Factor regression for dimensionality reduction and data integration techniques with applications to cancer data

Alejandra Avalos Pacheco ₩@AleAviP ✓avalos@hms.harvard.edu

Wirtschaftsuniversität Wien

October 16th, 2020

Dr. David Rossell UPF

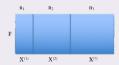
Dr. Richard Savage Pinpoint

Motivation

- New technologies enable the gathering of large datasets.
- Two main statistical challenges:
 - Volume: High dim. data
 hard to handle and interpret.
 - Variety: Data are often not collected all at once systematic biases.

GOAL

Combine multiple studies into a single analysis.



Solution

Solution

A sparse latent factor regression model to integrate heterogeneous data Factor analysis + factor regression + sparsity + batch effect correction

Contributions:

- Showing that these issues are practically-relevant in cancer genomics.
- A flexible Bayesian factor regression model to integrate large datasets, jointly learning batch and covariate effects and sparse low-rank covariances.
- A novel and scalable non-local prior based formulation to induce sparsity and learn the number of factors. The first adaptation of non-local priors to factor models.
- A scalable EM algorithm with closed-form updates to obtain Mode a Posteriori (MAP) estimates and an R implementation publicly available https://github.com/AleAviP/BFR.BE.

Cancer statistics 1

New cases of cancer, worldwide, 2018.

DEATHS

9.6 million

Deaths from cancer. worldwide, 2018 1 in 6 deaths

SURVIVAL

50%

Survive cancer for 10 or more years UK, 2010-2011

PREVENTION

Preventable cases 2015, UK

Large scale projects:

- The Cancer Genome Atlas (TCGA),
- Cancer Genome Project (CGP)
- International Cancer Genome Consortium (ICGC)

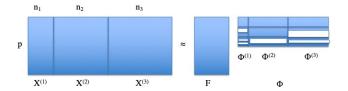
 $^{^{1}}$ https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-typ https://www.who.int/news-room/fact-sheets/detail/cancer

Naïve approach

• Edefonti et al (2012) stack all the studies in **one** data-set:

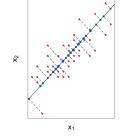
$$\mathbf{x}_{i}^{\top} = \left((\mathbf{x}_{i}^{(1)})^{\top}, (\mathbf{x}_{i}^{(2)})^{\top}, \dots, (\mathbf{x}_{i}^{(S)})^{\top} \right)$$

• Perform factor analysis



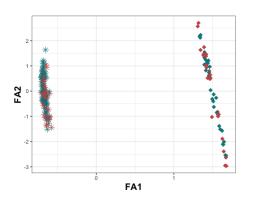
Factor analysis

- Goal: Given $X \in \mathbb{R}^{n \times p}$ obtain $F \in \mathbb{R}^{n \times q}$, q << p
- Model: $\mathbf{x}_i = \phi \mathbf{f}_i + \mathbf{e}_i$ $f_i \sim N(0, \mathbf{I})$ $\mathbf{e}_i \mid \mathcal{T} \sim N(0, \mathcal{T}^{-1})$ $\mathbf{x}_i \mid \mathbf{f}_i, \phi, \mathcal{T} \sim N(\phi f_i, \mathcal{T}^{-1})$ $\mathbf{x}_i \mid \phi, \mathcal{T} \sim N(0, \phi \phi^\top + \mathcal{T}^{-1})$
- MLE, optimise: $\log p(X|\phi, T)$ ϕ and T do not have a closed-form.



• When $\mathcal{T}^{-1} = \sigma_{\epsilon}^2 I$, we recover PPCA and PCA when $\mathcal{T}^{-1} = 0$.

Ovarian cancer dataset



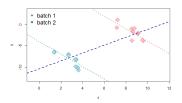
Problem

Provides limited flexibility to account for systematic biases or sources of variation that are not of interest

Batch effects

Batch effects are non-biological experimental variation

- Arise when data are generated under different experimental conditions.
- Are inevitable and can lead to incorrect conclusions when combining data without adjusting for it.
- Account for a large part of the covariance and thus have a strong effect on the solution, limiting our ability to see biological patterns of interest.



