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Motivation

I Principal idea: link economically meaningful scenarios to

correlation scenarios

I Stress testing: portfolio effect of adverse correlation scenario

I Reverse stress testing: identify worst-case scenarios and their impact

I First application: correlation stress testing of “London Whale”

portfolio
Packham, N. and Woebbeking, F.: A factor-model approach for cor-

relation scenarios and correlation stress-testing. Journal of Banking

and Finance, 101 (2019), 92-103. link

I Work in progress: generalisation to credit and stock portfolios
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Regulatory aspects

I EU / Basel-regularion (CRR = Capital Requirments Regulation):

– CRR Article 386(1)(g):

“[..]institution shall frequently conduct a rigorous programme of

stress testing, including reverse stress tests[..]”

– CRR Article 375(1):

“[..]potential for significant basis risks in hedging strategies[..]”

– CRR Article 376(3)(b):

“[..] assess [..] internal model, particularly with regard to the

treatment of concentrations.”

– CRR Article 377:

“Requirements for an internal model for correlation trading”
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The “London Whale”

I “London Whale”: 2012 Loss at JPMorgan Chase & Co. of approx.

6.2 bn USD on a credit derivatives portfolio.

I Authorised trading position, hence risk management problem.

I Synthetic credit portfolio (SCP): portfolio of credit index derivatives

I Approx. 120 positions, CDX and iTraxx index and tranche products,

both investment grade and high-yield.

I Publicy available information: JPMorgan, 2013; United-States-Senate,

2013a,b
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The “London Whale” strategy

I “Smart short” strategy: credit protection on high yield is financed by

selling protection on investment grade indices.

I End of 2011: decision to reduce SCP’s risk-weighted assets (RWA’s).

I Avoid liquidation costs by increasing positions with opposite market

sensitivity (hedges).

I 23 March 2012: Senior executives ordered to stop trading on SCP;

net notional of 157 bn USD (up 260% from September 2011).

I Risk management of SCP focussed on value-at-risk (VaR) and

CSW-10 (credit spread widening of 10 basis points), but ignored

correlation changes.
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The “London Whale” PnL
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Figure: Cumulative PnL of the SCP in USD (2012). Data source: JPMorgan

(2013).
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The “London Whale” positions

Table: Top 10 Positions of SCP, 23 March 2012, USD net notional; several

positions have a market share close to 50%.

Index

Name Series Tenor Tranche (%) Protection Net Notional ($)

CDX.IG 9 10yr Untranched Seller 72,772,508,000

9 7yr Untranched Seller 32,783,985,000

9 5yr Untranched Buyer 31,675,380,000

iTraxx.EU 9 5yr Untranched Seller 23,944,939,583

9 10yr 22 – 100 Seller 21,083,785,713

16 5yr Untranched Seller 19,220,289,557

CDX.IG 16 5yr Untranched Buyer 18,478,750,000

9 10yr 30 – 100 Seller 18,132,248,430

15 5yr Untranched Buyer 17,520,500,000

iTraxx.EU 9 10yr Untranched Seller 17,254,807,398

Net Total 137,517,933,681

Data source: United-States-Senate (2013a, Exhibit 36) and DTCC (2014, Section 1, Table 7).
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Interest-rate modelling: Correlation parameterisation

I Parametric correlation model in interest-rate modelling / LIBOR

market model, e.g. Rebonato (2002); Brigo (2002); Schoenmakers

and Coffey (2000); Packham (2005)

I Simplest case: Correlation cij between two forward LIBOR’s is given by

cij = e−β|i−j|,

where β > 0 is a parameter, and i, j represent maturities.

I Captures stylised fact that correlations decay with increasing

maturity difference
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Correlation parameterisation

I Idea: For other asset classes (e.g. equity, credit) adapt

parameterisation with suitable risk factors such as geographic regions,

industries, investment grade vs. high-yield, ...

I C: n× n-correlation matrix of n financial instruments’ returns.

I Factors that determine the correlations: x = (x1, . . . , xm)′.

I Correlation of securities i and j modelled as

cij = exp(−(β1|x1
i − x1

j |+ β2|x2
i − x2

j |+ · · ·+ βm|xmi − xmj |),
i, j = 1, . . . , n,

with β1, . . . , βm positive coefficients, determined through calibration.

I Functional form implies that the greater “distance” |xki − xkj |, the

greater de-correlation amongst securities i and j.

I If two instruments are identical in all respects, then correlation is 1.
London Whale 13



Correlation parameterisation

I Given historical asset returns, parameters β1, . . . , βm are determined

e.g. by OLS on transformed correlations − ln(cij).

I Scenario (e.g. “the correlation between investment grade and

high-yield securities decreases”) is implemented by increasing

corresponding β-parameter.

