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1D Interpolation 



Naive Interpolation

Vn,P =
1 p0 ⋯ pn

0
⋮ ⋮ ⋮
1 pn ⋯ pn

n

, P =
p0
⋮
pn

, F =
f(p0)

⋮
f(pn)

Vandermonde Matrix 

C = V−1
n,P ⋅ F , C = (c0, …, cn)
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Qf,n(x) = c0 + c1x + ⋯ + cnxn

Runtime 𝒪(n3) Storage 𝒪(n2) 𝒪(n2)Evaluation



Sir Isaac Newton  
1643-1726

One of the most influential scientists of all time

• Mathematics  

• Physics 

• Optics 

• Computational Sciences

Philosophiæ Naturalis Principia Mathematica

4

https://en.wikipedia.org/wiki/Philosophi%C3%A6_Naturalis_Principia_Mathematica%22%20%5Co%20%22


Sir Isaac Newton  
1643-1726

Two of the most influential scientists of all time

Philosophiæ Naturalis Principia Mathematica
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Joseph-Louis Lagrange 
1736-1813

Mécanique analytique 

https://en.wikipedia.org/wiki/Philosophi%C3%A6_Naturalis_Principia_Mathematica%22%20%5Co%20%22
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Qf,3(x) = c0 + c1(x − p0) + c2(x − p0)(x − p1) + c3

2

∏
j=0

(x − pj)
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f(p1)

f(p2)

f(p3) Qf

1D Newton Interpolation 
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Runtime 𝒪(n2)

Storage 𝒪(n)
𝒪(n)Evaluation
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Qf,3(x) =
3

∏
j=0

(x − pj)(f(p0)
ω0

x − p0
+ f(p1)

ω1

x − p1
+

n

∑
i=2

f(pi)
ωi

x − pi
)

f(p0)

f(p1)

f(p2)

f(p3) Qf

1D Lagrange Interpolation 

p0 p1 p2 p3
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Runtime 𝒪(n)
Storage 𝒪(n)

𝒪(n)Evaluation



Divided Difference Scheme

Vn,P =
1 p0 ⋯ pn

0
⋮ ⋮ ⋮
1 pn ⋯ pn

n

, P =
p0
⋮
pn

, F =
f(p0)

⋮
f(pn)

Vandermonde Matrix 

𝒱n,P : Πn ⟶ ℝn+1 , C ↦ F , s.t. C = V−1
n,P ⋅ F ,

Ni(x) =
i−1

∏
j=0

(x − pj) , i = 0,…, n

Newton Basis of Πn
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Qf,n(x) = c0 + c2x + ⋯ + cnxn , F = (Q(p0), …, Q(pn))



Divided Difference Scheme
Vandermonde Matrix 

Wn,P =

1 0 ⋯ 0
1 (p1 − p0) ⋯ 0
1 (p2 − p0) (p2 − p0)(p2 − p1) ⋮
⋮ ⋮ ⋱ ⋮
1 (pn − p0) ⋯ ∏n−1

j=0 (pn − pj)

Vandermonde Matrix w.r.t. Newton Basis 
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Vn,P =
1 p0 ⋯ pn

0
⋮ ⋮ ⋮
1 pn ⋯ pn

n

, P =
p0
⋮
pn

, F =
f(p0)

⋮
f(pn)



Divided Difference Scheme

[p0] f
↘

[p1] f → [p0, p1] f
↘ ↘

[p2] f → [p1, p2] f → [p0, p1, p2] f
⋮ ⋮ ⋮ ⋮ ⋮ ⋱

↘ ↘ ↘
[pn] f → [pn−1, pn] f → [pn−2, pn−1, pn] f ⋯ → [p0…pn] f

[p0] f := f(p0) , [pi, …, pj] f :=
[pi, …, pj−1] f − [pi+1, …, pj] f

xj − xi
, j ≥ i
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Divided Difference Scheme

Vn,P =
1 p0 ⋯ pn

0
⋮ ⋮ ⋮
1 pn ⋯ pn

n

, P =
p0
⋮
pn

, F =
f(p0)

⋮
f(pn)

