Multivariate Newton & Lagrange Interpolation

Michael Hecht

MOSAIC Group MPI-CBG & CSBD & TU Dresden

center for systems biology dresden

Main principle of Science

models or theories

Main principle of Science

1D Interpolation

Naive Interpolation

Vandermonde Matrix

$$V_{n,P} = \begin{pmatrix} 1 & p_0 & \cdots & p_0^n \\ \vdots & \vdots & \vdots \\ 1 & p_n & \cdots & p_n^n \end{pmatrix}, \quad P = \begin{pmatrix} p_0 \\ \vdots \\ p_n \end{pmatrix}, \quad F = \begin{pmatrix} f(p_0) \\ \vdots \\ f(p_n) \end{pmatrix}$$
$$C = V_{n,P}^{-1} \cdot F, \quad C = (c_0, \dots, c_n)$$
$$Q_{f,n}(x) = c_0 + c_1 x + \dots + c_n x^n$$
Runtime $\mathcal{O}(n^3)$ Storage $\mathcal{O}(n^2)$ Evaluation $\mathcal{O}(n^2)$

One of the most influential scientists of all time

Sir Isaac Newton 1643-1726 • Mathematics

• Physics

• Optics

Computational Sciences

Philosophiæ Naturalis Principia Mathematica

Two of the most influential scientists of all time

Sir Isaac Newton 1643-1726

Joseph-Louis Lagrange 1736-1813

Philosophiæ Naturalis Principia Mathematica

Mécanique analytique

$$Q_{f,3}(x) = c_0 + c_1(x - p_0) + c_2(x - p_0)(x - p_1) + c_3 \prod_{j=0}^2 (x - p_j)$$

$$Q_{f,3}(x) = \prod_{j=0}^{3} (x - p_j) \left(f(p_0) \frac{\omega_0}{x - p_0} + f(p_1) \frac{\omega_1}{x - p_1} + \sum_{i=2}^{n} f(p_i) \frac{\omega_i}{x - p_i} \right)$$

Vandermonde Matrix

$$V_{n,P} = \begin{pmatrix} 1 & p_0 & \cdots & p_0^n \\ \vdots & \vdots & & \vdots \\ 1 & p_n & \cdots & p_n^n \end{pmatrix}, \quad P = \begin{pmatrix} p_0 \\ \vdots \\ p_n \end{pmatrix}, \quad F = \begin{pmatrix} f(p_0) \\ \vdots \\ f(p_n) \end{pmatrix}$$
$$\mathcal{V}_{n,P} : \Pi_n \longrightarrow \mathbb{R}^{n+1}, \quad C \mapsto F, \text{ s.t. } C = V_{n,P}^{-1} \cdot F,$$
$$Q_{f,n}(x) = c_0 + c_2 x + \cdots + c_n x^n, \quad F = (Q(p_0), \dots, Q(p_n))$$

Newton Basis of Π_n

$$N_i(x) = \prod_{j=0}^{i-1} (x - p_j), \quad i = 0, \dots, n$$

Vandermonde Matrix

$$V_{n,P} = \begin{pmatrix} 1 & p_0 & \cdots & p_0^n \\ \vdots & \vdots & & \vdots \\ 1 & p_n & \cdots & p_n^n \end{pmatrix}, \quad P = \begin{pmatrix} p_0 \\ \vdots \\ p_n \end{pmatrix}, \quad F = \begin{pmatrix} f(p_0) \\ \vdots \\ f(p_n) \end{pmatrix}$$

Vandermonde Matrix w.r.t. Newton Basis

$$W_{n,P} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 1 & (p_1 - p_0) & \cdots & 0 \\ 1 & (p_2 - p_0) & (p_2 - p_0)(p_2 - p_1) & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ 1 & (p_n - p_0) & \cdots & \prod_{j=0}^{n-1} (p_n - p_j) \end{pmatrix}$$

$$[p_0]f := f(p_0), \quad [p_i, \dots, p_j]f := \frac{[p_i, \dots, p_{j-1}]f - [p_{i+1}, \dots, p_j]f}{x_j - x_i}, \ j \ge i$$