I With parameters calibrated on a regular basis, the parameter history

can be used to obtain reasonable scenarios.
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Stress-testing correlations

I Stress-test: Effect on portfolio due to an adverse scenario.
I A shift in correlation has no instantaneous effect on portfolio value,

therefore consider portfolio risk.
I Portfolio risk measured by value-at-risk (VaR) in variance-covariance

approach:

VaRα = −V0 ·N1−α · (wᵀ Σ w)
1/2

,

with

– current position value V0,

– N1−α: (1− α)-quantile of the standard normal distribution,

– vector of portfolio weights w and

– covariance matrix Σ.
I For correlation stress test, need to consider portfolio variance

wᵀ Σ w.
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Core and peripheral risk factors

I Following e.g. Kupiec (1998), stress scenario comprises

– “core” risk factors (the ones that are stressed)

– “peripheral” risk factors (affected by stress).

I βs: j < m core factor parameters that are stressed directly

I βu: remaining m− j peripheral risk factor parameters

I In normal distribution setting, optimal estimator of ∆βu conditional

on ∆βs:

E(∆βu|∆βs) = ΣusΣ
−1
ss ∆βs,

where Σus and Σss denote the covariance and variance matrices of βu
and βs.
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Joint stress test of correlation and volatility

I Correlation shocks often coincide with volatility shocks, see e.g.

(Alexander and Sheedy, 2008; Longin and Solnik, 2001; Loretan and

English, 2000).

I Simple model that combines both: multivariate t-distribution.

I In this case d-dimensional vector of asset returns X follows a normal

variance mixture distribution with decomposition (e.g. Ch. 6.2 of

McNeil et al. (2015))

X =
√
V ·A · Z,

where – Z ∼ N(0, Ik),

– V is a scalar r.v. independent of Z,

– V ∼ Ig(1/2 ν, 1/2 ν), i.e., V follows an inverse gamma

distribution,

– A is a d× k matrix such that Σ̃ = AAT .
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Example: stress-testing a homogeneous portfolio∗

I Homogeneous portfolio with n = 2m assets exhibiting all 2m

combinations of binary correlation risk factors.

I Securities all have equal volatility σ, and the portfolio is

equally-weighted, w =
1

n
.
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Example: stress-testing a homogeneous portfolio∗

Proposition

The portfolio variance is given by

wᵀ Σ w =
σ2

n

m∏
k=1

(
1 + e−βk

)
.

Proposition

The portfolio variance when j of the β-risk factors coefficients are

stressed by ∆β is given by

wᵀ Σ w =
σ2

n

(
1 + e−(β+∆β)

)j
·
(

1 + e
−
(
β+

j·ρβ
(j−1)ρβ+1

∆β
))m−j

.
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Scenario selection and Mahalanobis distance

I Scenario selection: What is the worst scenario amongst all scenarios

that occur within some pre-given range?

I Let β = (β1, . . . , βm)ᵀ be a random vector with E(β) = β and

covariance matrix Σβ.

I Mahalabonis distance:

D(β) =
(

(β − β)ᵀΣ−1
β (β − β)

)1/2

.

I Maha determines normal probabilities; multivariate normal density:

n(x) = det(2πΣ)−
1
2 exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
.

I This generalises to elliptical distributions.
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Illustration of Mahalabonis distance in bivariate case

I 10,000 simulations; shown are the

50% simulated pairs with smallest

Maha.

I If β ∼ N(β,Σβ), then D2 ∼ χ2(m),

i.e., Maha2 follows a χ2-distribution

(see histogram and density).

I Identify “worst-case” scenario β∗:

β∗ = argmax
β:D2(β)≤h

VaRα(β),

with correlation matrix imposed by β

and h a quantile of the

χ2(m)-distribution.
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Example: stress-testing a homogeneous portfolio∗

Proposition

In the homogeneous setting, the risk factor coefficients of the worst

scenario within a given Mahalanobis distance
√
h are constant, i.e.,

β∗1 = · · · = β∗m = β∗, and given by

β∗ = β −

√
hσ2

β(1 + (m− 1)ρβ)

m
.

I Analytical results for non-homogeneous case also available.
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Risk factors and correlation model

I All calculations on SCP portfolio of 23 March 2012 (117 instruments).

I Risk factors: – CDX vs. itraxx

– investment grade vs. high yield

– maturity

– index series

– index vs. tranche

I Parameterised correlation matrix:

cij = exp
(
−(β1|isCDXi−isCDXj |+β2|isIGi−isIGj |+β3|maturityi−maturityj |

+ β4|seriesi − seriesj |+ β5|isIndexi − isIndexj |)
)
.
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Calibration and results

I At any point in time, β1, . . . , β5 calibrated from credit spread returns

of 250 preceding days.