Vandermonde Matrix 

Li(x) =
n

∏
j=0,j≠i

(x − pj)/
n

∏
j=0,j≠i

(pi − pj) , i = 0,…, n

Lagrange Basis of Πn
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𝒱n,P : Πn ⟶ ℝn+1 , C ↦ F , s.t. C = V−1
n,P ⋅ F ,

Qf,n(x) = c0 + c!x + ⋯ + cnxn , F = (Q(p0), …, Q(pn))



Divided Difference Scheme

Vn,P =
1 p0 ⋯ pn

0
⋮ ⋮ ⋮
1 pn ⋯ pn

n

, P =
p0
⋮
pn

, F =
f(p0)

⋮
f(pn)

Vandermonde Matrix 

Li(pj) = δi,j

Lagrange Basis of Πn
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𝒱n,P : Πn ⟶ ℝn+1 , C ↦ F , s.t. C = V−1
n,P ⋅ F ,

Qf,n(x) = c0 + c!x + ⋯ + cnxn , F = (Q(p0), …, Q(pn))



Divided Difference Scheme
Vandermonde Matrix 

Wn,P =

1 0 ⋯ 0
0 1 ⋯ 0
0 0 1 ⋮
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 1

Vandermonde Matrix w.r.t. Lagrange Basis 
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Vn,P =
1 p0 ⋯ pn

0
⋮ ⋮ ⋮
1 pn ⋯ pn

n

, P =
p0
⋮
pn

, F =
f(p0)

⋮
f(pn)



Qf,n(x) =
n

∏
j=0

(x − pj)
n

∑
i=0

f(pi)
ωi

x − pi

Barycentrical Lagrange Form 

Qf,n(x) =
n

∑
i=0

f(pi)Li(x)

Classical Lagrange Form 

Runtime 𝒪(n)
Storage 𝒪(n)

𝒪(n)Evaluation
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Runge’s Phenomena
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| f(x) − Qf,n(x) | ≤
f (n+1)(ξx)
(n + 1)!

n

∏
i=0

(x − pi) , x, ξx ∈ Ω

Approximation Theory  

11

Chebn = {pk = cos( 2k + 1
2(n + 1)

π) , k = 0,…, n}

| f(x) − Qf(x) | ≤
f (n+1)(ξx)

2n(n + 1)!
, x, ξx ∈ Ω

| | f − Qf | |C0(Ω) ≤ (1 + Λ) | | f − Q*n | |C0(Ω) , Q*n ∈ Πn

Chebyshev nodes 

Lebesgue function optimal approximation 

Λ(Chebn) ∈ 𝒪(log(n))



Approximation Theory  

Chebn = {cos( 2k + 1
2(n + 1)

π) , k = 0,…, n}
Chebyshev nodes 
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Approximation Theory  

11

Chebn = {cos( 2k + 1
2(n + 1)

π) , k = 0,…, n}

| f(x) − Qf(x) | ≤
f (n+1)(ξx)

2n(n + 1)!
, x, ξx ∈ Ω

Chebyshev nodes 

Qf,n
n→∞

f , ∀f ∈ H1(Ω, ℝ)
Approximation

| f(x) − Qf,n(x) | ≤
f (n+1)(ξx)
(n + 1)!

n

∏
i=0

(x − pi) , x, ξx ∈ Ω



NACA High Speed Computer Room (1949)
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Computer … someone who computes 

Complex computations  
• physics & astrophysics  

• engineering  

• aeronautics  

• economics  

• etc 



• Numerically accurate & fast  

• Convergence to the ground truth 

• Interpolant  is easy to understand  

• Allows further analysis/computation   

• Only in 1D 

  

• Fast Runtime  

• Convergence to ground truth  

• Interpolant  is easy to understand  

• Allows further analysis/computation  

• Feasible in low dimensions 

  

Newton / Lagrange Interpolation Spline/Wavelet Interpolation & FFTs 

Qf(x) = ∑
p∈G

cpγp(x)
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Qf,n n→∞
f Qf,n n→∞

f

Qf(x) =
n

∑
i=0

ciNi(x) =
n

∑
i=0

diLi(x)

The Curse of Dimensionality

𝒪(log(N)N) , N = rm𝒪(n2)/𝒪(n)



