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Introduction

Typical Features of Geochemical Data

1 The data is multivariate.
2 The data is compositional, which means that correlations tend to be

negative.
3 The measurements are spatially dependent, which means correlations

between variables taken at sites close to each other tend to be high.
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Introduction

Maps for selected chemical elements
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> 76.3 −  396
> 17.6 − 76.3
> 2.26 − 17.6
> 1.46 − 2.26
   0.96 − 1.46
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> 54.3 − 81.9
> 38.9 − 54.3
> 26.1 − 38.9
> 19.0 − 26.1
   11.7 − 19.0
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> 388 −  983
> 261 −  388
> 142 −  261
> 82.8 −  142
   24.9 − 82.8
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Some Basics for Spatial Data

Spatial statistics terminology

Consider a random field z = z(s) defined on a domain S, i.e. s ∈ S.
Some terminology needed later:

z is of second order: var(zs) <∞ for all s ∈ S,
z is stationary in the weak sense: E (z(s1)) = E (z(s2)) is constant
and the covariance function is translation invariant so that
COV(z(s1), z(s2)) = C(s1 − s2) for all s1, s2 ∈ S. C is called then the
covariance function.
z is isotropic in the wide sense: its expectation and its variance are
invariant under rotation.

For a stationary and isotropic random field, the covariance function can be
written: C(x) = C(||x ||).
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Some Basics for Spatial Data

Covariance functions

Covariance functions are a corner stone of spatial statistics and there exist
many covariance functions for weakly stationary and isotropic random
fields. Two popular choices are:

A popular class of covariance model is the Matérn class:

C(h) = σ2 1
Γ(h)

(
θh
2

)2
2Kν(θh), where ν > 0, θ > 0

and the function Kν is a modified Bessel function of order ν.
Another popular class is the spherical covariance model:

C(h) =

 σ2(1− 3
2

h
φ + 1

2

(
h
φ

)3
) if h ≤ φ

0 otherwise
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Some Basics for Spatial Data

Covariance functions II
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Some Basics for Spatial Data

Semivariogram
Geoscientists usually however rather describe spatial dependence in the
terms of a semivariogram γ.
For weakly stationary isotropic random fields we have the following
relation between the covariance and the semivariogram:

γ(||si − sj ||) = C(0)− C(||si − sj ||).

γ(0) = 0 and the function increases until the sill which is the value
σ2 = var(z(s)).
The value h∗ is called the range and gives the distance when
observations start to be uncorrelated.
The value h∗∗ is called the practical range and is the distance at
which the semivariogram achieves 95% of the sill.
There may be a discontinuity at 0 which is called the nugget effect
and is linked with measurement errors or/and micro-variability.
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Some Basics for Spatial Data

Semivariograms for selected chemical elements
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Empirical semivariograms for three chemicals from the Kola data togehter
with fitted spherical semivariograms functions.
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Some Basics for Spatial Data

Multivariate spatial data

Specifying multivariate spatial covariance functions is however much more
difficult as these should have many specific properties and fulfil many
conventions.
Multivariate spatial models are particular challenging as many parameters
need to be fitted.
The maybe most popular multivariate spatial model for p-variate data, the
linear model of coregionalization (LMC) is based on K univarite spatial
correlation functions ρk , k = 1, . . . ,K and yields the covariance matrix

C(h) =
K∑

k=1
ρk(h)Tk ,

with k < p and Tk ’s being non-negative definite p × p matrices.
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Blind Source Separation

Blind Source Separation Problem

The blind source separation problem in its most basic form assumes the
model

x = Ωz,

where x is an observable p-variate vector, Ω a full rank p×p mixing matrix
and z an unobservable p-variate vector, the so-called sources. The goal of
blind source separation (BSS) is to estimate Ω in order to recover z.