I Time period: 1 March 2011 – 12 April 2012. Data source: Markit

I Example: calibrated coefficients on for 23 March 2012:

β =
(

0.35 0.37 0.21 0.05 0.20
)′

I Strong de-correlation amongst CDX vs. itraxx, investment grade vs.

high-yield
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Calibration and results
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Figure: Correlation matrices of 23 March 2012. Left: Empirical correlation

matrix; right: parameterised (complete) correlation matrix. The dark red

entries are unavailable correlations due to insufficient data. The three blocks of

highly correlated data consist of (from top to bottom): CDX IG, CDX HY and

iTraxx securities.
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Calibration and results
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Figure: Coefficients associated with correlation parameterisation of CDX and

itraxx positions in London Whale position; 01/03/2011–12/04/2012. All

distances are normalised to [0, 1] to make the coefficients comparable. Data

source: Markit.
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Risk implications from correlation stress-testing
correlation stress joint stress

Quantile VaR0.99 t-VaR0.99 Change(%) t-VaR0.99 Change(%)

base case 339.32 354.98 354.98

0.7 366.87 383.80 8.12 386.28 8.82

0.8 369.39 386.44 8.86 416.41 17.31

0.9 372.89 390.10 9.89 464.40 30.83

0.95 375.76 393.11 10.74 510.54 43.82

0.99 381.08 398.67 12.31 617.38 73.92

0.995 383.00 400.68 12.87 664.73 87.26

0.999 386.88 404.74 14.02 780.37 119.84

unconstrained∗ 620.96 649.62 83.00 1252.53 252.85
∗Unconstrained w.r.t. correlation changes; α̃ remains on the 0.999 level.

Table: SCP portfolio’s 1-day 99% value-at-risk for different Mahalanobis

quantile constraints. Percentage changes denote relative distance to base VaR.

For joint stress, percentage changes refer to base t-VaR scenario. Parameter ν

is calibrated to 13.5. Volatility stress level α̃ for joint stress test is set to

quantile in column one.
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Risk-driver identification (reverse stress test)












●

●

●

●

●

+
+

+

+

+

β1:isCDX β2:isIG β3:maturity β4:series β5:isIndex

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Figure: Box-plots of correlation parameters.

Dots: observed parameters as of 23.03.2012.

Crosses: worst-case scenario under a 99%-quantile Mahalanobis distance.
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Factor selection

I Risk factors in “London Whale” were tailored to specific portfolio.

I In practice, factor models comprising industries and countries as

factors are often used to model the dependencies of asset returns.

I Problem: How to assign factors to assets?

I Number of factors should be small, but include all important factors.

I Some prior information is typically available: country of firm’s

headquarter, primary industry

I Use Bayesian variable selection to determine small number of factors

driving asset return
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Link correlations to risk factors

I Association of asset i ∈ {1, . . . , p} with factor k ∈ {1, . . . , d}:

1{k,i}

I Correlation parameterisation:

cij = tanh
(
η +

d∑
k=1

λk|1{k,i} − 1{k,j}|︸ ︷︷ ︸
”inter”-correlations

+

d∑
k=1

νk1{k,i}1{k,j}︸ ︷︷ ︸
”intra”-correlations

)
,

with coefficients η, λ1, . . . , λd, ν1, . . . , νd ∈ R.
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Link correlations to risk factors

I tanh : R→ [−1, 1] allows for negative correlations.

I tanh used in inferential statistics on sample correlation coefficients

( Fisher transformation).

I The following summation formula is

helpful for a rough interpretation of the

coefficients:

tanh(x+ y) =
tanhx+ tanh y

1 + tanhx tanh y
-2 -1 0 1 2
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0.0

0.5
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Bayesian variable selection

I Different methods, e.g.

– Bayesian model selection compares posterior probabilities of

different models.

– Spike and slab priors include an indicator variable for each

coefficient and determines the indicator variable’s posterior

probability of taking value one.

I In our setting, Bayesian model selection worked best.
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Bayesian model selection

I Denote candidate models by Mi, i = 1, . . . ,m.

I In a linear regression setting, each model Mi includes a specific subset

of independent variables and excludes the other variables.

I Posterior model probability:

p(Mi|y) ∝ p(y|Mi)p(Mi),

where

– p(Mi) is the prior model probability

– p(y|Mi) is called the marginal likelihood.

(see e.g. Appendix B.5.4 of (Fahrmeir et al., 2013))
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Bayesian model comparison

I For each model, define indicator variables γk, k = 1, . . . , p, with

γk =

{
1, if βk 6= 0

0, else.