• Numerically accurate & fast  

• Only linear approximation 

• Interpolant is easy to understand 

• Allows further analysis/computation  

• Feasible in high dimensions 

  

Linear Regression in mD

Qf(x) ≈ c0 +
m

∑
i=1

cixi

14

Qf(x) =
n

∑
i=0

ciNi(x)

The Curse of Dimensionality

Newton / Lagrange Interpolation 

• Numerically accurate & fast  

• Convergence to the ground truth 

• Interpolant  is easy to understand  

• Allows further analysis/computation   

• Only in 1D 

  

Qf,n n→∞
f

𝒪(n2)/𝒪(n)

Qf(x) =
n

∑
i=0

ciNi(x) =
n

∑
i=0

diLi(x)



• Numerically accurate & fast  

• Convergence to the ground truth 

• Interpolant  is easy to understand  

• Allows further analysis/computation   

• Only in 1D 

  

• Numerically accurate & fast  

• No Convergence to ground truth  

• Interpolant  is hard to understand 

• Hampers further analysis/computation  

• Feasible in high dimensions 
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𝒪(n2)/𝒪(n)

Machine Learning 

Qf(x) =
ci

Qf,n ↛ fQf,n n→∞
f

The Curse of Dimensionality

Newton / Lagrange Interpolation 

Qf(x) =
n

∑
i=0

ciNi(x) =
n

∑
i=0

diLi(x)
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Multivariate Polynomial Interpolation 

Vm,n,P =
1 p0,1 p0,2 ⋯ p0,m p⊙2

0 ⋯ p⊙n
0

1 ⋮ ⋮ ⋱ ⋮
1 pN,1 pN,2 ⋯ pN,m p⊙2

N ⋯ p⊙n
N

, C = V−1
m,n,PF

Multivariate Vandermonde Matrix 

Unisolvent Nodes  
How to choose      such that                becomes (numerically) invertible ? Vm,n,PP
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Multivariate Polynomial Interpolation 

• Numerically in-accurate & slow 

• No Convergence to the ground truth 

• Interpolant  is easy to understand  

• Allows further analysis/computation   

• Only in low dimensions  

  

𝒪(N3)

C = V−1
m,n,PF ,

F = (f(p0), …, f(pN(m,n)))

Coefficients in normal form 
Qf,n ↛ f

Vm,n,P =
1 p0,1 p0,2 ⋯ p0,m p⊙2

0 ⋯ p⊙n
0

1 ⋮ ⋮ ⋱ ⋮
1 pN,1 pN,2 ⋯ pN,m p⊙2

N ⋯ p⊙n
N

, N = (m + n
n )

Multivariate Vandermonde Matrix 

N ∈ 𝒪(mn)
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Multivariate Polynomial Interpolation 

Vm,n,P =
1 p0,1 p0,2 ⋯ p0,m p⊙2

0 ⋯ p⊙n
0

1 ⋮ ⋮ ⋱ ⋮
1 pN,1 pN,2 ⋯ pN,m p⊙2

N ⋯ p⊙n
N

, Vm,n,PC = 0

Multivariate Vandermonde Matrix 

Unisolvent Nodes  
ker Vm,n,P = 0 ⇔ /∃Q ∈ Πm,n∖{0}, Q(P) = 0
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Multivariate Polynomial Interpolation 
Multivariate Vandermonde Matrix 

Unisolvent Nodes  
ker Vm,n,P = 0 ⇔ /∃Q ∈ Πm,n∖{0}, Q(P) = 0

| f(x) − Qf(x) | ≤
∂αi+1

xi
f(ξx)

2αi(n + 1)!
, x, ξx ∈ Ω , α ∈ ℕm , |α | = n

Vm,n,P =
1 p0,1 p0,2 ⋯ p0,m p⊙2

0 ⋯ p⊙n
0

1 ⋮ ⋮ ⋱ ⋮
1 pN,1 pN,2 ⋯ pN,m p⊙2

N ⋯ p⊙n
N

, C = V−1
m,n,PF
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Multivariate Polynomial Interpolation 
Multivariate Vandermonde Matrix 