BFR with batch effect correction ²

Bayesian factor regression with batch effect correction:

- Model: $x_i = \phi f_i + \theta v_i + \beta b_i + e_i$
 - $\theta \in \mathbb{R}^{p \times p_v}$: regression coefficients
 - $\beta \in \mathbb{R}^{p \times p_b}$: additive batch effects
 - $v_i \in \mathbb{R}^{p_v}$: observed covariates
 - $b_i \in \{0,1\}^{p_b}$: batch indicators
 - $e_{ij} \sim N(0, \tau_{is}^{-1})$, τ_{js} : the j^{th} idiosyncratic precision element in batch s.
- Priors
 - Idiosyncratic precisions: $\tau_{jl} \mid \eta, \xi \sim \mathsf{Gamma}(\eta/2, \eta \xi/2)$
 - Regression parameters: $(\theta_j, \beta_j) \sim N(0, \psi I)$

Flat prior on the loadings

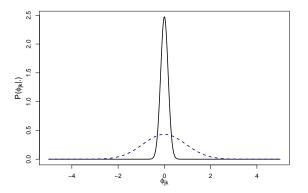
Bayesian factor regression with batch effect correction model

$$\mathbf{x}_i = \phi \mathbf{f}_i + \theta \mathbf{v}_i + \beta \mathbf{b}_i + \mathbf{e}_i$$

- ✓ Enables a more complete understanding of multi-study data.
- ✓ Corrects mean and variance batch effects.
- ✓ EM algorithm is able to effectively estimate and remove such biases.
- X Dimension of latent factors needs to be specified.

Spike-and-slab prior on the loadings

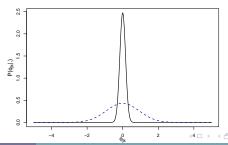
$$p(\phi_{jk} \mid \gamma, \lambda_0, \lambda_1) = (1 - \gamma_{jk})p(\phi_{jk} \mid \lambda_0, \gamma_{jk} = 0) + \gamma_{jk}p(\phi_{jk} \mid \lambda_1, \gamma_{jk} = 1)$$
* Normal-spike-and-slab ³



³George and McCulloch (1993) Journal of the American Statistical Association ■

Normal-spike-and-slab prior model

- ✓ Enables a more complete understanding of multi-study data.
- Corrects mean and variance batch effects.
- ✓ EM algorithm is able to effectively estimate and remove such biases.
- √ Dimension of the latent factors is learned
- ✓ Discriminates the important (slab), from the ignorable factors (spike).
- Slab prior assigns non-negligible positive probability to regions consistent with null hypotheses.



Spike-and-slab prior on the loadings

$$p(\phi_{jk} \mid \gamma, \lambda_0, \lambda_1) = (1 - \gamma_{jk})p(\phi_{jk} \mid \lambda_0, \gamma_{jk} = 0) + \gamma_{jk}p(\phi_{jk} \mid \lambda_1, \gamma_{jk} = 1)$$

- * Normal-spike-and-slab
- ★ Normal-spike-and-MOM-slab ⁴

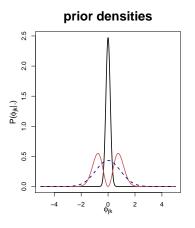
Non-local priors

An absolutely continuous measure with density $p(\phi_{jk} \mid \gamma_{jk} = 1)$ is a non-local prior if $\lim_{\phi_{ik}\to 0} p(\phi_{jk} \mid \gamma_{jk} = 1) = 0$.

$$p(\phi_{jk} \mid \lambda_1, \gamma_{jk} = 1) = \frac{\phi_{jk}^2}{\lambda_1} N(\phi_{jk}; 0, \lambda_1)$$

⁴ Johnson V. E., Rossell, D., (2010) Journal of the Royal Statistical Society Series Back

Novel non-local spike-and-slab priors Harvard-MIT Center for Regulatory Science

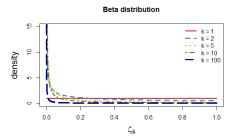


inclusion probabilities 0.8 0.2 0.0 -1.0 -0.5 0.5 0.0 0ik 1.0

Hyper prior on the latent indicators

Indian buffet process (IBP) prior ⁵

$$\Gamma = \{\gamma_{jk}\}_{j,k=1}^{P,\infty}$$



Inference is done via EM algorithm⁶, providing closed-form expressions.

