in Debowski (2007).
Set Xt = Φ−1(Ut ) and εt = Φ−1(Zt ). Result reduces to familiar

Xt =
∞∑
j=0

ψjεt−j , εt =
∞∑
j=0

φjXt−j , ψj = lim
k→∞

ψ
(k)
j , φj = lim

k→∞
φ
(k)
j .

Open issue: generalize to include mixing processes without absolutely
summable (αk )k∈N, including some long-memory models.
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Infinite-order s-vine processes and copula filters

Non-Gaussian copula sequences

What are the conditions on a general copula sequence (Ck )k∈N that
enable us to construct processes (Ut )t∈Z from uniform innovations (Zt )t∈Z
such that we have convergent causal and invertible expressions

Ut = lim
k→∞

Sk ((Zt−k , . . . ,Zt−1)>,Zt ),

Zt = lim
k→∞

Rk ((Ut−k , . . . ,Ut−1)>,Ut ) ?

It seems clear that Ck → C⊥ as k →∞.
However, this is not sufficient (even in Gaussian case) and the speed of
convergence is also important.
Ideally we require conditions such that Ck → C⊥ also implies C(k) → C⊥

(independence of Ut and Ut−k in the limit, mixing).
This is more of a theoretical than practical issue as we can also view the
models we simulate and fit as finite-order processes of very high order.
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Infinite-order s-vine processes and copula filters

Parameterization via Kendall pacf

Given parametric pair copulas (Ck )k∈N we would like that:
1 the copulas converge uniformly to the independence copula as k → ∞;
2 the level of dependence of each copula Ck is identical to ergodic Gaussian

processes.

To translate to non-Gaussian copulas, we use the Kendall partial
autocorrelation function (kpacf) (τk )k∈N asssociated with a copula
sequence (Ck )k∈N, given by

τk = τ(Ck ), k ∈ N.

For a Gaussian copula sequence with Ck = CGa
αk

we have

τk =
2
π

arcsin(αk ). (3)

For each pacf (αk (θ))k∈N there is an implied kpacf (τk (θ))k∈N. Idea:
choose non-Gaussian pair copulas with this kpacf.
Copulas should have Kendall correlation in the entire (−1,1). Otherwise
rotations or replacements are needed.
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Infinite-order s-vine processes and copula filters

Examples of copula filters
Speed of convergence of different copula filters can be explored
numerically, for the same kpacf.
For fixed n and for a fixed realization z1, . . . , zn of independent uniform
noise we plot the points (k ,Sk (z[n−k,n−1], zn)) for k ∈ {1, . . . ,n − 1}. We
expect the points to converge to a fixed value as k → n − 1, provided we
take a sufficiently large value of n.
Non-Gaussian ARMA(1,1), parameters: 0.95, −0.85, n = 201.
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Infinite-order s-vine processes and copula filters

Examples of copula filters
Speed of convergence of different copula filters can be explored
numerically, for the same kpacf.
For fixed n and for a fixed realization z1, . . . , zn of independent uniform
noise we plot the points (k ,Sk (z[n−k,n−1], zn)) for k ∈ {1, . . . ,n − 1}. We
expect the points to converge to a fixed value as k → n − 1, provided we
take a sufficiently large value of n.
Non-Gaussian ARFIMA(1,d ,1) models, parameters: 0.95, −0.85,
d = 0.02, and n = 701. In particular |αk | ∼ 0.02/k (not summable!)
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Applications

Real data

We have written an R library to fit S-vines via their kapcf.

Package tscopula (in particular using rvinecopulib).

We open HTML for two examples.
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Conclusions

Conclusions

Our models give an interpretation to the idea of non-Gaussian ARMA,
ARFIMA, etc. The process is named after the Gaussian process with
which it shares a kpacf.

We can generalize the idea of model residuals. We reconstruct the
unobserved innovations (Zt )1≤t≤n using the invertibility formula for the
fitted model.

There is a need for parsimonious comprehensive bivariate copula
families to give more options in fitting.

Questions remain concerning the convergence of infinite copula filters.

There are also statistical issues to resolve, such as consistency and
asymptotic normality of parameter estimates in the pseudo-ML and
full-ML estimation methods.
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