Unisolvent Nodes  
ker Vm,n,P = 0 ⇔ /∃Q ∈ Πm,n∖{0}, Q(P) = 0

Qf
n→∞

f , ∀f ∈ Hk(Ω, ℝ) , k > m/2
Approximation

Vm,n,P =
1 p0,1 p0,2 ⋯ p0,m p⊙2

0 ⋯ p⊙n
0

1 ⋮ ⋮ ⋱ ⋮
1 pN,1 pN,2 ⋯ pN,m p⊙2

N ⋯ p⊙n
N

, C = V−1
m,n,PF
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Multivariate Polynomial Interpolation 
Multivariate Vandermonde Matrix 

Unisolvent Nodes  
ker Vm,n,P = 0 ⇔ /∃Q ∈ Πm,n∖{0}, Q(P) = 0

Qf
n→∞

f , ∀f ∈ Hk(Ω, ℝ) , k > m/2
Approximation

Multivariate Newton Basis
Storage 𝒪(N2) 𝒪(N)Runtime

Vm,n,P =
1 p0,1 p0,2 ⋯ p0,m p⊙2

0 ⋯ p⊙n
0

1 ⋮ ⋮ ⋱ ⋮
1 pN,1 pN,2 ⋯ pN,m p⊙2

N ⋯ p⊙n
N

, C = V−1
m,n,PF
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Theorem 1  
Let                  and                  be a hyperplane of co-dimension 1. 

• If                    is unisolvent w.r.t.                  on   

•                       is unisolvent w.r.t.                  on  

Then                        is unisolvent w.r.t.          on        .  

m, n ∈ ℕ H ⊆ ℝm

P1 ⊆ H m − 1,n
P2 ⊆ ℝm∖H m, n − 1

P = P1 ∪ P2 m, n

H
ℝm

ℝm



Theorem 1  
Let                  and                  be a hyperplane of co-dimension 1. 

• If                    is unisolvent w.r.t.                  on   

•                       is unisolvent w.r.t.                  on  

Then                        is unisolvent w.r.t.          on        .  

m, n ∈ ℕ H ⊆ ℝm

P1 ⊆ H m − 1,n
P2 ⊆ ℝm∖H m, n − 1

P = P1 ∪ P2 m, n

H
ℝm

ℝm

Theorem 2  
Let                 ,                                be a function,                      be a hyperplane.                                                                

• If         fits     w.r.t.                         on   

•      fits                                                      w.r.t.                      on 

Then                                     fits     w.r.t.              on   

m, n ∈ ℕ f : [−1,1]m ⟶ ℝ
Q1 (P1, m − 1, n)

Q2

P, m, n

H

ℝm

H = Q−1
H (0)

f
f1 = ( f − Q1)/QH , Q−1

H (0) = H P2, m, n − 1 ℝm

Qm,n, f = Q1 + QHQ2 f

17



Tm,n m, n

m − 1,n

0,n 1,0

m, n − 1

m,0m − 1,0

H1

Hi Hj

f1

fjfi

• Recursive Decomposition of the Interpolation Problem  

• In 1D this yields exactly the classical Newton Interpolation   

• Runtime 𝒪(N2) , N ∈ 𝒪(mn)
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m = 3 , n = 3
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Dimension
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Numerical Error 

Fixed Degree n=3 Fixed Dimension m=5  
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• Matlab Prototype vs Matlab-Inversion/Linear-Solver packages
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Fixed degree n=3 



Algorithm Intervals Pre-factor p Exponent q

Inversion 

Linear Solver 

PIP-SOLVER 

PIP-SOLVER 

Fitting the runtimes for            w.r.t                  .   pN(m, n)qn = 3

m = 1,…,35

m = 1,…,35

m = 1,…,35

m = 1,…,100

p = 0.010737

p = 0.007607

p = 0.007696

p = 0.003410

q = 2.2982

q = 2.2907

q = 1.2006

q = 1.2258

• Linear storage amount allows to solve large instances, which could  
not be computed by the alternatives 
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0 10 20 30 40 50
Dimension