Vandermonde Matrix

$$V_{n,P} = \begin{pmatrix} 1 & p_0 & \cdots & p_0^n \\ \vdots & \vdots & & \vdots \\ 1 & p_n & \cdots & p_n^n \end{pmatrix}, \quad P = \begin{pmatrix} p_0 \\ \vdots \\ p_n \end{pmatrix}, \quad F = \begin{pmatrix} f(p_0) \\ \vdots \\ f(p_n) \end{pmatrix}$$
$$\mathscr{V}_{n,P} : \Pi_n \longrightarrow \mathbb{R}^{n+1}, \quad C \mapsto F, \text{ s.t. } C = V_{n,P}^{-1} \cdot F,$$
$$Q_{f,n}(x) = c_0 + c_! x + \cdots + c_n x^n, \quad F = (Q(p_0), \dots, Q(p_n))$$

Lagrange Basis of Π_n

$$L_i(x) = \prod_{j=0, j \neq i}^n (x - p_j) / \prod_{j=0, j \neq i}^n (p_i - p_j), \quad i = 0, \dots, n$$

Vandermonde Matrix

$$V_{n,P} = \begin{pmatrix} 1 & p_0 & \cdots & p_0^n \\ \vdots & \vdots & & \vdots \\ 1 & p_n & \cdots & p_n^n \end{pmatrix}, \quad P = \begin{pmatrix} p_0 \\ \vdots \\ p_n \end{pmatrix}, \quad F = \begin{pmatrix} f(p_0) \\ \vdots \\ f(p_n) \end{pmatrix}$$
$$\mathcal{V}_{n,P} : \Pi_n \longrightarrow \mathbb{R}^{n+1}, \quad C \mapsto F, \text{ s.t. } C = V_{n,P}^{-1} \cdot F,$$
$$Q_{f,n}(x) = c_0 + c_! x + \cdots + c_n x^n, \quad F = (Q(p_0), \dots, Q(p_n))$$

Lagrange Basis of Π_n

$$L_i(p_j) = \delta_{i,j}$$

Vandermonde Matrix

$$\begin{vmatrix} V_{n,P} = \begin{pmatrix} 1 & p_0 & \cdots & p_0^n \\ \vdots & \vdots & & \vdots \\ 1 & p_n & \cdots & p_n^n \end{pmatrix}, \quad P = \begin{pmatrix} p_0 \\ \vdots \\ p_n \end{pmatrix}, \quad F = \begin{pmatrix} f(p_0) \\ \vdots \\ f(p_n) \end{pmatrix}$$

Vandermonde Matrix w.r.t. Lagrange Basis

$$W_{n,P} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ 0 & 0 & 1 & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}$$

Classical Lagrange Form

$$Q_{f,n}(x) = \sum_{i=0}^{n} f(p_i) L_i(x)$$

Barycentrical Lagrange Form

$$Q_{f,n}(x) = \prod_{j=0}^{n} (x - p_j) \sum_{i=0}^{n} f(p_i) \frac{\omega_i}{x - p_i}$$

Runge's Phenomena

$$|f(x) - Q_{f,n}(x)| \le \frac{f^{(n+1)}(\xi_x)}{(n+1)!} \prod_{i=0}^n (x - p_i), \quad x, \xi_x \in \Omega$$

$$|f(x) - Q_{f,n}(x)| \le \frac{f^{(n+1)}(\xi_x)}{(n+1)!} \prod_{i=0}^n (x - p_i), \quad x, \xi_x \in \Omega$$

Chebyshev nodes

Cheb_n =
$$\left\{ \cos\left(\frac{2k+1}{2(n+1)}\pi\right), k = 0, ..., n \right\}$$

$$|f(x) - Q_{f,n}(x)| \le \frac{f^{(n+1)}(\xi_x)}{(n+1)!} \prod_{i=0}^n (x - p_i), \quad x, \xi_x \in \Omega$$

Chebyshev nodes

Cheb_n =
$$\left\{ \cos\left(\frac{2k+1}{2(n+1)}\pi\right), k = 0, ..., n \right\}$$

$$|f(x) - Q_f(x)| \le \frac{f^{(n+1)}(\xi_x)}{2^n(n+1)!}, \qquad x, \xi_x \in \Omega$$

$$|f(x) - Q_{f,n}(x)| \le \frac{f^{(n+1)}(\xi_x)}{(n+1)!} \prod_{i=0}^n (x - p_i), \quad x, \xi_x \in \Omega$$

Chebyshev nodes

Cheb_n =
$$\left\{ \cos\left(\frac{2k+1}{2(n+1)}\pi\right), k = 0, ..., n \right\}$$

$$|f(x) - Q_f(x)| \le \frac{f^{(n+1)}(\xi_x)}{2^n(n+1)!}, \qquad x, \xi_x \in \Omega$$

