Towards responsible game theory – from Kant to a parametric QP (copositive view)

Immanuel Bomze, University of Vienna Werner Schachinger, University of Vienna Jörgen Weibull, Stockholm School of Economics

WU Research Seminar

29 January 2021

Overview

1. Games and the categorical imperative

2. Equilibrium à la Nash ...

3. ... need not exist !

4. Characterization via copositivity

5. Equilibrium refinements

6. Partnership games: sth. between local and global

A simple two-actor game

Finitely many elementary actions $i \in N = \{1, ..., n\}$; if *i* played against *j*, payoff is a_{ij} ; payoff matrix $\mathbf{A} = [a_{ij}]_{(i,j) \in N \times N}$.

"Rational" behavior: given j, select i with maximal a_{ij} ; randomizing strategies: given distribution

$$\mathbf{x} \in \Delta = \left\{ \mathbf{x} \in \mathbb{R}^n : x_i \ge 0, \ \mathbf{e}^\top \mathbf{x} = \sum_i x_i = 1 \right\}.$$

Then select $\mathbf{y} \in \Delta$ with maximal expected payoff $\mathbf{y}^{\top} \mathbf{A} \mathbf{x} \dots$ is LP, so w.l.o.g. $\mathbf{y} = \mathbf{e}_i$ vertex of Δ . Note $\mathbf{e} = \sum_i \mathbf{e}_i = [1, \dots, 1]^{\top} \in \mathbb{R}^n$.

Nash and HM-equilibrium

Nash equilibrium [Nash 1951]: x best response to itself, x maximizes $y^{\top}Ax$ over $y \in \Delta$ (and some e_i too). Exists always.

But why should opponents' behaviour completely discouple ?

Categorical imperative [Kant 1785]: act such that your behaviour can be a model for the general society.

Grundlegung

jur

Metaphysik der Sitten

bon

Immanuel Rant.

Riga,

bey Johann Friedrich Sartfnoch

1785.

en.wikipedia.org

Nash and HM-equilibrium

Nash equilibrium [Nash 1951]: x best response to itself, x maximizes $y^{T}Ax$ over $y \in \Delta$ (and some e_i too). Exists always.

But why should opponents' behaviour completely discouple ?

Categorical imperative [Kant 1785]: act such that your behaviour can be a model for the general society.

Bit of Kant: given morality parameter $\theta \in [0, 1]$ and x, maximize

$$u_{\theta}(\mathbf{y}|\mathbf{x}) := (1 - \theta) \mathbf{y}^{\top} \mathbf{A} \mathbf{x} + \theta \mathbf{y}^{\top} \mathbf{A} \mathbf{y} \quad \text{over } \mathbf{y} \in \Delta.$$

Homo Moralis (HM)-equilibrium [Alger/Weibull 2013]: x itself maximizes $u_{\theta}(\mathbf{y}|\mathbf{x})$ over $\mathbf{y} \in \Delta$.

Existence of HM-equilibrium ...

... asks whether there is $\mathbf{x} \in \Delta$ maximizing $u_{\theta}(\cdot | \mathbf{x})$.

For any $\theta \in [0,1]$ and $x \in \Delta$, the (nonconvex) QP solution set

 $\beta_{\theta}(\mathbf{x}) = \operatorname{Argmax} \{ u_{\theta}(\mathbf{y}|\mathbf{x}) : \mathbf{y} \in \Delta \}$

is (nonempty and) compact but need not contain \mathbf{x} itself.

Indeed, there are nasty examples even for |N| = 3:

$$\mathbf{A} = \left(\begin{array}{rrrr} 2 & 3 & 0 \\ 0 & 2 & 3 \\ 3 & 0 & 2 \end{array}\right)$$

has strictly convex $u_{\theta}(\cdot|\mathbf{x})$ for any $\theta \in (0, 1)$, so $\beta_{\theta}(\mathbf{x}) \subseteq \{\mathbf{e}_i : i \in N\}$ for all $\mathbf{x} \in \Delta$ but $\beta_{\theta}(\mathbf{e}_1) = \{\mathbf{e}_3\}$, $\beta_{\theta}(\mathbf{e}_2) = \{\mathbf{e}_1\}$, $\beta_{\theta}(\mathbf{e}_3) = \{\mathbf{e}_2\}$.