Clearly the BSS problem is not solvable without further assumptions on z.
Several approaches have been suggested for this purpose in the literature.
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Blind Source Separation

Motivation of BSS

One of the most common assumptions in BSS is that the components in z
are uncorrelated or even independent.
The motivations behind BSS is then:

The components of z have a (physical) meaning.
Only a few components are actually of interest (dimension reduction).
Especially under the independence assumption the components of z
can be considered individually simplifying the modelling.

BSS is well established for iid data and multivariate time series.

In the following we suggest BSS for spatial data.
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Spatial Blind Source Separation

Spatial blind source separation model
Let x(s) = (x1(s), . . . , xp(s))> be p-variate random field defined on a
domain S.

We say that x(s) follows the spatial BSS (SBSS) model if at any location
s x(s) is a linear mixture of a p-variate latent field
z(s) = (z1(s), . . . , zp(s))>, i.e.,

x(s) = Ωz(s), (1)

where Ω is an unknown p × p full rank matrix. We make the following
assumptions:

(A1): E(z(s)) = 0 for s ∈ S;
(A2): COV(z(s)) = E(z(s)z(s)>) = Ip;
(A3): COV(z(s1), z(s2)) = E(z(s1)z(s2)>) = D(s1, s2), where D is

a diagonal matrix whose diagonal elements depend only on
s1 − s2.
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Spatial Blind Source Separation

Spatial blind source separation model II

Assumption (A1) is made for convenience, Assumption (A2) requires
uncorrelated components and fixes the scales of the latent fields and
Assumption (A3) says that there are also no spatial cross-dependencies
between the components.

These assumptions do however not uniquely define the model as the order
and the signs of the components are not fixed. That is however common
for all BSS methods and not considered a problem in practise.

In the following, let COV(zk(si ), zk(sj)) = Kk(si − sj) = D(si , sj)k,k , where
Kk denotes the stationary covariance function of zk , for k = 1, . . . , p.
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Spatial Blind Source Separation

Connection LMC and SBSS

There is a simple connection between the spatial blind source separation
model and the linear model of coregionalization.

The covariance matrix Cx(h) resulting from a spatial blind source
separation model is always symmetric and can be written as

Cx(h) =
p∑

k=1
Kk(h)Tk ,

with Tk = ωkω
T
k , ωk being the kth column of Ω. Thus the spatial blind

source separation model is a special case of the linear model of
coregionalization with r = p and where all coregionalization matrices Tk ,
k = 1, . . . , p, are rank one matrices.
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Spatial Blind Source Separation

Local covariance matrices

Assume n spatial locations s1, . . . , sn.

The workhorse to solve the spatial BSS problem here will be local
covariance matrices which are defined as

M(f ) = n−1
n∑

i=1

n∑
j=1

f (si − sj)E(x(si )x(sj)>),

where f : Rp → R is called a kernel function.
As a special case we denote

M(f0) = n−1
n∑

i=1
E(x(si )x(si )>).

Estimators of M(f ) are denoted M̂(f ).
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Spatial Blind Source Separation

Kernels for spatial covariance matrices

There are many possible kernel functions for the local covariance
functions. We consider here the following three:

1 Ball kernel: B(h)(s) = I(||s|| ≤ h) where h > 0 is a constant and I(·)
denotes the indicator function.

2 Ring kernel: R(h1, h2)(s) = I(h1 < ||s|| ≤ h2), where 0 < h1 ≤ h2
3 Gaussian kernel: G(h)(s) ≡ exp{−0.5(Φ−1(0.95||s||/h)2}, where

Φ−1(x) is the quantile function of the standard normal distribution,
making G(h) have 95% of its total mass in the radius h ball around
its center. Thus, G(h) can be considered a smooth approximation of
B(h).
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Spatial Blind Source Separation

BSS unmixing matrix via simultaneous diagonalization

The first unmixing matrix functional we introduce is defined as

Definition
For any function f : Rd → R, an unmixing matrix functional Γ(f ) is
defined as a functional which simultaneously diagonalizes M(f ) and M(f0)
in the following way

Γ(f )M(f0)Γ(f )> = Ip and Γ(f )M(f )Γ(f )> = Λ(f ),

where Λ(f ) is a diagonal matrix with diagonal elements in decreasing order.