Approximation

$$Q_{f,n} \xrightarrow[n \to \infty]{} f, \quad \forall f \in H^1(\Omega, \mathbb{R})$$

Computer ... someone who computes

Complex computations

- physics & astrophysics
- engineering
- aeronautics
- economics
- etc

NACA High Speed Computer Room (1949)

Newton / Lagrange Interpolation

$$Q_f(x) = \sum_{i=0}^n c_i N_i(x) = \sum_{i=0}^n d_i L_i(x)$$

Spline/Wavelet Interpolation & FFTs

$$Q_f(x) = \sum_{p \in G} c_p \gamma_p(x)$$

- Numerically accurate & fast $\mathcal{O}(n^2)/\mathcal{O}(n)$
- Convergence to the ground truth $Q_{f,n} \xrightarrow[n \to \infty]{} f$
- Interpolant is easy to understand
- Allows further analysis/computation
- Only in 1D

- Fast Runtime $\mathcal{O}(\log(N)N)$, $N = r^m$
- Convergence to ground truth $Q_{f,n} \xrightarrow[n \to \infty]{} f$
- Interpolant is easy to understand
- Allows further analysis/computation
- Feasible in low dimensions

Newton / Lagrange Interpolation

$$Q_f(x) = \sum_{i=0}^n c_i N_i(x) = \sum_{i=0}^n d_i L_i(x)$$

Linear Regression in mD

$$Q_f(x) \approx c_0 + \sum_{i=1}^m c_i x_i$$

- Numerically accurate & fast $\mathcal{O}(n^2)/\mathcal{O}(n)$
- Convergence to the ground truth $Q_{f,n} \xrightarrow[n \to \infty]{} f$
- Interpolant is easy to understand
- Allows further analysis/computation
- Only in 1D

- Numerically accurate & fast
- Only linear approximation
- Interpolant is easy to understand
- Allows further analysis/computation
- Feasible in high dimensions

Newton / Lagrange Interpolation

Machine Learning

$$Q_f(x) = \sum_{i=0}^n c_i N_i(x) = \sum_{i=0}^n d_i L_i(x)$$

- Numerically accurate & fast $\mathcal{O}(n^2)/\mathcal{O}(n)$
- Convergence to the ground truth $Q_{f,n} \xrightarrow[n \to \infty]{} f$
- Interpolant is easy to understand
- Allows further analysis/computation
- Only in 1D

- Numerically accurate & fast
- No Convergence to ground truth $Q_{f,n} \nleftrightarrow f$
- Interpolant is hard to understand
- Hampers further analysis/computation
- Feasible in high dimensions

Multivariate Vandermonde Matrix

$$V_{m,n,P} = \begin{pmatrix} 1 & p_{0,1} & p_{0,2} & \cdots & p_{0,m} & p_0^{\odot 2} & \cdots & p_0^{\odot n} \\ 1 & \vdots & & \vdots & \ddots & \vdots \\ 1 & p_{N,1} & p_{N,2} & \cdots & p_{N,m} & p_N^{\odot 2} & \cdots & p_N^{\odot n} \end{pmatrix}, \ C = V_{m,n,P}^{-1} F$$

Unisolvent Nodes

How to choose P such that $V_{m,n,P}$ becomes (numerically) invertible ?

Multivariate Vandermonde Matrix

$$V_{m,n,P} = \begin{pmatrix} 1 & p_{0,1} & p_{0,2} & \cdots & p_{0,m} & p_0^{\odot 2} & \cdots & p_0^{\odot n} \\ 1 & \vdots & & \vdots & \ddots & \vdots \\ 1 & p_{N,1} & p_{N,2} & \cdots & p_{N,m} & p_N^{\odot 2} & \cdots & p_N^{\odot n} \end{pmatrix}, \ N = \begin{pmatrix} m+n \\ n \end{pmatrix}$$

- Numerically in-accurate & slow $\mathcal{O}(N^3)$
- No Convergence to the ground truth $Q_{f,n} \nrightarrow f$
- Interpolant is easy to understand
- Allows further analysis/computation
- Only in low dimensions

Coefficients in normal form $C = V_{m,n,P}^{-1}F,$ $F = (f(p_0), \dots, f(p_{N(m,n)}))$ $N \in \mathcal{O}(m^n)$

