Loss-Based Variational Bayes Prediction

David Frazier, Ruben Loaiza-Maya, Gael Martin and Bonsoo Koo

Department of Econometrics and Business Statistics

Monash University, Australia

Vienna, December, 2021

https://arxiv.org/abs/2104.14054

Standard Bayesian Prediction

• Distribution of interest is:

$$p(y_{n+1}|\mathbf{y}) = \int_{\theta} p(y_{n+1}, \theta|\mathbf{y}) d\theta$$
$$= \int_{\theta} p(y_{n+1}|\mathbf{y}, \theta) p(\theta|\mathbf{y}) d\theta$$
$$= E_{\theta|\mathbf{y}} [p(y_{n+1}|\mathbf{y}, \theta)]$$

- (Marginal) predictive = $E_{\theta|\mathbf{y}} \left[p(y_{n+1}|\mathbf{y}, \theta) \right]$
- Conditional predictive reflects the assumed model/DGP
- as does $p(\theta|\mathbf{y}) \propto p(\mathbf{y}|\theta) \times p(\theta)$ via Bayes theorem

Standard Bayesian Prediction

• Bayesian model averaging allows for extension to a finite set of *K* possible **models**:

$$p_a(y_{n+1}|\mathbf{y}) = \sum_{k=1}^{K} p(y_{n+1}|\mathbf{y}, M_k) p(M_k|\mathbf{y})$$

- Bayesian paradigm \Rightarrow a coherent approach to prediction
- But...what happens when we acknowledge that any assumed model (model set) is misspecified?
- In what sense does:

$$p(y_{n+1}|\mathbf{y}) = \int_{\theta} p(y_{n+1}|\mathbf{y}, \theta) p(\theta|\mathbf{y}) d\theta$$
 or $p_a(y_{n+1}|\mathbf{y})$

- (where misspecification impinges on all components)
- remain the gold standard?

- Loaiza-Maya, Martin and Frazier (JAE, 2021)
- Appropriate when the true DGP is unknown
- Define a class of **conditional predictives** that we believe **could** have generated the data:

$$\mathcal{P}^n$$
 : = { $p(y_{n+1}|\mathbf{y}, \boldsymbol{\theta}) : \boldsymbol{\theta} \in \Theta$ }

- Elements of \mathcal{P}^n may be:
 - ullet a single parametric model with parameters $m{ heta}$
 - weighted combinations of predictives associated with multiple parametric models
 - (heta comprises model-specific parameters and the weights)
- Define a **prior** over the elements of \mathcal{P}^n : $\Pi[p(y_{n+1}|\mathbf{y}, \boldsymbol{\theta})]$

- The essence of the idea:
- Update the prior:

$$\Pi[p(y_{n+1}|\mathbf{y}, \boldsymbol{\theta})]$$

to a **posterior**:

$$\Pi[p(y_{n+1}|\mathbf{y}, \boldsymbol{\theta})|\mathbf{y}]$$

- According to predictive performance
- $\Rightarrow \Pi[p(y_{n+1}|\mathbf{y}, \boldsymbol{\theta})|\mathbf{y}]$ is 'focused' on elements of \mathcal{P}^n with high predictive accuracy (\equiv low predictive loss)
- Different measures of **accuracy** ⇒ different **posteriors**
- Different methods of **up-dating** \Rightarrow different **posteriors**

- In the spirit of loss-based Bayes/generalized Bayes/Gibbs posteriors
- e.g. Jiang and Tanner (2008), Bissiri et al. (2016)....

• Up-date $p(\theta)$ to the '**Gibbs**' posterior:

 $p_{G}(\boldsymbol{\theta}|\mathbf{y}) \propto \exp[wS_{n}(\boldsymbol{\theta})] \times p(\boldsymbol{\theta}); \ w_{n} > 0$

• via some (pos.) scoring rule:

$$S_n(\boldsymbol{\theta}) = \sum_{t=0}^{n-1} S(p(y_{n+1}|\mathbf{y}, \boldsymbol{\theta}), y_{t+1})$$

