Introduction	Finite samples	Asymptotics	Remarks	References
	Conditior for High-Dime	al Predictive In ensional Stable	ference Algorithms	

Hannes Leeb and Lukas Steinberger (University of Vienna, DataScience@UniVie)

Vienna University of Economics and Business Nov. 6, 2020

Introduction	Finite samples	Asymptotics	Remarks	References
OVERVIEW Prediction of a re feature/respons	esponse y_0 from a fea e pairs (x_i, y_i) is a fu	ture-vector x_0 given damental task of s	n given an i.i.d. sa tatistical learning.	ample of

We study *prediction intervals* for y_0 that are based on empirical quantiles of leave-one-out residuals.

This task is easy in (classical) asymptotic settings where $\mathbb{E}[y_0||x_0]$ can be consistently estimated (Butler and Rothman 1980; Stine 1985; Schmoyer 1992; Olive 2007; and Politis 2013).

In other settings (large dimensions and/or model misspecification), resampling methods like the residual bootstrap do not perform well; cf. Bickel and Freedman (1983), Mammen (1996) and, recently, El Karoui and Purdom (2015).

For the proposed prediction intervals, we provide finite-sample and asymptotic performance bounds, without requiring that $\mathbb{E}[y_0||x_0]$ can be estimated consistently.

Introduction	Finite samples	Asymptotics	Remarks	References
Leave-one-ou	T PREDICTION IN	TERVALS		
Consider a featu sample $T_n = (x_i,$ predict y_0 from x	re/response pair $(x_0, y_i)_{i=1}^n$, where the $(x_i, y_i)_{i=1}^n$, using T_n at level $1 - 1$	0) with $x_0 \in \mathbb{R}^p$ and y_0) are i.i.d. copies of ($x \alpha$.	$y \in \mathbb{R}$, and a training y_0, y_0). The goal is to	5

Using a given prediction algorithm $\hat{m}_n(x_0) = \hat{m}_n(x_0, T_n)$, we proceed as follows:

- ► For each *i* = 1, ..., *n*, write *m*_n^[i](·) for the prediction algorithm computed from all but the *i*-th observation.
- Compute the leave-one-out residuals û_i = y_i − m̂^[i]_n(x_i), i = 1,..., n, the corresponding order statistics û₍₁₎ ≤ ··· ≤ û_(n) and the empirical quantiles ĝ_{α/2} = û_(⌈nα/2⌉) and ĝ_{1−α/2} = û_{(⌈n(1−α/2)⌉)}.
- Compute the prediction interval

$$PI_{\alpha}(T_n, x_0) = \hat{m}_n(x_0) + (\hat{q}_{\alpha/2}, \hat{q}_{1-\alpha/2}].$$

Introduction	Finite samples	Asymptotics	Remarks	References
CONDITIO				
CONDITIO	NAL COVERAGE	PROBABILITY		
Our goal i	s to control the <i>conditi</i>	onal coverage probabilit	y	
	P($y_0 \in PI_\alpha(T_n, x_0) T_n).$		
We show t	hat			
	$\mathbb{E}_P \ket{P(y_0)}$	$\in PI_{\alpha}(T_n, x_0) \ T_n) - (1$	$-\alpha) $	

is small, uniformly over a large class \mathcal{P} of distributions P (details later), provided that

- the prediction algorithm is sufficiently stable so that $\hat{m}_n(\cdot) \approx \hat{m}_n^{[i]}(\cdot)$, and
- ► the prediction algorithm has bounded estimation error in probability, i.e., $\mathbb{E}[y_0||x_0] \hat{m}_n(x_0) = O_P(1)$ (no consistency required).

With this, the unconditional coverage probability $P(y_0 \in PI_\alpha(T_n, x_0))$ is also close to $1 - \alpha$.

The class of distributions ${\cal P}$

We require the class \mathcal{P} of distributions to satisfy the following condition.