Multivariate Vandermonde Matrix

$$V_{m,n,P} = \begin{pmatrix} 1 & p_{0,1} & p_{0,2} & \cdots & p_{0,m} & p_0^{\odot 2} & \cdots & p_0^{\odot n} \\ 1 & \vdots & & \vdots & \ddots & \vdots \\ 1 & p_{N,1} & p_{N,2} & \cdots & p_{N,m} & p_N^{\odot 2} & \cdots & p_N^{\odot n} \end{pmatrix}, \ V_{m,n,P}C = 0$$

Unisolvent Nodes

$$\ker V_{m,n,P} = 0 \Leftrightarrow \exists Q \in \Pi_{m,n} \setminus \{0\}, \quad Q(P) = 0$$

Multivariate Vandermonde Matrix

$$V_{m,n,P} = \begin{pmatrix} 1 & p_{0,1} & p_{0,2} & \cdots & p_{0,m} & p_0^{\odot 2} & \cdots & p_0^{\odot n} \\ 1 & \vdots & & \vdots & \ddots & \vdots \\ 1 & p_{N,1} & p_{N,2} & \cdots & p_{N,m} & p_N^{\odot 2} & \cdots & p_N^{\odot n} \end{pmatrix}, \ C = V_{m,n,P}^{-1} F$$

Unisolvent Nodes

 $\ker V_{m,n,P} = 0 \Leftrightarrow \exists Q \in \Pi_{m,n} \setminus \{0\}, \quad Q(P) = 0$

$$|f(x) - Q_f(x)| \le \frac{\partial_{x_i}^{\alpha_i + 1} f(\xi_x)}{2^{\alpha_i} (n+1)!}, \qquad x, \xi_x \in \Omega, \alpha \in \mathbb{N}^m, |\alpha| = n$$

Multivariate Vandermonde Matrix

$$V_{m,n,P} = \begin{pmatrix} 1 & p_{0,1} & p_{0,2} & \cdots & p_{0,m} & p_0^{\odot 2} & \cdots & p_0^{\odot n} \\ 1 & \vdots & & \vdots & \ddots & \vdots \\ 1 & p_{N,1} & p_{N,2} & \cdots & p_{N,m} & p_N^{\odot 2} & \cdots & p_N^{\odot n} \end{pmatrix}, \ C = V_{m,n,P}^{-1} F$$

<u>Unisolvent Nodes</u>

$$\ker V_{m,n,P} = 0 \Leftrightarrow \nexists Q \in \Pi_{m,n} \setminus \{0\}, \quad Q(P) = 0$$

Approximation

$$Q_f \longrightarrow f, \quad \forall f \in H^k(\Omega, \mathbb{R}), k > m/2$$

Multivariate Vandermonde Matrix

$$V_{m,n,P} = \begin{pmatrix} 1 & p_{0,1} & p_{0,2} & \cdots & p_{0,m} & p_0^{\odot 2} & \cdots & p_0^{\odot n} \\ 1 & \vdots & & \vdots & \ddots & \vdots \\ 1 & p_{N,1} & p_{N,2} & \cdots & p_{N,m} & p_N^{\odot 2} & \cdots & p_N^{\odot n} \end{pmatrix}, \ C = V_{m,n,P}^{-1} F$$

Unisolvent Nodes

 $\ker V_{m,n,P} = 0 \Leftrightarrow \exists Q \in \Pi_{m,n} \setminus \{0\}, \quad Q(P) = 0$

Approximation

$$Q_f \xrightarrow[n \to \infty]{} f, \quad \forall f \in H^k(\Omega, \mathbb{R}), k > m/2$$

Multivariate Newton Basis

Runtime $\mathcal{O}(N^2)$ Storage $\mathcal{O}(N)$

Theorem 1

Let $m, n \in \mathbb{N}$ and $H \subseteq \mathbb{R}^m$ be a hyperplane of co-dimension 1.

- If $P_1 \subseteq H$ is unisolvent w.r.t. m = 1, n on H
- $P_2 \subseteq \mathbb{R}^m \setminus H$ is unisolvent w.r.t. m, n-1 on \mathbb{R}^m

Then $P = P_1 \cup P_2$ is unisolvent w.r.t. m, n on \mathbb{R}^m .

<u>Theorem 1</u>

Let $m, n \in \mathbb{N}$ and $H \subseteq \mathbb{R}^m$ be a hyperplane of co-dimension 1.

- If $P_1 \subseteq H$ is unisolvent w.r.t. m 1, n on H
- $P_2 \subseteq \mathbb{R}^m \setminus H$ is unisolvent w.r.t. m, n-1 on \mathbb{R}^m

Then $P = \overline{P}_1 \cup \overline{P}_2$ is unisolvent w.r.t. m, n on \mathbb{R}^m .