• that rewards the predictive accuracy that matters

- \Rightarrow (loosely speaking) a posterior over $p(y_{n+1}|\mathbf{y}, \boldsymbol{\theta})$ itself.....
- Summarize by e.g. the mean:

$$p_G(y_{n+1}|\mathbf{y}) = \int_{m{ heta}} p(y_{n+1}|\mathbf{y},m{ heta}) p_G\left(m{ heta}|\mathbf{y}
ight) dm{ heta}$$

- := 'Gibbs' predictive
- Whilst the standard predictive:

$$p(y_{n+1}|\mathbf{y}) = \int_{ heta} p(y_{n+1}|\mathbf{y},m{ heta}) p(m{ heta}|\mathbf{y}) dm{ heta}$$

- is 'trained' using the **log-score** (via $p(\theta|\mathbf{y})$)
- The Gibbs predictive is 'trained' by the score that matters (via p_G (θ|y))!

- And it works!
- Training on the measure of predictive accuracy that matters
- (via the Bayesian up-date)
- Produces more accuracy out-of-sample
- (according to that measure)
- Than does a misspecified likelihood (log-score-based) update

Loss-based Variational Bayes Prediction

- However.....
- **Numerical computation** scheme is determined by the predictive class
- in **FBP** we adopted *simple* predictive classes (low-dimen. θ)
- \Rightarrow exact Gibbs posterior, $p_G(\theta|\mathbf{y})$, was accessible via MCMC
- In this paper we 'go big'
- \Rightarrow **MCMC** is less computationally attractive
- \Rightarrow approximate $p_{G}(\theta|\mathbf{y})$ using variational Bayes

Loss-based Variational Bayes Prediction

• Instead of targeting:

$$p_G(y_{n+1}|\mathbf{y}) = \int_{\boldsymbol{ heta}} p(y_{n+1}|\mathbf{y}, \boldsymbol{ heta}) p_G\left(\boldsymbol{ heta}|\mathbf{y}
ight) d\boldsymbol{ heta}$$

• via MCMC draws from $p_G\left(\boldsymbol{\theta} | \mathbf{y}
ight)$

• We target:

$$p_Q(y_{n+1}|\mathbf{y}) = \int_{\boldsymbol{ heta}} p(y_{n+1}|\mathbf{y}, \boldsymbol{ heta}) \widehat{\boldsymbol{q}}(\boldsymbol{ heta}) d\boldsymbol{ heta}$$

• Where \widehat{Q} (with density $\widehat{q}(\theta)$) minimizes, in a class $Q \in \mathcal{Q}$:

$$\mathsf{KL}\left(\mathcal{Q} || \mathcal{P}_{\mathcal{G}}\left[oldsymbol{ heta}
ight| \mathbf{y}
ight]
ight) = \int \log \left(d\mathcal{Q} / \mathcal{P}_{\mathcal{G}}\left[oldsymbol{ heta}
ight| \mathbf{y}
ight]
ight) d\mathcal{Q}$$

Loss-based Variational Bayes Prediction

- We refer to $p_Q(y_{n+1}|\mathbf{y})$ as the Gibbs variational predictive (GVP)
- And the production and use of $p_Q(y_{n+1}|\mathbf{y})$ as **Gibbs** variational prediction (GVP)
- (interchangeably with 'loss-based variational prediction...')

• Minimization of

$$\mathsf{KL}\left(Q||P_{G}\left[\boldsymbol{\theta}|\mathbf{y}\right]\right) = \int \log\left(dQ/P_{G}\left[\boldsymbol{\theta}|\mathbf{y}\right]\right) dQ$$

- \Leftrightarrow maximization of the evidence lower bound (ELBO): ELBO $[Q||\Pi[\cdot|\mathbf{y}]] = \mathbb{E}_Q[\log \{\exp[wS_n(\theta)]p(\theta)\}] - \mathbb{E}_Q[\log \{q(\theta)\}]$
- ullet Adopting the **mean-field** variational class, ${\cal Q}$
- Implemented using stochastic gradient ascent

Theoretical Validation

• We show that:

() As $n \to \infty$, $\widehat{q}(oldsymbol{ heta})$ concentrates onto

$$oldsymbol{ heta}_* = rg\max_{oldsymbol{ heta}\in imes}\lim_{n o\infty}\mathbb{E}_f\left[S_n(oldsymbol{ heta})/n
ight]$$