(C1). Under every $P \in \mathcal{P}, \ldots$

- the feature/response pairs $(x_0, y_0), (x_1, y_1), \ldots$ are i.i.d.;
- the regression function $x \mapsto m_P(x) := \mathbb{E}_P[y_0 || x_0 = x]$ exists;
- ► the error term $u_0 := y_0 m_P(x_0)$ is independent of the regressor vector x_0 and has a Lebesgue density $f_{u,P}$ with $||f_{u,P}||_{\infty} < \infty$.

THE STABILITY CONDITION ON THE PREDICTION ALGORITHM

Fix $\eta > 0$ and a class \mathcal{P} of distributions as in (C1). A predictor \hat{m}_n is η -stable with respect to \mathcal{P} if

$$\sup_{P\in\mathcal{P}}\mathbb{E}_{P}\left[\left(\|f_{u,P}\|_{\infty}\left|\hat{m}_{n}(x_{0})-\hat{m}_{n}^{[i]}(x_{0})\right|\right)\wedge1\right] \leq \eta$$

for each i = 1, ..., n (cf. Bousquet and Elisseeff, 2002).

Introduction	Finite samples	Asymptotic	s Remarks	References
A USEFUL Consider t	LEMMA he (feasible) e.c.d.f.	of the leave-one	-out residuals, i.e.,	
	$\hat{F}_n(s) =$	$\hat{F}_n(s;T_n) =$	$\frac{1}{n}\sum_{i=1}^{n}\mathbb{1}\{\hat{u}_{i}\leq s\}$	

and the (infeasible) true (conditional) c.d.f. of the prediction error, i.e.,

$$\tilde{F}_n(s) = \tilde{F}_n(s;T_n) = P(y_0 - \hat{m}_n(x_0) \le s ||T_n).$$

Then

$$\left| P(y_0 \in PI_{\alpha}(T_n, x_0) \| T_n) - \left(1 - \frac{\lfloor n\alpha/2 \rfloor \rfloor + \lceil n\alpha/2 \rceil}{n} \right) \right| \leq 2 \| \hat{F}_n - \tilde{F}_n \|_{\infty}.$$

In particular, if $\mathbb{E}_P \| \hat{F}_n - \tilde{F}_n \|_{\infty}$ is small, uniformly over $P \in \mathcal{P}$, then $E_P | P(y_0 \in PI_{\alpha}(T_n, x_0) \| T_n) - (1 - \alpha) |$ is small, uniformly over $P \in \mathcal{P}$.

Introduction	Finite samples	Asymptotics	Remarks	References
Theorem 1				

Assume that the class \mathcal{P} of distributions satisfies (C1) and that the predictor $\hat{m}_n(\cdot)$ is symmetric and η -stable w.r.t. \mathcal{P} . Then, for each $P \in \mathcal{P}$, each L > 1 and each $\mu \in \mathbb{R}$, we have

$$\begin{split} \mathbb{E}_{P} \| \hat{F}_{n} - \tilde{F}_{n} \|_{\infty} &\leq P(|y_{0} - m_{P}(x_{0})| > L) \\ &+ P(|m_{P}(x_{0}) - \hat{m}_{n}(x_{0}) - \mu| > L) \\ &+ 3 \left(L \| f_{u,P} \|_{\infty} \left(\frac{1}{2n} + 3\eta \right) \right)^{1/3} + \sqrt{\frac{1}{n} + 6\eta}. \end{split}$$

ASYMPTOTICS: PREDICTION WITH MANY VARIABLES

We study asymptotic settings where the dimension of the feature vector x_0 depends on n, i.e., $p = p_n$, so that $p_n/n \to \kappa \in (0, 1)$.

Our first result is an asymptotic adaptation of Theorem 1, which we then use to deal with more specific scenarii.