Theorem 2

Let $m, n \in \mathbb{N}$, $f: [-1,1]^m \longrightarrow \mathbb{R}$ be a function, $H = Q_H^{-1}(0)$ be a hyperplane.

• If
$$Q_1$$
 fits f w.r.t. $(P_1, m-1, n)$ on H

• Q_2 fits $f_1 = (f - Q_1)/Q_H$, $Q_H^{-1}(0) = H$ w.r.t. $P_2, m, n - 1$ on \mathbb{R}^m

Then $Q_{m,n,f} = Q_1 + Q_H Q_2$ fits f w.r.t. P, m, n on \mathbb{R}^m

- Recursive Decomposition of the Interpolation Problem
- In 1D this yields exactly the classical Newton Interpolation
- Runtime $\mathcal{O}(N^2), N \in \mathcal{O}(m^n)$

n = 5

1 n = 5().) . ÷0

1

Numerical Error

Fixed Degree n=3

Fixed Dimension m=5

Fixed degree n=3

Matlab Prototype vs Matlab-Inversion/Linear-Solver packages

Fitting the runtimes for n = 3 w.r.t $pN(m, n)^q$.

Algorithm	Intervals	Pre-factor p	Exponent q
Inversion	m = 1,, 35	p = 0.010737	q = 2.2982
Linear Solver	m = 1,, 35	p = 0.007607	q = 2.2907
PIP-SOLVER	<i>m</i> = 1,,35	p = 0.007696	q = 1.2006
PIP-SOLVER	m = 1,, 100	p = 0.003410	q = 1.2258

 Linear storage amount allows to solve large instances, which could not be computed by the alternatives

Runtimes for different degrees

Degree	Pre-factor p	Exponent q
1	0.0035219	1.0450
2	0.021732	1.1257
3	0.0031317	1.2096
4	0.0021351	1.1861
5	0.0017234	1.1478
6	0.0035746	1.1336

Fitting model $pN(m,n)^q$

- Recursive Decomposition of the Interpolation Problem
- Formulating *barycentrical mD Lagrange Interpolation*
- Runtime $\mathcal{O}((m+n)N) = \mathcal{O}(m^n/n!)$

 $m = n \implies \mathcal{O}((m+n)N) = \mathcal{O}(\log(N)N)$.

Multivariate Lagrange Interpolation Internship report

Vladimir Sivkin

Lomonossow-University Moskau

August 2019

・ ロ ト ・ 画 ト ・ 画 ト ・ ー ト ・ の へ ()・

Lomonossow-University Moskau

Vladimir Sivkin Multivariate Lagrange Interpolation

Case m=2, n=2.

To keep simple we start from m = 2. Denote by $I_{i,j}(x, y)$ a (desired) polynomial s.t.

$$I_{i,j}(x_p, y_q) = \delta_i^p \delta_j^q, \forall (x_p, y_q) \in P_{m,n}, \dim I = m, \deg I = n.$$

Let us show how to construct it.

$$I_{2,0}(x,y) = \frac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)}$$

Lomonossow-University Moskau

E

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

E

<□ > <⊡ >

Vladimir Sivkin

The next should be corrected by additional term.

$$I_{1,0}(x,y) = \frac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)} + \dots$$

Ę.

 $\mathcal{O}Q(\mathcal{P})$

(日)

Vladimir Sivkin

The next is corrected by additional term.

$$I_{1,0}(x,y) = \frac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)} - \frac{(x-x_0)(y-y_0)}{(x_1-x_0)(y_1-y_0)}$$

Lomonossow-University Moskau

Ē

 $\mathcal{O}QQ$

< ≣ ►

< □ > < □ > < □ > < □ >

Vladimir Sivkin

This element should be corrected.

$$I_{0,1}(x,y) = \frac{(y-y_0)(x-x_1)}{(y_1-y_0)(x_0-x_1)} + \frac{(y-y_0)(y-y_1)}{(y_1-y_0)(y_1-y_2)} = \frac{y-y_0}{y_1-y_0} \left[\frac{x-x_1}{x_0-x_1} + \frac{y-y_1}{y_1-y_2} \right]$$