Optimality conditions

... for QP max $\{u_{\theta}(\mathbf{y}|\mathbf{x}) : \mathbf{y} \in \Delta\}$ defining $\beta_{\theta}(\mathbf{x})$:

First-order necessary/KKT condition: If $y \in \beta_{\theta}(x)$, then

$$\frac{\partial}{\partial y_j} u_{\theta}(\mathbf{y}|\mathbf{x}) \leq \mathbf{y}^{\top} \nabla_{\mathbf{y}} u_{\theta}(\mathbf{y}|\mathbf{x})$$
 for all j

with equality if $y_j > 0$.

Have
$$\mathbf{g}_{\theta}(\mathbf{y}|\mathbf{x}) := \nabla_{\mathbf{y}} u_{\theta}(\mathbf{y}|\mathbf{x}) = (1-\theta)\mathbf{A}\mathbf{x} + \theta(\mathbf{A} + \mathbf{A}^{\top})\mathbf{y}.$$

HM-equilibrium at x implies that y = x is KKT point, where $g_{\theta}(x|x) = C_{\theta}x$ with $C_{\theta} = A + \theta A^{\top}$.

These are local optimality conditions and **only necessary.** Need curvature control for QPs over Δ , *aka StQPs* [B. 1997]:

Second-order optimality characterization

A KKT point $\mathbf{y} \in \Delta$ is a **global** maximizer of $u_{\theta}(\cdot | \mathbf{x})$ if and only if for all *i* with $y_i > 0$ the symmetric $n \times n$ matrix

$$\mathbf{H}_i(heta) := \mathbf{e}_i \mathbf{g}_{ heta}^{ op}(\mathbf{y}|\mathbf{x}) + \mathbf{g}_{ heta}(\mathbf{y}|\mathbf{x})\mathbf{e}_i^{ op} - heta y_i(\mathbf{A} + \mathbf{A}^{ op})$$

satisfies

$$\mathbf{v}^{\top}\mathbf{H}_{i}(\theta)\mathbf{v} \geq 0$$
 whenever $\mathbf{v} \in \mathsf{\Gamma}_{i}$,

i.e., if $\mathbf{H}_i(\theta)$ is Γ_i -copositive where $\Gamma_i := \left\{ \mathbf{v} \in \mathbb{R}^n : \mathbf{v} \perp \mathbf{e} \text{ and } v_j y_i - v_i y_j \ge 0 \text{ for all } j \in N \right\}$ is a polyhedral cone.

Now for HM-equilibrium again specialize above for $\mathbf{y} = \mathbf{x}$; need support $I := \{i \in N : x_i > 0\}$ of \mathbf{x} .

Characterization of HM-equilibria

Fix $\theta \in [0, 1]$; then the point $\mathbf{x} \in \Delta$ with support *I* gives rise to HM-equilibrium **if and only if** for some $\gamma \in \mathbb{R}$, both (a) and (b): (a) the point $(\mathbf{x}, \gamma) \in \mathbb{R}^{n+1}$ solves the linear system of (in)equalities

$$[(\mathbf{A} + \theta \mathbf{A}^{\top})\mathbf{x}]_i \quad \begin{cases} = & \gamma \,, \qquad i \in I \,, \\ \leq & \gamma \,, \qquad i \in N \setminus I \,, \end{cases}$$

and (b)

$$\begin{split} \mathbf{H}_{i}(\theta) \text{ is } & \Gamma_{i}\text{-copositive for all } i \in I, \\ \text{where } \mathbf{H}_{i}(\theta) = \mathbf{e}_{i}\mathbf{x}^{\top}(\mathbf{A}^{\top} + \theta\mathbf{A}) + (\mathbf{A} + \theta\mathbf{A}^{\top})\mathbf{x}\mathbf{e}_{i}^{\top} - \theta x_{i}(\mathbf{A} + \mathbf{A}^{\top}) \\ \text{and } & \Gamma_{i} = \big\{\mathbf{v} \perp \mathbf{e} : v_{j}x_{i} \geq v_{i}x_{j}, \text{ all } j \in N\big\}. \end{split}$$

Difficult to check in general, simpler in special cases.

For $\theta = 0$ reduces to Nash condition as property (b) is automatic.