- i.e. onto the $heta_*$ that maximizes the **expected score**
- $\Rightarrow p(y_{n+1}|\mathbf{y}, \boldsymbol{\theta}_*)$ that is 'optimal' in that scoring rule
- Pate of concentration depends on two terms:
 - Rate of concentration of $p_G(\theta|\mathbf{y})$ onto θ_*
 - Proximity of $\widehat{q}(\boldsymbol{\theta})$ to $p_{G}(\boldsymbol{\theta}|\mathbf{y})$
- (Related work in: Alquier et al, 2016, Zhang and Gao, 2017, Alquier and Ridgeway, 2020)

Theoretical Validation

- Viewed through another lense, the Gibbs variational predictive: p_Q(y_{n+1}|y)
- Is shown to 'merge' with the optimal predictive, $p(y_{n+1}|\mathbf{y}, \boldsymbol{\theta}_*)$

• Blackwell and Dubins (1962)

- To which the exact Gibbs predictive: $p_G(y_{n+1}|\mathbf{y})$ also merges
- Hence, in the limit, there is no loss, in terms of predictive accuracy
- By using the variational approximation
- Of course, the variational approximation will *potentially* influence finite sample performance

Numerical Validation

- So we explore the numerical performance of **GVP**
- First, in a toy example in which $p_G(y_{n+1}|\mathbf{y})$ is accessible via **MCMC**
 - What do we lose (in finite samples) by adopting the variational approximation?
- Then, in simulation examples based on big predictive models
 - Autoregressive (20-component) mixture model
 - Bayesian neural network
 - (Both misspecified)
- Plus an empirical example
 - Applying **GVP** to the 4227 daily time series in the M4 forecasting competition
- Will just focus on the toy eg. and the empirical eg.

Illustration: Simulated data

• True DGP: stochastic volatility model for a financial return (y_t)

$$y_t = \exp(h_t/2)\varepsilon_t$$

$$h_t = \alpha + \rho(h_{t-1} - \alpha) + \sigma_h \eta_t$$

$$\begin{bmatrix} \varepsilon_t & \eta_t \end{bmatrix} \sim i.i.d.N(\mathbf{0}, \begin{bmatrix} 1 & -0.35 \\ -0.35 & 0.25 \end{bmatrix})$$

- \Rightarrow y_t negatively skewed
- Predictive model: (Normal) GARCH(1,1)
- \Rightarrow y_t symmetric
- ullet \Rightarrow predictive model is misspecified

- Several (proper) scores used in the up-date:
- All of which reward different forms of predictive accuracy
 - Log-score (LS) (⇒ misspecified likelihood-based Bayes)
 Censored log score (CLS)
 - rewards predictive accuracy in a tail
 - Sontinuously ranked probability score (CRPS)
 - rewards predictive mass near the observed y_{n+1}
 - Interval score (IS)
 - rewards accurate and narrow prediction intervals

• Exact Gibbs prediction: estimate of:

$$p_G(y_{n+1}|\mathbf{y}) = \int_{m{ heta}} p(y_{n+1}|\mathbf{y},m{ heta}) p_G(m{ heta}|\mathbf{y}) dm{ heta}$$

- using M = 20000 **MCMC** draws from $p_G(\theta|\mathbf{y})$
- GVP: estimate of:

$$p_Q(y_{n+1}|\mathbf{y}) = \int_{m{ heta}} p(y_{n+1}|\mathbf{y},m{ heta}) \widehat{q}(m{ heta}) dm{ heta}$$

- using $M = 1000 \ i.i.d.$ draws from $\widehat{q}(\theta)$
- Roll the whole process forward (with expanding windows)
- Assess predictive performance via the full set of scores

Q1. **Does** the (within-sample) up-date based on **any given score** \Rightarrow

Best out-of-sample performance measured by that score?

- i.e. are the predictions (what we call) coherent?
- and does focusing on the form of predictive accuracy that matters yield more accurate forecasts than the mispecified likelihood-based up-date
- Q2. Are the **exact** and **approximate** results identical?
- Q3. And what is the speed gain of **GVP**?

Out-of-sample performance: GVP

- Positively-oriented scores \Rightarrow large (in bold) is good
- **Coherence** \Rightarrow **in bold** values on the diagonal!