Introduction	Finite samples	Asymptotics	Remarks	References
Theorem 2				
Let p_n be a sec	quence of positive	e integers and let \mathcal{P}_n be a	s in (C1) with p_n re	eplacing
p. Moreover, s	suppose the follow	wing:		

- The predictor \hat{m}_n is symmetric and η_n -stable w.r.t. \mathcal{P}_n with $\eta_n \to 0$.
- ► For each $P \in \mathcal{P}_n$, there exists $\sigma_P^2 \in (0, \infty)$ so that $\limsup_{n \to \infty} \sup_{P \in \mathcal{P}_n} \sigma_P ||f_{u,P}||_{\infty} < \infty$.
- ► The scaled estimation errors $|m_P(x_0) \hat{m}_n(x_0)|/\sigma_P$ and the scaled errors $|y_0 m_P(x_0)|/\sigma_P$ both are \mathcal{P}_n -uniformly bounded.

Then

$$\sup_{P\in\mathcal{P}_n}\mathbb{E}_P\|\hat{F}_n-\tilde{F}_n\|_{\infty}\quad \stackrel{n\to\infty}{\longrightarrow}\quad 0.$$

In particular,

$$\sup_{P\in\mathcal{P}_n}\mathbb{E}_P\left|P(y_0\in PI_\alpha(T_n,x_0)\|T_n)-(1-\alpha)\right| \stackrel{n\to\infty}{\longrightarrow} 0.$$

REGULARIZED M-ESTIMATORS

For a given convex loss function $\rho : \mathbb{R} \to \mathbb{R}$ and a fixed tuning parameter $\gamma \in (0, \infty)$ (both not depending on *n*), consider the estimator

$$\hat{\beta}_n^{(\rho)} = \operatorname{argmin}_{b \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^n \rho(y_i - x_i'b) + \frac{\gamma}{2} \|b\|_2^2.$$

These estimators are studied by El Karoui (2018) in a linear model $y_i = x'_i\beta + u_i$ allowing for heavy-tailed errors in an asymptotic setting where $p/n \rightarrow \kappa \in (0, 1)$.

Under the assumptions maintained in that reference, Theorem 2 applies.

JAMES-STEIN TYPE PREDICTORS

We consider the predictor $\hat{m}_n(x_0) = x'_0 \hat{\beta}_n(c)$, where $\hat{\beta}_n(c)$ is a James-Stein-type estimator

$$\hat{\beta}_n(c) = \begin{cases} \left(1 - \frac{cp_n \hat{\sigma}_n^2}{\hat{\beta}'_n X' X \hat{\beta}_n}\right)_+ \hat{\beta}_n, & \text{if } \hat{\beta}'_n X' X \hat{\beta}_n > 0, \\ 0, & \text{otherwise,} \end{cases}$$

where $c \in [0, 1]$ is a tuning-parameter, where $\hat{\beta}_n = (X'X)^{\dagger}X'Y$ and where $\hat{\sigma}_n^2 = \|Y - X'\hat{\beta}_n\|^2/(n - p_n)$.

For the classes \mathcal{P}_n of underlying distributions, we consider families of nonlinear regression models where the feature-vectors are randomly scaled linear functions of i.i.d. variables, as described in (C2), which follows.

IntroductionFinite samplesAsymptoticsRemarksReferencesJAMES-STEIN TYPE PREDICTORS(C2). Fix finite constants $C_0 > 0$, $c_0 > 0$ and probability measures \mathcal{L}_l , \mathcal{L}_w on \mathbb{R} , so
that \mathcal{L}_w has mean zero, unit variance and finite fourth moment, $\int s^2 \mathcal{L}_l(dx) = 1$
and $\mathcal{L}_l((-c_0, c_0)) = 0$. For each n, the following holds under each
 $P \in \mathcal{P}_n = \mathcal{P}_n(C_0, c_0, \mathcal{L}_l, \mathcal{L}_w)$:

- $(x_i, y_i) \in \mathbb{R}^{p_n+1}$ are i.i.d.
- ► The feature vector *x*⁰ is distributed as

$$x_0 \sim l_0 \Sigma_P^{1/2}(w_1,\ldots,w_{p_n})',$$

where the w_i are i.i.d. according to \mathcal{L}_w , $l_0 \sim \mathcal{L}_l$ is independent of the w_i and $\Sigma_p^{1/2}$ is the symmetric positive definite square root of a positive definite $p_n \times p_n$ matrix Σ_p .