Proposition
The unmixing problem given by f is identifiable if and only if the diagonal
elements of Ω−1M(f )Ω−T are distinct.
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Spatial Blind Source Separation

Assumptions for asymptotic considerations I

To derive asymptotic properties of the previous unmixing matrix functional
we need besides Assumptions (A1)-(A3) some further assumptions:

(A4) The coordinates z1, . . . , zp of z are stationary Gaussian
processes on Rd ;

(A5) A fixed ∆ > 0 exists so that, for all n ∈ N and, for all i 6= j ,
i , j = 1, . . . , n, ‖si − sj‖ ≥ ∆;

(A5) thus implies that S is unbounded which means we use an increasing
domain asymptotic framework.
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Spatial Blind Source Separation

Assumptions for asymptotic considerations II

(A6) Fixed A > 0 and α > 0 exist such that, for all x ∈ Rd and,
for all k = 1, . . . , p,

|Kk(x)| ≤ A
1 + ‖x‖d+α ;

(A7) Assuming Assumption (A6) holds, then for the same A > 0
and α > 0 we have

|f (x)| ≤ A
1 + ‖x‖d+α ;

(A8) We have

lim inf
n→∞

min
i=2,...,p

[{
Ω−1M(f )Ω−>

}
i,i

−
{

Ω−1M(f )Ω−>
}

i−1,i−1

]
> 0.
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Spatial Blind Source Separation

Properties of M̂(f )

We can show show for the properties of M̂(f ):

Proposition

Suppose n→∞ and Assumptions (A1) to (A6) hold and let f : Rd → R
satisfy Assumption (A7).
Then M̂(f )−M(f )→ 0 in probability when n→∞.
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Spatial Blind Source Separation

Properties of M̂(f ) II

Proposition

Assume the same assumptions as above. Let w(f ) be the vector of size
p2 × 1, defined for i = (a − 1)p + b, a, b ∈ {1, . . . , p}, by

w(f )i = n1/2{M̂(f )a,b −M(f )a,b}.

Let Qn be the distribution of {w(f )>,w(f0)>}>. Then, as n→∞,

dw [Qn,N{0,V(f , f0)}]→ 0,

where N denotes the normal distribution.

Nordhausen (TU Wien) Spatial BSS October 23th 2020 23 / 48



Spatial Blind Source Separation

Properties of Γ̂(f ) and Λ̂(f )

Proposition

Assume Assumptions (A1)-(A8) hold.
For Γ̂(f ) and Λ̂(f ) let Qn be the distribution of

n1/2

 vect
{

Γ̂(f )−Ω−1
}

diag
{

Λ̂(f )− Λ(f )
}  .

Then, we can choose Γ̂(f ) and Λ̂(f ) so that when n→∞,

dw{Qn,N (0,F1)} → 0.
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Spatial Blind Source Separation

BSS unmixing matrix via joint diagonalization

To improve the above estimator the idea is to use more than two kernel
functions of the form f0, f1, . . . , fk with k ≥ 2.

Definition
For any f0, f1, . . . , fk , an unmixing matrix functional Γ can be formulated as

Γ̂ ∈ argmax
Γ:ΓM̂(f0)Γ>=Ip

Γ has rows γ>1 ,...,γ>p

k∑
l=1

p∑
j=1
{γ>j M̂(fl )γ j}2. (2)

Proposition
The unmixing problem given by f0, . . . , fk is identifiable if and only if for
every pair i 6= j , i , j = 1, . . . , p, there exists l = 1, . . . , k such that
{Ω−1M(fl )Ω−T}i ,i 6= {Ω−1M(fl )Ω−T}j,j .
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Spatial Blind Source Separation

Assumptions for asymptotic considerations III

As weeker assumptions are needed for the identifiability for the unmixing
matrix based on joint diagonalization Assumption (A8) can be relaxed to