⁵Griffiths and Ghahramani (2005) Technical report, Gatsby Computational Neuroscience Unit

⁶Ročková, V., George, E. I., (2016, 2014) Journal of the American Statistical Association

Algorithm

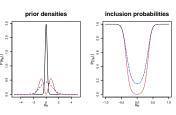
$$\begin{split} & \text{initialise } \hat{\phi} = \phi^{(0)}, \ \hat{\theta} = \theta^{(0)}, \ \hat{\beta} = \beta^{(0)}, \ \widehat{T_{\mathbf{b}_i}} = \mathcal{T}_{\mathbf{b}_i}^{(0)}, \ \hat{\zeta} = \zeta^{(0)} \\ & \text{while } \epsilon > \epsilon^*, \ \epsilon_\phi > \epsilon_\phi^* \ \text{ and } t < T \\ & \text{E-step:} \\ & Latent \ factors: \quad \mathbb{E}[f_i|\hat{\Delta},X] = (\mathbf{I}_q + \hat{\phi}^\top \widehat{T_{\mathbf{b}_i}}\hat{\phi})^{-1}\hat{\phi}^\top \widehat{T_{\mathbf{b}_i}}(x_i - \hat{\theta}v_i - \hat{\beta}b_i) \\ & Latent \ indicators^+: \quad \mathbb{E}[\gamma_{jk} \mid \hat{\Delta}] = \hat{\rho}_{jk} \\ & \text{M-step:} \\ & Loadings^+: \quad \hat{\phi}_{jk} = \arg\max_{\phi_{jk}} Q_1(\hat{\Delta}) \\ & Variances: \quad \hat{\tau}_i^{-1} = \frac{1}{n_1 + n - 2} \text{diag} \left\{ \sum_{i: \ b_{ij} = 1} \left(\hat{x}_i \hat{x}_i^\top - 2 \hat{x}_i \mathbb{E}[f_i \mid \cdot]^\top \hat{\phi}^\top + \hat{\phi} \mathbb{E}[f_i f_i^\top \mid \cdot] \hat{\phi}^\top \right) + \eta \xi \mathbf{I}_p \right\} \\ & Coefficients: \quad (\hat{\theta}_j^\top, \hat{\beta}_j^\top) = \sum_i \left[\hat{\tau}_j^\top b_i (x_{ij} - \hat{\phi}_j^\top \mathbb{E}[f_i \mid \cdot]) (v_i, b_i)^\top \right] \left[\sum_i \left[\hat{\tau}_j^\top b_i (v_i, b_i) (v_i, b_i)^\top \right] + \frac{1}{\psi} \mathbf{I} \right]^{-1} \\ & Weights: \quad \hat{\zeta}_k = \frac{\sum_{j=1}^p \hat{\rho}_{jk} + \frac{\hat{a}_\zeta}{k} - 1}{\frac{\hat{a}_\zeta}{k} + b_\zeta + p - 1} \\ & \text{set } \Delta^{(t+1)} = \hat{\Delta} \ \text{ and } \phi^{(t+1)} = \hat{\phi} \\ & \text{compute } \epsilon = Q(\Delta^{t+1}) - Q(\Delta^t), \ \epsilon_\phi = \max ||\phi_{jk}^{(t+1)} - \phi_{jk}^{(t)}|| \ \text{ and} \\ \end{aligned}$$

end

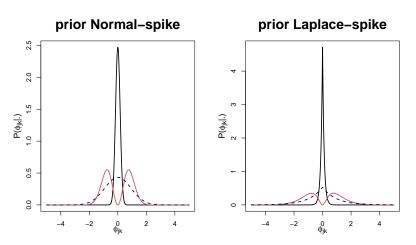
t = t + 1

Normal-spike-and-MoM-slab prior

- ✓ Enables a more complete understanding of multi-study data.
- Corrects mean and variance batch effects.
- ✓ EM algorithm is able to effectively estimate and remove such biases.
- ✓ Dimension of the latent factors is learned
- ✓ Discriminates the important (slab), from the ignorable factors (spike).
- \checkmark Provides guidelines for the choice of λ_0 and λ_1
- ✓ NLPs facilitate interpretation: well-separated hypotheses.
- ✓ NLPs balance parsimony and sensitivity
- Closed-form expressions of EM available (also approximations)



Laplace-spike-and-MoM-slab prior ⁷



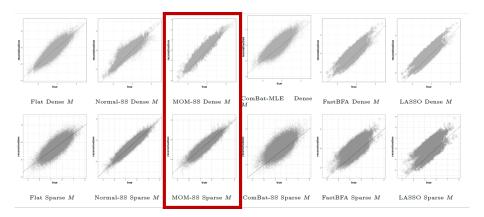
⁷Avalos-Pacheco A., Rossell D., Savage R. S., (2020+) arXiv → (2020+) arXiv → (2020+)

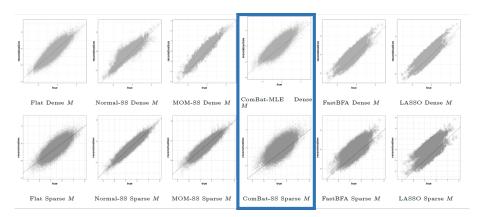
Synthetic data **without** batch effects for n=100, $q^*=10$, p=1,000 or 1,500 parameters, truly sparse loadings ϕ^* .