• The response y_0 has mean zero and

$$y_0 \| x_0 \sim m_P(x_0) + \sigma_P v_0,$$

where v_0 is independent of x_0 , has a Lebesgue density, mean zero, unit variance and fourth moment bounded by C_0 , with measurable regression function m_P satisfying $\mathbb{E}_P m_P(x_0) = 0$.

JAMES-STEIN TYPE PREDICTORS

Theorem 3

For each n let $\mathcal{P}_n = \mathcal{P}_n(C_0, c_0, \mathcal{L}_l, \mathcal{L}_w)$ be as in (C2). For each $P \in P_n$, define β_P as the minimizer of $\mathbb{E}_p(y_0 - \beta' x_0)$ over $\beta \in \mathbb{R}^{p_n}$. Assume that $p_n/n \to \kappa \in (0, 1)$; that the densities v_0 in (C2) are uniformly bounded; and that

$$\limsup_{n\to\infty}\sup_{P\in\mathcal{P}_n}\mathbb{E}_P\left[\left(\frac{m_P(x_0)-x_0'\beta_P}{\sigma_P}\right)^2\right]\quad<\quad\infty.$$

Then Theorem 2 applies to the James-Stein type predictor $\hat{m}_n(x_0) = x'_0 \hat{\beta}_n(c)$. (For c = 0, this also covers the OLS-predictor $x'_0 \hat{\beta}_n$.)

INTERVAL LENGTH

We now turn to the length of the prediction interval $PI_{\alpha}(T_n, x_0)$, i.e.,

$$\hat{q}_{1-\alpha/2} - \hat{q}_{\alpha/2}.$$

For the classes \mathcal{P}_n of underlying distributions, we consider families of parametric linear models indexed by the regression parameter $\beta_P \in \mathbb{R}^{p_n}$, by $\Sigma_P = \mathbb{E} x_0 x'_0 \in \mathbb{R}^{p_n \times p_n}$ and $\sigma_P^2 = \mathbb{E}_P (y_0 - x'_0 \beta_P)^2 \in (0, \infty)$. These classes are defined in (C3), which follows.

Introduction	Finite samples	Asymptotics	Remarks	References
Interval i	LENGTH			

- (C3). Fix a finite constant $c_0 > 0$ and probability measures \mathcal{L}_l , \mathcal{L}_w and \mathcal{L}_v on \mathbb{R} , so that \mathcal{L}_w and \mathcal{L}_v have zero mean, unit variance and finite fourth moments, and so that $\int s^2 \mathcal{L}_l(ds) = 1$ and $\mathcal{L}_l((-c_0, c_0)) = 0$. For each *n*, the following holds under each $P \in \mathcal{P}_n = \mathcal{P}_n(c_0, \mathcal{L}_l, \mathcal{L}_w, \mathcal{L}_v)$:
 - $(x_i, y_i) \in \mathbb{R}^{p_n+1}$ are i.i.d.
 - The feature vector x_0 is distributed as

$$x_0 \sim l_0 \Sigma_P^{1/2}(w_1,\ldots,w_{p_n})',$$

where w_1, \ldots, w_{p_n} are i.i.d. according to \mathcal{L}_w , where $l_0 \sim \mathcal{L}_l$ is independent of the w_i , and where $\Sigma_p^{1/2}$ is the symmetric square root of a positive definite $p_n \times p_n$ matrix Σ_p .

► The response *y*⁰ satisfies

$$y_0 \| x_0 \sim x'_0 \beta_P + \sigma_P v_0,$$

where $\beta_P \in \mathbb{R}^{p_n}$, $\sigma_P \in (0, \infty)$, and where $v_0 \sim \mathcal{L}_v$ independent of x_0 .