(A9) A fixed δ > 0 and n0 ∈ N exist so that for all n ∈ N, n ≥ n0,
for every pair i 6= j , i , j = 1, . . . , p, there exists l = 1, . . . , k,
such that |{Ω−1M(fl )Ω−T}i ,i − {Ω−1M(fl )Ω−T}j,j | ≥ δ.
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Spatial Blind Source Separation

Consistency of Γ̂

Proposition

Let k ∈ N be fixed and Assumptions (A1)-(A7) and (A9) hold.
Let Γ̂ = Γ̂{M̂(f0), M̂(f1), . . . , M̂(fk)}.
Then we can choose Γ̂ so that Γ̂→ Ω−1 in probability when n goes to
infinity.
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Spatial Blind Source Separation

Asymptotic normality of Γ̂

Proposition

Assume the same assumptions as in the previous proposition.
Let (Γ̂n)n∈N be any sequence of p × p matrices so that for any n ∈ N,
Γ̂n = Γ̂n{M̂(f0), M̂(f1), . . . , M̂(fk)}. Then, a sequence of permutation
matrices (Pn) and a sequence of diagonal matrices (Dn) exist, with
diagonal components in {−1, 1}, so that the distribution Qn of
n1/2vect(Γ̌n −Ω−1) with Γ̌n = DnPnΓ̂n satisfies, as n→∞,

dw{Qn,N (0,Fk)} → 0.
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Spatial Blind Source Separation

Simulation study I

To verify the asymptotic properties of our estimators we conducted a
simulation study using always 3-variate random fields and different designs
for the locations mimicking an increasing domain framework and all
components have Matern covariance functions with different shape and
range parameters.

The performance measure used in the simulations is the minimum distance
index

MDI(Γ̂) = (p − 1)−1/2 inf{‖CΓ̂Ω− Ip‖,C ∈ C},

where C is the set of all matrices with exactly one non-zero element in
each row and column and ‖ · ‖ is the Frobenius norm.
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Used Matern functions
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Increasing domain settings
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Spatial Blind Source Separation

Results I
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The solid lines give the mean values of n(p − 1) MDI(Γ̂)2 in the first simulation
and the dashed lines correspond to the asymptotic approximations of the same
quantities. The three used local covariance matrices are B(1) (blue line), R(1, 2)
(green line) and {B(1),R(1, 2)} (red line).
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Simulation study II

The second simulations study explores the effect of the range of the latent
fields and compares the choice of the different local covariances.

We consider a total of eight different local covariance matrices,
B(r),R(r − 1, r) for r = 1, 3, 5, and the joint diagonalisations of the
previous sets: {B(1),B(3),B(5)} and {R(0, 1),R(2, 3),R(4, 5)}.

Comparisons are based on the asymptotic approximations to the
distribution of n(p − 1) MDI(Γ̂)2.
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Results II
Diamond−shaped Rectangular Random
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The solid and the dashed lines correspond, respectively, to the ball and ring
kernels and the value of the parameter r is indicated by the color of the line as
follows: 1 (red), 3 (green), 5 (blue), J (purple). The y -axis has a logarithmic
scale.
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Simulation study III

For efficiency comparisons for many different local covariance matrices we
considered a two different fixed locations settings based on the map of
Finland using 1000 locations.
Estimates were obtained with the local covariance matrix kernels
B(r),R(r − 10, r),G(r), where r = 10, 20, 30, 100, and the joint
diagonalisation of each of the three quadruplets
{B(10),B(20),B(30),B(100}, {R(10),R(20),R(30),R(100} and
{G(10),G(20),G(30),G(100} adding up to a total of 15 estimators.
For 2000 Repetitions the MDI indices were computed.
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Designs for efficiency simulations

Uniform Skew
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Results III (Finland map uniform)
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Results III (Finland map skew)
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Spatial Blind Source Separation

SBSS for the Kola data I

We applied SBSS to the Kola data (ilr transformation).
Together with an subject expert, when using only one local covariance
matrix, a good option seemed to be a ball kernel with radius 50km. This
yielded six meaningful components.