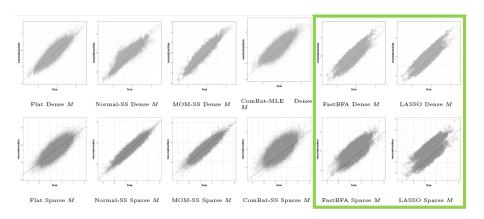
	p = 1,000				p = 1,500					
Model	ĝ	$ \hat{\phi} _0$	$ \mathbb{E}[X] - \hat{\mathbb{E}}[X] _F$	$ Cov[x_i] - \widehat{Cov}[x_i] $	ĝ	$ \hat{\phi} _0$	$ \mathbb{E}[X] - \hat{\mathbb{E}}[X] _F$	$ Cov[x_i] - \widehat{Cov}[x_i] $		
	q = 10									
Flat	10.0	10000.0	73.5	125.3	10.0	10000.0	89.4	203.7		
Normal-SS	10.0	1298.6	43.9	89.1	10.0	1931.4	54.2	180.7		
MOM-SS	10.0	1296.6	43.5	80.7	10.0	1919.3	56.2	169.4		
FastBFA	9.9	778.1	60.3	165.0	9.9	1157.8	72.8	247.7		
LASSO-BIC	10.0	5288.7	54.9	270.2	10.0	8414.6	67.2	408.4		
	q = 100									
Flat	100.0	100000.0	209.5	185.7	100.0	100000.0	259.2	280.2		
Normal-SS	31.0	1228.6	109.0	144.6	56.4	1568.2	181.3	231.9		
MOM-SS	9.7	856.8	79.4	143.3	9.2	745.4	105.0	245.6		
FastBFA	83.6	1389.9	198.1	141.9	87.2	1763.9	208.2	211.3		
LASSO-BIC	10.0	4787.3	54.1	271.4	10.0	7976.6	66.1	409.3		

Synthetic data with batch effects for n=200, $q^*=10$, p=250 or 500 parameters, truly sparse loadings ϕ^* .

	p = 250				p = 500				
Model	ĝ	$ \hat{\phi} _0$	$ \mathbb{E}[X] - \hat{\mathbb{E}}[X] _F$	$ Z\phi^{\top} - \mathbb{E}[Z \mid \cdot]\hat{\phi}^{\top} _{F}$	ĝ	$ \hat{\phi} _0$	$ \mathbb{E}[X] - \hat{\mathbb{E}}[X] _F$	$ Z\phi^{\top} - \mathbb{E}[Z \mid \cdot]\hat{\phi}^{\top} _{F}$	
	q = 10								
Flat	10.0	2500.0	42.7	52.0	10.0	2500.0	54.8	68.2	
Normal-SS	10.0	330.0	39.7	53.7	10.0	650.0	51.2	68.1	
MOM-SS	10.0	330.0	39.2	61.3	10.0	10.0 650.0 49.6		86.1	
ComBat-MLE	10.0	2500.0	127.2	143.3	10.0	10.0 2500.0 177.9		200.8	
FastBFA	10.0	173.1	53.7	166.8	10.0	376.0	71.3	235.4	
LASSO-BIC	10.0	1441.3	39.9	179.4	10.0	3159.1	50.0	254.2	
	q = 100								
Flat	100.0	25000.0	96.8	100.6	100.0	25000.0	147.8	152.5	
Normal-SS	10.0	765.8	45.7	54.8	10.6	1146.3	60.0	72.6	
MOM-SS	10.0	740.4	63.8	72.4	10.0	1158.7	85.7	108.3	
ComBat-MLE	100.0	25000.0	169.0	182.9	100.0	25000.0	232.7	252.4	
FastBFA	10.0	337.0	51.9	168.3	11.3	681.8	75.8	247.9	
LASSO-BIC	10.3	1374.0	39.6	178.9	10.3	2613.9	49.8	252.1	



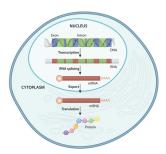




Gene expression

Gene expression

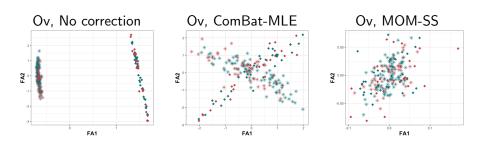
- It has been used as a drug discovery tool
- Key to understanding biological process such as cancer
- Useful for classifying cancer tumours into subtypes