Introduction	Finite samples	Asymptotics	Remarks	References
INTERVAL	LENGTH			
-				

Theorem 4

For each *n* let $\mathcal{P}_n = \mathcal{P}_n(c_0, \mathcal{L}_l, \mathcal{L}_w, \mathcal{L}_v)$ be as in (C3). If $p_n/n \to \kappa \in (0, 1)$, then the scaled empirical α -quantile $\hat{q}_{\alpha}/\sigma_P$ of the leave-one-out residuals $\hat{u}_i = y_i - x'_i \hat{\beta}_n^{[i]}$ based on the OLS estimator converges \mathcal{P}_n -uniformly in probability to the corresponding α -quantile of the distribution of

$$lN\tau + v$$
,

where $l \sim \mathcal{L}_l$, $N \sim N(0, 1)$ and $v \sim \mathcal{L}_v$ are independent and where $\tau = \tau(\mathcal{L}, \kappa)$ is a constant.

This statement also holds in case $\kappa = 0$, provided that \mathcal{L}_v has a continuous and strictly increasing c.d.f. and $p_n \to \infty$.

The constant κ satisfies $\kappa = 0$ if and only if $\tau(\mathcal{L}_l, \kappa) = 0$. Moreover, if $\mathcal{L}_l(\{-1,1\}) = 1$, then $\tau(\mathcal{L}_l, \kappa) = \sqrt{\kappa/(1-\kappa)}$.

Limit of $(\hat{q}_{1-\alpha/2} - \hat{q}_{\alpha/2})/\sigma_P$ with $\mathcal{L}_l(\{1\}) = 1$ and for two choices of \mathcal{L}_v

Related methods

- ► Sample splitting: See last Figure.
- Jackknife+: A modification of the method proposed here by Barber et al. (2019). Controls unconditional coverage, even if predictor is not stable.
- Conformal prediction: Controls unconditional coverage, even if predictor is not stable. Cf. Vovk et al. (1999, 2005, 2009) as well as Lei et al. (2017, 2013) and Lei and Wasserman (2014).
- ► Tolerance regions: Give a confidence set for (x₀, y₀), from which a confidence set for y₀ can be obtained by cutting (so that efficiency is an issue). See Wilks (1941, 1942), Wald (1943) and Tukey (1947), and Krishnamoorthy and Mathew (2009) for an overview.

Introduction	Finite samples	Asymptotics	Remarks	References

EXTENSIONS

- The requirement in (C1), that $u_0 = y_0 m_P(x_0)$ is independent of x_0 , is an issue. A relaxation of this is work in progress and is looking good so far.
- ► The requirement in (C1), that the density f_{u,P} of u₀ satisfies ||f_{u,P}||_∞ < ∞, can be replaced by a Hölder condition; the resulting theory becomes more complex.</p>
- Our prediction intervals have constant width, independent of x₀. The construction of variable-width prediction intervals is being investigated.

Introduction	Finite samples	Asymptotics	Remarks	References
References				

- Barber, R.F., Candes, E.J., Ramdas, A. and Tibshirani, R.J. (2020): Predictive inference with the jackknife+. *Ann.Statist.* forthcoming.
- ▶ Bousquet, O. and A. Elisseeff (2002). Stability and generalization. J. Mach. Learn. Res. 2, 499526.
- El Karoui, N. (2018). On the impact of predictor geometry on the performance on high-dimensional ridge-regularized generalized robust regression estimators. *Probab. Theory Relat. Fields* 170(1-2), 95175.
- ► El Karoui, N. and E. Purdom (2015). Can we trust the bootstrap in high-dimension? The case of linear models. *J. Mach. Learn. Res.* 19 (2018) 1-66.
- Steinberger, L. and Leeb, H. (2020): Conditional predictive inference for high-dimensional stable algorithms. *arXiv preprint arXiv:1809.01412v2*
- Tukey, J. W. (1947): Non-parametric estimation ii. Statistically equivalent blocks and tolerance regions the continuous case. Ann. Math. Statist. 18(4), 529539.
- Vovk, V., Nouretdinov, I., and Gammerman, A. (2009): On-line predictive linear regression. Ann. Statist. 37(3), 15661590.