I Posterior inclusion probabilities (PIP):

P(γk = 1|y) =
∑

βk∈Mγ

P(Mγ |y). (1)

I If number of parameters p is large, then full calculation of 2p posterior

model probabilities is infeasible.

I ⇒ Use Monte Carlo simulation or MCMC.

I PIP of k-th factor determined as frequency of visited models with

γk = 1 relative to the total number of visited models.

General approach 39



Example: VW

I We model VW stock returns as a linear function of MSCI (GICS)

industry and MSCI country factors.

I The data set consists of daily returns of

– MSCI stock indices representing 11 industries and 24 countries;

– individual stock returns (DAX and S&P 500 names)

I Time period: 2002-2018

General approach 40



Example: VW

I Factors with PIP greater 0.5 are selected:

I Here, CD (Consumer Discretionary) and GR (Germany) have prior

inclusion probability of 1.

I The other prior inclusion probabilities are chosen to include eight

factors on average.
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Factor selection

I Factors: MSCI stock indices representing 11 industries and 24 countries

I Individual stocks: 500 S&P constituents, 30 DAX constituents

I Daily data from 2002-2018 (Source: Bloomberg, MSCI)

I Factor assignment re-calibrated every quarter, based on 3-years of daily

data (52 quarters)

I Prior: hard-code primary country and industry; include 6 factors on

expectation

I Following graphs show the number of quarters certain factors were

assigned for selected stocks.
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Factor selection (Apple and Citibank)
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Factor selection (VW and Deutsche Bank)
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Empirical vs. fitted correlations

I Left: empirical; right: fitted

I Based on 250 day estimation window, 2 July 2018

I Bottom: block of German (DAX) assets
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Distributions of fitted parameters

I Only “inter”-correlations are included, “intra”-correlations excluded
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Distributions of fitted parameters

I “Inter”- and “intra”-correlations
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Distributions of fitted parameters

I Some factor loadings

I Left: “inter”-factor loading only

I Right: including “intra”-factor loadings (constant omitted)
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Overview

Motivation for correlation stress-testing

London Whale

General approach

Conclusion
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Conclusion

I We develop a correlation stress testing framework, linking (risk) factors

with correlations.

I Reverse stress tests can be conducted by assigning the factor loading a

distribution.

I “London whale”: a significant de-correlation between investment grade

and high yield credit derivatives broke the “hedges” in the SCP.

I Simple correlation stress testing exposes the significant risks in a

portfolio with high notional and low RWA.

I General case: factors (e.g. industries, countries) are linked firms via

Bayesian variable selection methods

I Outlook: apply PCA to generate factors; factors can often be given an

economic interpretation (global factor, Europe, etc.)
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Regulatory view and aspects Back

I CRR Article 386(1)(g):

“the institution shall frequently conduct a rigorous programme of

stress testing, including reverse stress tests, which encompasses

any internal model used for purposes of this Chapter. [..]”
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Regulatory view and aspects Back

I CRR Article 375(1):

“[..] Hedging or diversification effects associated with long and

short positions involving different instruments or different secu-

rities of the same obligor, as well as long and short positions in

different issuers, may only be recognised by explicitly modelling

gross long and short positions in the different instruments. Insti-

tutions shall reflect the impact of material risks that could occur

during the interval between the hedge’s maturity and the liquid-

ity horizon as well as the potential for significant basis risks in

hedging strategies by product, seniority in the capital structure,

internal or external rating, maturity, vintage and other differences

in the instruments. [..]”
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Regulatory view and aspects Back

I CRR Article 376(3)(b):

“perform a variety of stress tests, including sensitivity analysis

and scenario analysis, to assess the qualitative and quantitative

reasonableness of the internal model, particularly with regard to

the treatment of concentrations. Such tests shall not be limited

to the range of events experienced historically [..]”

I CRR 377: “Requirements for an internal model for correlation trading”
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Regulatory view and aspects Back

I ECB guide to internal models, Market Risk, 150 (Link):

“In accordance with Article 376(3)(b) of the CRR, institutions must

perform sensitivity analysis and scenario analysis to assess the qualita-

tive and quantitative reasonableness of the internal model, particularly

with regard to the treatment of concentrations. [..]

In particular, the ECB considers it best practice that this sensitivity

analysis includes, as a minimum, the following basic analysis, where

systematic risk factor weights or correlations of risk factors in the

model are shifted up or down by a fixed value or set to generic values:

[..]

(e) all correlations between systematic factors are set to 100% (weights

of issuers to their respective systematic factors remain unchanged);

(f) all correlations between systematic factors are set to 0% (weights

of issuers to their respective systematic factors remain unchanged).

[..]
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