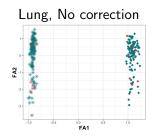
Cancer datasets

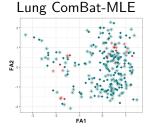
- Ovarian cancer: curatedOvarianData 1.16.0, p = 1,007 genes
 - **1** Ilumina Human microRNA array E.MTAB.386, $n_1 = 129$ patients.
 - ② GSE30161, $n_2 = 58$ patients.
- ② Lung cancer: TCGA2STAT 1.2, p = 1,198 genes
 - **1** Affymetrix Human Genome U133A 2.0 Array, $n_1 = 133$ patients.
 - ② Affymetrix Human Exon 1.0 ST Array, $n_2 = 112$ patients.
- **©** Colon cancer: Gene Expression Omnibus, p = 172 genes in the f-TBRS signature.
 - **1** GSE17538, $n_1 = 238$ patients.
 - ② GSE14333, $n_2 = 101$ patients.
- Age at initial pathologic diagnosis has been used as covariate.

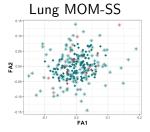
Ovarian Unsupervised



Lung Unsupervised

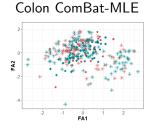


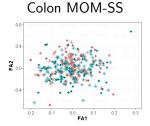




Colon Unsupervised

Colon, No correction





Supervised

Expression data of cancer datasets. Supervised analysis for ovarian (p=1,007 genes), lung (p=1,198 genes) and colon (p=172 genes) data sets.

	Ovarian			Lung			Colon		
	ĝ	$ \hat{M} _0$	Concordance index	ĝ	$ \hat{M} _0$	Concordance index	ĝ	$ \hat{M} _0$	Concordance index
Batch 1-MLE 90%	67.1	67569.7	0.618	52.1	62415.8	0.461	52.9	9081.6	0.736
Batch 1-MLE 70%	27.0	27088.3	0.632	35.2	42169.6	0.471	17.0	2924.0	0.721
Batch 2-MLE 90%	40.4	40481.4	0.522	36.6	43607.2	0.522	48.1	8256.0	0.479
Batch 2-MLE 70%	23.4	23362.4	0.524	23.2	27913.4	0.419	23.3	4007.6	0.495
Flat	100.0	100700.0	0.634	100.0	119800.0	0.669	100.0	17200.0	0.594
Normal-SS	7.8	7854.6	0.568	11.0	13178.0	0.489	7.0	1204.0	0.621
MOM-SS	4.0	4028.0	0.588	74.0	88652.0	0.665	53.4	9184.8	0.764
ComBat-MLE 90%	101.0	101707.0	0.589	79.0	94642.0	0.688	67.0	11524.0	0.738
ComBat-MLE 70%	41.0	41287.0	0.588	30.0	35940.0	0.568	24.0	4128.0	0.734
ComBat-FastBFA	100.0	100700.0	0.527	100.0	119800.0	0.707	100.0	17200.0	0.582

Advantages of our model

- ✓ Joint data adjustment and dimensionality reduction.
- ✓ First time NLPs are implemented in the factor analysis.
- ✓ Sparse models increases the quality of our estimations (with and without batches).
- √ Advantages of MOM-SS:
 - improves the estimation of factor cardinality
 - encourages parsimony and selective shrinkage.
 - removes distinct covariances patterns.
- ✓ Suitable in unsupervised and supervised frameworks.
- Useful for downstream analyses: competitive concordance indexes, in some cases with substantially less factors.

Avalos-Pacheco A., Rossell D., Savage R. S., (2020) Heterogeneous large datasets integration using Bayesian factor regression, Bayesian Analysis. projecteuclid.org/euclid.ba/1600135439.

Avalos-Pacheco A., (2019) Factor regression for dimensionality reduction and data integration techniques with applications to cancer data.

Johnson V. E., Rossell, D., (2010) On the use of non-local prior densities in Bayesian hypothesis tests. Journal of the Royal Statistical Society Series B 72(2),143-170.

Ganzfried, B. F., et. al., (2013) Curatedovariandata: clinically annotated data for the ovarian cancer transcriptome. Database 2013.

Wan, Y.-W., Allen, G. I., and Liu, Z., (2016) TCGA2STAT: simple TCGA data access forintegrated statistical analysis in R. Bioinformatics 32(6), 952-954.

Calon, A., et. al., (2012) Dependency of colorectal cancer on a TGF-beta-driven program in stromal cells for metastasis initiation. Cancer Cell 22(5), 571-584...

R Packages

MFR: https://github.com/AleAviP/BFR.BE