• Average out-of-sample score

LS
$$\rm CLS_{<20\%}$$
 $\rm CLS_{>80\%}$ CRPS IS

Up-dating

LS	-0.563	-0.545	-0.354	-0.231	-2.347
$CLS_{<20\%}$	-0.806	-0.497	-0.628	-0.286	-2.985
CLS _{>80%}	-0.936	-0.946	-0.329	-0.240	-3.325
CRPS	-0.565	-0.563	-0.343	-0.230	-2.434
IS	-0.655	-0.611	-0.371	-0.260	-2.203

Out-of-sample performance: GVP

- So, despite the approximation of the Gibbs posterior
- GVP produces coherent predictions
- And.....
- VB-based predictive results
- Are qualitatively equivalent to the **MCMC-based** predictive results
- And often numerically equivalent to 2 decimal places
- and are produced in a fraction of the time taken by MCMC
- **GVP** in the large (realistic) models still shown to produce **coherent** predictions overall

- The challenge?
- 100-odd different forecast models/methods
- Attempt to accurately forecast **100,000** (!) different y_{n+h}
- Winner: best out-of-sample predictive accuracy
- over all horizons (h = 1, 2, ..., H) and all series
- We focus on predictive **interval** accuracy measured by the **interval score** (**IS**)
- Rewards accurate and narrow prediction intervals

- Select the 4227 daily series
- Apply GVP with IS as the up-dating rule:
- Use a flexible predictive model:
- A 20 component Gaussian autoregressive (AR-1) mixture
- Does **GVP** reap out-of-sample accuracy?
- In terms of out-of-sample IS

- As measured by average IS (over the 4227 series)
- The answer is 'No'
- Not too surprising:
- Model is flexible, but probably a poor choice for some daily series
- (e.g. with time-varying volatility)
- The predictive model *still matters*

- As measured by the total number of series (out of **4227**) for which **GVP** is still best
- The answer is 'Yes'
- GVP is the second-best performer overall
- Despite the shortcomings of the model
- Driving prediction by the **IS** update reaps real benefits
- Using the appropriate update + a decent model the ideal option
- This is the new gold standard!

- If prediction is your goal (rather than inference per se)
- And you're interested in a particular form of predictive accuracy
- And your model is too big for MCMC
- GVP seems to a good way to go.....
- In addition to having theoretical validity
- Any inaccuracy in approximating the Gibbs (loss-based) posterior used VB
- Has negligible impact on numerical predictive results

In Summary....

- This equivalence between exact and approximate predictions
- Mimics similar qualitative findings in other **VB-prediction** work:
 - e.g. Quiroz et al. (2018), Koop and Korobilis (2018)
- Plus earlier work on **ABC-based prediction:**
 - Frazier, Maneesoonthorn, Martin and McCabe (2019)
- **GVP** also seen to reap predictive benefits in realistic models for which **MCMC** is not feasible
- However, thus far have only used:

$$\mathcal{P}^n := \{ p(y_{n+1} | \mathbf{y}, \boldsymbol{\theta}) : \boldsymbol{\theta} \in \Theta \}$$

- where $p(y_{n+1}|\mathbf{y}, \boldsymbol{\theta})$ is an **observation-driven** predictive model
- If wish to adopt a state space/hidden Markov model
- GVP requires some extra effort.....

Assume:

Measurement density: $p(y_{n+1}|x_{n+1})$

(Markov) Transition density: $p(x_{n+1}|x_n, \theta)$

• Defining
$$\mathbf{x} = (x_1, x_2, ..., x_n)' \Rightarrow$$

• Exact predictive:

$$= \int_{x_{n+1}}^{p(y_{n+1}|\mathbf{y})} \int_{\mathbf{x}} \int_{\boldsymbol{\theta}} p(y_{n+1}|x_{n+1}) p(x_{n+1}|x_n, \boldsymbol{\theta}) \\ \times p(x_{n+1}|x_n, \boldsymbol{\theta}) p(\mathbf{x}|\mathbf{y}, \boldsymbol{\theta}) p(\boldsymbol{\theta}|\mathbf{y}) d\boldsymbol{\theta} d\mathbf{x} dx_{n+1}$$