10-4

10-2

100

102

Ti
m

e 
in

 s
ec

on
ds

Degree 1
Degree 2
Degree 3
Degree 4
Degree 5
Degree 6

Degree Pre-factor p Exponent q

1 0.0035219 1.0450

2 0.021732 1.1257

3 0.0031317 1.2096

4 0.0021351 1.1861

5 0.0017234 1.1478

6 0.0035746 1.1336

Runtimes for different degrees 

pN(m, n)qFitting  model 
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Tm,n m, n

m, n − 1

0,n 1,0

m − 1,n

m,0m − 1,0

H1

Hi Hj

f1

fjfi

• Recursive Decomposition of the Interpolation Problem  

• Formulating barycentrical mD Lagrange Interpolation  

• Runtime 𝒪((m + n)N) = 𝒪(mn/n!)
m = n ⟹ 𝒪((m + n)N) = 𝒪(log(N)N) .
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• Numerically accurate & fast  

• Convergence to the ground truth 

• Interpolant  is easy to understand  

• Allows further analysis/computation   

• In high Dimensions 

  

• Numerically accurate & fast  

• Convergence to ground truth  

• Interpolant  is easy to understand  

• Allows further analysis/computation  

• Feasible in low dimensions 

  

mD Newton / Lagrange Interpolation Spline/Wavelet Interpolation & FFTs 

Qf(x) = ∑
p∈G

cpγp(x)

24

Qf,n n→∞
f

𝒪(N(m, n)2)

Qf,n n→∞
f

Qf(x) = ∑
α,|α|≤n

cαNα(x) = ∑
α,|α|≤n

dαLα(x)

The Curse of Dimensionality

𝒪(M log(M))



mD Newton / Lagrange Interpolation Spline/Wavelet Interpolation & FFTs 

Qf(x) = ∑
p∈G

cpγp(x)

24

𝒪(N(m, n)2) / 𝒪((m + n)N(m, n))

Qf(x) = ∑
α,|α|≤n

cαNα(x) = ∑
α,|α|≤n

dαLα(x)

The Curse of Dimensionality

𝒪(M log(M))

M = rm , r ≫ nN(m, n) = (m + n
n ) ∈ 𝒪(mn/n!)

m = n ⟹ 𝒪((m + n)N) = 𝒪(log(N)N)



lp—degree

Q(x) = ∑
∥α∥p≤n

cαxα , xα = xα1
1 ⋅ xα2

2 ⋯xαm
m ,

∥α∥p
p =

m

∑
i=1

|αi |
p

xn
1 ⋅ xn

2⋯xn
m , n ∈ ℕ , p = ∞

x2
1 ⋅ x2 , n = 2 , p = 2

x2
1 ⋅ x2 , n = 1 , p = 1

Example:

25
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degree
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Euclidean

maximal

Figure 1. Maximum-norm errors in approximation of the Runge
function (2.1) as a function of degree n in the unit square, for three
different definitions of degree. The approximations come from
least-squares minimization over a fine grid in [−1, 1]2. Straight
lines mark the convergence rates of Theorem 4.2.

definitions are standard and appear in publications like [8] and [10] where multi-
variate polynomial approximation in the hypercube is discussed, but the Euclidean
degree seems to be new in [12]. Note that dE is not in general an integer.

Our interest is in leading order exponential effects, not algebraic fine points, and
accordingly, we will make use of the notation Oε defined as follows: g(n) = Oε(an)
if for all ε > 0, g(n) = O((a + ε)n) as n → ∞. By Oε(a−n) we mean Oε((1/a)n),
or equivalently, for all ε > 0, O((a − ε)−n).

2. Numerical illustration

The case s = 2 suffices for a numerical illustration. Let f be the 2D Runge
function

(2.1) f(x, y) =
1

1 + 10(x2 + y2)
,

which is analytic for all real values of x and y and isotropic in the sense that it is
invariant with respect to rotation in the x-y plane. Figure 1 gives an indication
of the minimal error in approximation of f on [−1, 1]2 by bivariate polynomials of
various total, Euclidean, and maximal degrees. (Bivariate Chebyshev coefficients
of f are plotted in Figure 6.4 of [12].) The figure is actually based on L2 rather than
L∞ approximations, since these are much easier to compute, but this is enough to
give an indication of the separation between the convergence rates when the degree
is defined by dT and when it is defined by dE or dmax .