Antagonism marginalizes morality

Constant-sum games: $a_{ji} = c - a_{ij}$ model antagonistic agents. Then $C_{\theta} = (1 - \theta)A + \theta c ee^{\top}$ and $H_i(\theta) = H_i(0) - c\theta x_i ee^{\top}$, so $\mathbf{x} \in \beta_0(\mathbf{x}) \qquad \Leftrightarrow \qquad \mathbf{x} \in \beta_{\theta}(\mathbf{x}) \quad \text{for all } \theta \in [0, 1].$

All HM-equilibria coincide with classical Nash equilibria for the base game, morality plays no role.

These games are special cases of concave welfare games where existence of HM-equilibria is ensured:

Concave/strictly convex welfare and existence

Let $\mathbf{D} = [\mathbf{I}_{n-1}| - \mathbf{e}]$ and suppose $\lambda_{\max}[\mathbf{D}(\mathbf{A} + \mathbf{A}^{\top})\mathbf{D}^{\top}] \leq 0$. Then welfare $\mathbf{y}^{\top}\mathbf{A}\mathbf{y}$ is concave in \mathbf{y} over Δ and so is $u_{\theta}(\cdot|\mathbf{x})$ for all $\mathbf{x} \in \Delta$. Thus $\beta_{\theta}(\mathbf{x})$ is (compact and) convex, so standard fixed point theory implies existence of a $\mathbf{x} \in \beta_{\theta}(\mathbf{x})$ for any $\theta \in [0, 1]$. So concave welfare ensures HM-equilibrium.

On the other hand, if $\lambda_{\min}[\mathbf{D}(\mathbf{A} + \mathbf{A}^{\top})\mathbf{D}^{\top}] > 0$, then welfare is strictly convex and $\beta_{\theta}(\mathbf{x}) \subseteq \{\mathbf{e}_1, \dots, \mathbf{e}_n\}$. Thus HM-equilibrium must yield a vertex \mathbf{e}_i , and this holds for $\theta \in (0, 1)$ if and only if

$$a_{ii} \ge \theta a_{kk} + (1 - \theta) a_{ki}$$
 for all $k \in N$.

This fails to hold in counterexample.

HM-equilibrium for small θ yields Nash refinement

Suppose that for all $\theta \searrow 0$ the points $\mathbf{x}(\theta)$ give HM-equilibrium at morality level θ for A.

Then by continuity all accumulation points $\mathbf{x}(0) = \lim_{\theta \searrow 0} \mathbf{x}(\theta)$ yield classical Nash equilibrium for A.

But for general A, not all Nash equil. can be obtained this way (above counterexample).

Open issues:

For which A with $\lambda_{max}[D(A + A^{\top})D^{\top}] > 0$ do $x(\theta)$ exist ? Ensured for partnership games where $A = A^{\top}$, see later. Further properties of $x(0) = \lim_{\theta \searrow 0} x(\theta)$: EGT/game dynamics ?

Partnership games and StQPs

If *i* plays against *j*, both share payoff: $a_{ij} = a_{ji}$, $\mathbf{A}^{\top} = \mathbf{A}$. Observe for $\theta = 1$: $u_1(\mathbf{y}|\mathbf{x}) = \mathbf{y}^{\top} \mathbf{A} \mathbf{y}$ and β_1 independent of \mathbf{x} . Local version for a neighbourhood $U \subseteq \Delta$ of \mathbf{x} :

$$\beta_1^U = \operatorname{Argmax}\left\{\mathbf{y}^{\top}\mathbf{A}\mathbf{y} : \mathbf{y} \in U\right\}$$
.

Have in symmetric case $\mathbf{A}^{\top} = \mathbf{A}$ for all $\theta \in [0, 1]$:

$$\mathbf{x} \in eta_1^{\Delta} \quad \Rightarrow \quad \mathbf{x} \in eta_ heta(\mathbf{x}) \quad \Rightarrow \quad \mathbf{x} \in eta_1^U.$$

Hence any **global** maximizer of $y^T A y$ over Δ gives HM-equil., and any HM-equilibrium gives a **local** maximizer of $y^T A y$.

A compromise between local and global optimality in StQPs !

A recent reference

[B./Schachinger/Weibull] Does moral play equilibrate ? Economic Theory, DOI 10.1007/s00199-020-01246-4 (2020).