- **Two** points to note:
- 1. Approximate (VB-based) predictive:

$$= \int_{x_{n+1}} \int_{\mathbf{x}} \int_{\boldsymbol{\theta}} p(y_{n+1}|x_{n+1}) p(x_{n+1}|x_n, \boldsymbol{\theta})$$

$$\times p(x_{n+1}|x_n, \boldsymbol{\theta}) \underbrace{p(\mathbf{x}|\mathbf{y}, \boldsymbol{\theta}) p(\boldsymbol{\theta}|\mathbf{y})}_{\widehat{q}(\mathbf{x})} d\boldsymbol{\theta} d\mathbf{x} dx_{n+1}$$

- In Frazier, Loaiza-Maya and Martin (2021):
 - 'A Note on the Accuracy of Variational Bayes in State Space Models: Inference and Prediction'
 - https://arxiv.org/abs/2106.12262
- (Applying VB a likelihood-based SSM setting, and under correct specification)
- We show that:
- Inaccuracy in $\widehat{q}(\mathbf{x})$
 - \Rightarrow lack of **Bayes consistency** for $\widehat{q}(oldsymbol{ heta})$
 - i.e. $\widehat{q}(oldsymbol{ heta})$ does not concentrate on $oldsymbol{ heta}_0$
 - \Rightarrow predictive inaccuracy

2. GVP, in turn, requires:

$$= \int_{x_{n+1}} \int_{\mathbf{x}} \int_{\boldsymbol{\theta}} p(y_{n+1}|x_{n+1}) p(x_{n+1}|x_n, \boldsymbol{\theta}) p(x_{n+1}|x_n, \boldsymbol{\theta})$$
$$\times \underbrace{p(\mathbf{x}|\mathbf{y}, \boldsymbol{\theta})}_{\widehat{q}(\mathbf{x})} \underbrace{p_G(\boldsymbol{\theta}|\mathbf{y})}_{\widehat{q}(\boldsymbol{\theta})} d\boldsymbol{\theta} d\mathbf{x} dx_{n+1}$$

• where:

 $p_G(\theta|\mathbf{y}) \propto \exp[wS_n(\theta)] \times p(\theta)$

and

$$S_n(\boldsymbol{\theta}) = \sum_{t=0}^{n-1} S(p(y_{t+1}|\mathbf{y}_{1:t}, \boldsymbol{\theta}), y_{t+1})$$

- In Frazier, Martin, Loaiza-Maya and Torres-Andrade (2021):
 - 'Loss-Based Inference and Prediction in SSMs: A Variational Solution'
- We implement **GVP** by:

- **O** Defining $p_G(\theta|\mathbf{y})$ using $p(y_{n+1}|\mathbf{y}, \theta)$ from an **approximation** to the **SSM** (e.g. a **LGSSM**) in which **x** can be integrated out analytically
- 2 Approximating this $p_G(\boldsymbol{\theta}|\mathbf{y})$ by $\widehat{q}(\boldsymbol{\theta})$
- **③** Recognizing that **neither** $p(\mathbf{x}|\mathbf{y}, \boldsymbol{\theta})$ **nor** $\widehat{q}(\mathbf{x})$ is required for **prediction** in an **SSM**
 - \Rightarrow Only need to access $p(x_n | \mathbf{y}, \boldsymbol{\theta})$
 - $\bullet \ \Rightarrow$ Can be achieved exactly via particle filtering
- 1. allows prediction to be driven by the relevant loss
- 2. and 3. allow for use of VB
 - Without the need for $\widehat{q}(\mathbf{x})$
 - And its inaccuracy impinging on predictive accuracy

• **True DGP** for a financial return (y_t)

$$\begin{aligned} z_t &= \exp(h_t/2)\varepsilon_t; & \varepsilon_t \sim N \\ h_t &= \alpha + \rho(h_{t-1} - \alpha) + \sigma_h \eta_t; & \eta_t \sim N \\ y_t &= G^{-1}(F_z(z_t)) \end{aligned}$$

- \Rightarrow Implied copula of a stochastic volatility model combined with a skewed normal marginal, $g(y_t)$ (imposed via G^{-1})
- \Rightarrow negative *skewness* in the **true predictive**
- Predictive model:

$$\begin{aligned} y_t &= \exp(h_t/2)\varepsilon_t; & \varepsilon_t \sim N \\ h_t &= \alpha + \rho(h_{t-1} - \alpha) + \sigma_h \eta_t; & \eta_t \sim N \end{aligned}$$