The function (2.1) satisfies Assumption A of our theorem, Theorem 4.2, with
h2 = 0.1, and the data in the figure show convincing agreement with the predictions
of the theorem. This function is analytic when x and y are real but not when they
are complex. On the other hand the similar function

(2.2) g(x, y) =
1

21 − 10(x2 + y2)

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.
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4. Main theorem

Now let f be a function of x ∈ [−1, 1]s for some s ≥ 1. If f is smooth, it has a
uniformly and absolutely convergent multivariate Chebyshev series

(4.1) p(x ) =
∞∑

k1=0

· · ·
∞∑

ks=0

ak1,...,ksTk1
(x1) · · ·Tks

(xs)

(see e.g. Theorem 4.1 of [8]). Here is our analyticity assumption, generalizing that
of Lemma 3.3.

Assumption A. For some h > 0, f(x ) is analytic for all x ∈ Cs in the s-
dimensional region defined by the condition x2

1 + · · · + x2
s ∈ Ns,h2 .

Note that a sufficient condition for Assumption A to hold is that f(x ) is analytic
for all x with ℜ(x2

1 + · · · + x2
s) > −h2 .

The following lemma will be proved in the next section.

Lemma 4.1. If f satisfies Assumption A, its multivariate Chebyshev coefficients
satisfy

(4.2) ak = Oε(ρ
−∥k∥2),

where ρ = h +
√

1 + h2 .

Based on this result, our theorem bounds the convergence rates of polynomial
approximations defined by total, Euclidean, and maximal degree.

Theorem 4.2. If f satisfies Assumption A, then

inf
d(p)≤ n

∥f − p∥[−1,1]s =

⎧
⎪⎨

⎪⎩

Oε(ρ−n/
√

s), if d = dT ,

Oε(ρ−n), if d = dE ,

Oε(ρ−n), if d = dmax ,

where ρ = h +
√

1 + h2 .

Proof of Theorem 4.2. Assuming Lemma 4.1. The second (middle) assertion of the
theorem follows from Lemma 4.1 by truncating the multivariate Chebyshev series
(4.1), since |Tk1(x1) · · ·Tks(xs)| ≤ 1 for all k for all x ∈ [−1, 1]s. The third as-
sertion is a consequence of the second, since dmax (p) ≤ dE(p) for any multivari-
ate polynomial p. The first assertion is also a consequence of the second since
dT (p)/

√
s ≤ dE(p). !

Theorem 4.2 is only an upper bound, so in principle, the difference it suggests
between dT and the other degrees dE and dmax might be illusory. However, numer-
ical experiments such as that of Figure 1 and those reported in [12] make it clear
that the difference is genuine. This could be made rigorous by the development of
a converse theorem, as has been long established in the 1D case, again thanks to
Bernstein (see Theorem 8.3 of [11]).

5. Proof of Lemma 4.1

To complete the proof of Theorem 4.2 we must prove Lemma 4.1. For this we will
make use of a result in the book by Bochner and Martin [3]. Let ρ = (ρ1, . . . , ρs)
be an s-vector with ρj > 1 for each j, and let E(ρ) ⊂ Cs be the elliptic polycylinder
defined as the set of all points x ∈ Cs such that xj ∈ Eρj for each j. The result in
question is an s-dimensional generalization of Lemma 3.1.
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Qf(x) = ∑
α,|α|≤n

cαNα(x) = ∑
α,|α|≤n

dαLα(x)

Unisolvent Nodes  
How to choose      such that                becomes (numerically) invertible ? Vm,n,PP
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Qf,n n→∞
f ∀ f ∈ Hk(Ω) , k > m /2
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A deeper view into Space, Biology and the Universe at all. 

Keppler Telescope Light Microscopy CERN Detector
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Numerical Integration (Outlook)
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Sparse Chebyshev—grid 

f(x) ≈ Qf(x) = ∑
∥α∥p≤n

f(pα)Lα(x)

Lα(p) = δpα,p

mD—Lagrange Polynomials

∫Ω
f(x)dx ≈ ∑

∥α∥p≤n

f(pα)∫Ω
Lα(x)dx = ∑

∥α∥p≤n

f(pα)lα

Runtime 𝒪(Np(m, n)) , Np(m, n) ∈ 𝒪(mn/n!) , p = 1
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Thank You !  
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