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Overview

1. Games and the categorical imperative

2. Equilibrium à la Nash ...

3. ... need not exist !

4. Characterization via copositivity

5. Equilibrium refinements

6. Partnership games: sth. between local and global



A simple two-actor game

Finitely many elementary actions i ∈ N = {1, . . . , n};

if i played against j, payoff is aij; payoff matrix A = [aij](i,j)∈N×N .

“Rational” behavior: given j, select i with maximal aij;

randomizing strategies: given distribution

x ∈∆ =

x ∈ Rn : xi ≥ 0 , e>x =
∑
i

xi = 1

 .

Then select y ∈∆ with maximal expected payoff y>Ax ... is LP,

so w.l.o.g. y = ei vertex of ∆. Note e =
∑
i ei = [1, . . . ,1]> ∈ Rn.



Nash and HM-equilibrium

Nash equilibrium [Nash 1951]: x best response to itself,

x maximizes y>Ax over y ∈∆ (and some ei too). Exists always.

But why should opponents’ behaviour completely discouple ?

Categorical imperative [Kant 1785]: act such that your behaviour
can be a model for the general society.
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Nash and HM-equilibrium

Nash equilibrium [Nash 1951]: x best response to itself,

x maximizes y>Ax over y ∈∆ (and some ei too). Exists always.

But why should opponents’ behaviour completely discouple ?

Categorical imperative [Kant 1785]: act such that your behaviour
can be a model for the general society.

Bit of Kant: given morality parameter θ ∈ [0,1] and x, maximize

uθ(y|x) := (1− θ)y>Ax + θ y>Ay over y ∈∆ .

Homo Moralis (HM)-equilibrium [Alger/Weibull 2013]:

x itself maximizes uθ(y|x) over y ∈∆.



Existence of HM-equilibrium ...

... asks whether there is x ∈∆ maximizing uθ(·|x).

For any θ ∈ [0,1] and x ∈∆, the (nonconvex) QP solution set

βθ(x) = Argmax {uθ(y|x) : y ∈∆}

is (nonempty and) compact but need not contain x itself.

Indeed, there are nasty examples even for |N | = 3:

A =

 2 3 0
0 2 3
3 0 2


has strictly convex uθ(·|x) for any θ ∈ (0,1), so βθ(x) ⊆ {ei : i ∈ N}
for all x ∈∆ but βθ(e1) = {e3}, βθ(e2) = {e1}, βθ(e3) = {e2}.



Optimality conditions

... for QP max {uθ(y|x) : y ∈∆} defining βθ(x):

First-order necessary/KKT condition: If y ∈ βθ(x), then

∂
∂yj

uθ(y|x) ≤ y>∇yuθ(y|x) for all j

with equality if yj > 0.

Have gθ(y|x) := ∇yuθ(y|x) = (1− θ)Ax + θ(A + A>)y.

HM-equilibrium at x implies that y = x is KKT point,

where gθ(x|x) = Cθx with Cθ = A + θA>.

These are local optimality conditions and only necessary.

Need curvature control for QPs over ∆, aka StQPs [B. 1997]:



Second-order optimality characterization

A KKT point y ∈∆ is a global maximizer of uθ(·|x)

if and only if for all i with yi > 0 the symmetric n× n matrix

Hi(θ) := eig
>
θ (y|x) + gθ(y|x)e>i − θyi(A + A>)

satisfies

v>Hi(θ)v ≥ 0 whenever v ∈ Γi ,

i.e., if Hi(θ) is Γi-copositive where

Γi :=
{
v ∈ Rn : v ⊥ e and vjyi − viyj ≥ 0 for all j ∈ N

}
is a polyhedral cone.

Now for HM-equilibrium again specialize above for y = x;

need support I := {i ∈ N : xi > 0} of x.
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Characterization of HM-equilibria

Fix θ ∈ [0,1]; then the point x ∈ ∆ with support I gives rise to
HM-equilibrium if and only if for some γ ∈ R, both (a) and (b):

(a) the point (x, γ) ∈ Rn+1 solves the linear system of (in)equalities

[(A + θA>)x]i

{
= γ , i ∈ I ,
≤ γ , i ∈ N \ I ,

and (b)

Hi(θ) is Γi-copositive for all i ∈ I ,

where Hi(θ) = eix
>(A>+ θA) + (A + θA>)xe>i − θxi(A + A>)

and Γi =
{
v ⊥ e : vjxi ≥ vixj , all j ∈ N

}
.

Difficult to check in general, simpler in special cases.

For θ = 0 reduces to Nash condition as property (b) is automatic.



Antagonism marginalizes morality

Constant-sum games: aji = c− aij model antagonistic agents.

Then Cθ = (1− θ)A + θc ee> and Hi(θ) = Hi(0)− cθxi ee>, so

x ∈ β0(x) ⇔ x ∈ βθ(x) for all θ ∈ [0,1] .

All HM-equilibria coincide with classical Nash equilibria for the

base game, morality plays no role.

These games are special cases of concave welfare games where

existence of HM-equilibria is ensured:



Concave/strictly convex welfare and existence

Let D = [In−1| − e] and suppose λmax[D(A + A>)D>] ≤ 0. Then

welfare y>Ay is concave in y over ∆ and so is uθ(·|x) for all

x ∈ ∆. Thus βθ(x) is (compact and) convex, so standard fixed

point theory implies existence of a x ∈ βθ(x) for any θ ∈ [0,1].

So concave welfare ensures HM-equilibrium.

On the other hand, if λmin[D(A + A>)D>] > 0, then welfare

is strictly convex and βθ(x) ⊆ {e1, . . . , en}. Thus HM-equilibrium

must yield a vertex ei, and this holds for θ ∈ (0,1) if and only if

aii ≥ θakk + (1− θ) aki for all k ∈ N .

This fails to hold in counterexample.



HM-equilibrium for small θ yields Nash refinement

Suppose that for all θ ↘ 0 the points x(θ) give HM-equilibrium

at morality level θ for A.

Then by continuity all accumulation points x(0) = lim
θ↘0

x(θ) yield

classical Nash equilibrium for A.

But for general A, not all Nash equil. can be obtained this way
(above counterexample).

Open issues:

For which A with λmax[D(A + A>)D>] > 0 do x(θ) exist ?

Ensured for partnership games where A = A>, see later.

Further properties of x(0) = lim
θ↘0

x(θ): EGT/game dynamics ?



Partnership games and StQPs

If i plays against j, both share payoff: aij = aji, A> = A.

Observe for θ = 1: u1(y|x) = y>Ay and β1 independent of x.

Local version for a neighbourhood U ⊆∆ of x:

βU1 = Argmax
{
y>Ay : y ∈ U

}
.

Have in symmetric case A> = A for all θ ∈ [0,1]:

x ∈ β∆
1 ⇒ x ∈ βθ(x) ⇒ x ∈ βU1 .

Hence any global maximizer of y>Ay over ∆ gives HM-equil.,

and any HM-equilibrium gives a local maximizer of y>Ay .

A compromise between local and global optimality in StQPs !
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