• \Rightarrow (mis-specified) symmetric predictive

• Steps:

1. Re-express the predictive model as:

$$y_t^* = \ln(y_t^2) = h_t + \ln(\varepsilon_t^2)$$

$$h_t = \alpha + \rho(h_{t-1} - \alpha) + \sigma_h \eta_t$$

2. Approximate the predictive model as the Linear Gaussian SSM:

$$\begin{array}{ll} y_t^* = h_t + e_t; & e_t \sim N \\ h_t = \alpha + \rho(h_{t-1} - \alpha) + \sigma_h \eta_t; & \eta_t \sim N \end{array}$$

3. Apply the Kalman filter to produce:

$$p(y_{t+1}^*|\mathbf{y}_{1:t}^*, \boldsymbol{\theta})$$

4. Transform (via the Jacobian) to:

$$\widehat{p}(y_{t+1}|\mathbf{y}_{1:t}, oldsymbol{ heta})$$

• Then....

5. Specify the Gibbs posterior as:

$$p_G(\theta|\mathbf{y}) \propto \exp[wS_n(\theta)] \times p(\theta)$$

where:

$$S_n(\boldsymbol{\theta}) = \sum_{t=0}^{n-1} S(\widehat{p}(y_{t+1}|\mathbf{y}_{1:t}, \boldsymbol{\theta}), y_{t+1})$$

and :

() S = LS (\Rightarrow misspecified likelihood-based Bayes)

2 S =**CLS** (rewarding predictive accuracy in a tail)

6. Produce the **VB** approximation, $\hat{q}(\theta)$, to $p_G(\theta|\mathbf{y})$

7. Produce a simulation-based estimate of the GVP:

$$= \int_{x_{n+1}} \int_{x_n} \int_{\theta} p(y_{n+1}|x_{n+1}) p(x_{n+1}|x_n, \theta) p(x_{n+1}|x_n, \theta)$$

 $\times p(x_n|\mathbf{y}, \theta) \widehat{q}(\theta) d\theta dx_n dx_{n+1}$

via:

1 draws of $\boldsymbol{\theta}$ from $\widehat{\boldsymbol{q}}(\boldsymbol{\theta})$

- ② draws of x_n from $p(x_n | \mathbf{y}, \boldsymbol{\theta})$ via the **bootstrap particle filter**
- **3** draws of x_{n+1} and y_{n+1} from $p(x_{n+1}|x_n, \theta)$ and $p(y_{n+1}|x_{n+1})$
- 7. Roll the whole process forward (with expanding windows)
- 8. Assess predictive performance via LS and (various) CLS

Animation of GVP over Time

• Upper Tail Accuracy: LS versus CLS_{>90%}

Animation of GVP over Time

- Problem with assumed predictive model is that mean is fixed at zero
- Estimated predictives can't **shift in location** to better pick up the **true predictive tail**
- Even so, designing the loss function to reward accuracy in the upper tail
- Still does what it is meant to do
- Produce a more accurate representation of the true upper tail

Animation of GVP over Time

• Lower Tail Accuracy: LS versus CLS_{<10%}

- The shape of the true predictive
- $\bullet \Rightarrow$ less benefit gained by focusing on lower tail accuracy in the up-dating rule
- Than there is in focusing on upper tail accuracy
- And this shows up in numerical out-of-sample results

Out-of-sample performance

- Positively-oriented scores \Rightarrow large (in bold) is good
- **Coherence** \Rightarrow looking for **bold** values on the diagonal

Average out-of-sample score

• You have to pick your poison in this game!

- To come:
- Predictive **SSMs** that **shift** in location to better pick up the **true predictive tail**
- Alternative approximations:

$$\widehat{p}(y_{t+1}|\mathbf{y}_{1:t}, oldsymbol{ heta})$$

- In the construction of the Gibbs posterior
- (E.g. using a Laplace approximation)
- Application of the method to a large SSM
- To warrant the use of VB

• Note though:

- Along the way we have provided a method for conducting loss-based prediction in SSMs
- Irrespective of whether the VB step is used or not....
- Enough for now