However using four ring kernels R(0,25), R(25,50), R(50,75) and
R(75,100) yielded more or less the same six components of interest.

The six components of interest based on the joint diagonalization are
shown on the following slides.
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SBSS for the Kola data II
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SBSS for the Kola data III
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SBSS for the Kola data IV
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Comparison of spatial prediction methods

Univariate spatial prediction is usually called kriging and multivariate
spatial prediction cokriging and there many variants of (co-) kriging.

Common to all of them is however that spatial covariance functions need
to be specified.

In the following simulation study the goal is to compare cokringing against
univariate kriging based on SBSS. As a reference we made also prediction
using neural networks.
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Simulation setting for predictions study

Setting 1: 3-variate SBSS model with 3 Gaussian fields having
C1(Z1) = Csp(h; 1, 2), C2(Z2) = Cm(h; 1, 0.5, 2) and
C3(Z3) = Cm(h; 1, 1, 2) as covariance functions.

Setting 2: 3-variate SBSS model with 3 t5 fields having
C1(Z1) = Csp(h; 1, 2), C2(Z2) = Cm(h; 1, 0.5, 2) and
C3(Z3) = Cm(h; 1, 1, 2) as covariance functions.

Setting 3: 3-variate parsimonious multivariate Matérn model (PMat)
In all settings the mixing matrices entries of the Ω’s were drawn from
N(0, 1) for all simulations.
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Spatial Blind Source Separation

Simulation setting for predictions study

To select the spatial locations we consider two variants:
uniform x and y coordinates are independently sampled from U(0, 1).

skew x and y coordinates are independently sampled from B(2, 5).
Then all coordinates are multiplied by 35 to obtain the sampling domain
S = [0, 35]× [0, 35].
We sample for each variant nS = 1225 sites.
In additionally define a grid S∗ = {(x + 0.5, y + 0.5) : x , y ∈ Z ∩ [0, 35]}
which again has nS∗ = 1225 sites.
For every iteration of the simulation we simulate the field for each
coordinate variant on S and S∗ at once and use for each coordinate
variant the values of the field on S to predict the values on S∗.
Mean squared error (MSE) between the predictions and simulated (true)
values on S∗ are used as the performance measure of the spatial prediction.
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Using SBSS for Spatial Prediction

Prediction performance

Field Setting Variant BN SNN LMC + Cokriging SBSS + Spheric SBSS + Matérn
SBSS Normal uniform 0.66(0.03) 0.63(0.03) 0.57(0.03) 0.49(0.02) 0.47(0.02)

skew 1.20(0.14) 1.16(0.13) 0.96(0.08) 0.94(0.10) 0.90(0.08)
SBSS t5 uniform 1.40(0.15) 1.32(0.15) 1.26(0.15) 1.10(0.13) 1.07(0.13)

skew 2.22(0.31) 2.13(0.29) 1.82(0.21) 1.77(0.24) 1.72(0.21)
PMat uniform 0.34(0.02) 0.33(0.02) 0.29(0.01) 0.30(0.02) 0.31(0.02)

skew 0.56(0.07) 0.54(0.07) 0.45(0.04) 0.44(0.04) 0.44(0.04)

Nordhausen (TU Wien) Spatial BSS October 23th 2020 46 / 48



Key References

Key References

Nordhausen, K., Oja, H., Filzmoser, P. and Reimann, C. (2015): Blind
Source Separation for Spatially Correlated Compositional Data.
Mathematical Geosciences, 47, 753–770.

Bachoc, F., Genton M.G., Nordhausen, K.,Ruiz-Gazen A. and Virta, J.
(2020): Spatial Blind Source Separation. Biometrika, 107, 627–646.
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Thank you for your attention!

klaus.nordhausen@tuwien.ac.at
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