Lomonossow-University Moskau

≣

 $\mathcal{O}Q(\mathcal{P})$

∢ ≣ ▶

< □ > < @ > < ≧ >

Multivariate Lagrange Interpolation

Vladimir Sivkin

General md–Case

$$L_{J}(x) = \sum_{|I|=n, i_{k} \ge j_{k}, \forall k} r_{i_{m}-1}^{m}(x_{m}) \dots r_{i_{2}-1}^{2}(x_{2}) \frac{r_{i_{1}}^{1}(x_{1})}{x_{1}-p_{1,j_{1}}} w_{j_{m},i_{m}}^{m} \dots w_{j_{2},i_{2}}^{2} w_{j_{1},i_{1}+1}^{1},$$

i)
$$x = (x_1, ..., x_m)$$

ii) $\{p_{i,j} : j = 0...n\}$ are the generating nodes
iii) $r_{i_j}^j(x_j) = \prod_{k=0}^{i_j} (x_j - p_{j,k}),$
iv) $w_{j,k}^i = \prod_{l=0, l \neq j}^k \frac{1}{p_{i,j} - p_{i,l}}.$

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□▶

Lomonossow-University Moskau

Vladimir Sivkin

mD Newton / Lagrange Interpolation

Spline/Wavelet Interpolation & FFTs

$$Q_f(x) = \sum_{\alpha, |\alpha| \le n} c_\alpha N_\alpha(x) = \sum_{\alpha, |\alpha| \le n} d_\alpha L_\alpha(x)$$

$$Q_f(x) = \sum_{p \in G} c_p \gamma_p(x)$$

- Numerically accurate & fast $\mathcal{O}(N(m,n)^2)$
- Convergence to the ground truth $Q_{f,n} \xrightarrow[n \to \infty]{} f$
- Interpolant is easy to understand
- Allows further analysis/computation
- In high Dimensions

- Numerically accurate & fast $\mathcal{O}(M \log(M))$
- Convergence to ground truth $Q_{f,n} \xrightarrow[n \to \infty]{} f$
- Interpolant is easy to understand
- Allows further analysis/computation
- Feasible in low dimensions

mD Newton / Lagrange Interpolation

Spline/Wavelet Interpolation & FFTs

$$Q_f(x) = \sum_{\alpha, |\alpha| \le n} c_\alpha N_\alpha(x) = \sum_{\alpha, |\alpha| \le n} d_\alpha L_\alpha(x)$$

$$Q_f(x) = \sum_{p \in G} c_p \gamma_p(x)$$

$$\mathcal{O}(N(m,n)^2) / \mathcal{O}((m+n)N(m,n))$$

$$N(m,n) = \binom{m+n}{n} \in \mathcal{O}(m^n/n!)$$

$$m = n \Longrightarrow \mathcal{O}((m+n)N) = \mathcal{O}(\log(N)N)$$

$$\mathcal{O}(M \log(M))$$

<u>lp-degree</u>

$$Q(x) = \sum_{\|\alpha\|_p \le n} c_{\alpha} x^{\alpha}, \quad x^{\alpha} = x_1^{\alpha_1} \cdot x_2^{\alpha_2} \cdots x_m^{\alpha_m},$$
$$\|\alpha\|_p^p = \sum_{i=1}^m |\alpha_i|^p$$

Example:

$$x_1^2 \cdot x_2, \quad n = 1, p = 1$$

$$x_1^2 \cdot x_2, \quad n = 2, p = 2$$

$$x_1^n \cdot x_2^n \cdots x_m^n, \quad n \in \mathbb{N}, p = \infty$$

LLOYD N. TREFETHEN

Theorem 4.2. If f satisfies Assumption A, then

$$\inf_{d(p) \le n} \|f - p\|_{[-1,1]^s} = \begin{cases} O_{\varepsilon}(\rho^{-n/\sqrt{s}}), & \text{if } d = d_T, \\ O_{\varepsilon}(\rho^{-n}), & \text{if } d = d_E, \\ O_{\varepsilon}(\rho^{-n}), & \text{if } d = d_{\max}, \end{cases}$$

where $\rho = h + \sqrt{1 + h^2}$. (defines the Newton Ellipse)

LLoyd N. Trefethen.: Multivariate polynomial approximation in the hypercube. Proceedings of the American Mathematical Society 145 (4837-4844), 11 (2017) **26**

Leja ordered Chebyshev nodes in 2D w.r.t. 1/2-degree for n=12

Jannik Michelfeit

27

mD Newton Interpolation

$$\frac{N_{\infty}(2,80)}{N_2(2,80)} \approx 1.5$$

28

mD Newton Interpolation

<u>Summary</u>

Unisolvent Nodes

How to choose P such that $V_{m,n,P}$ becomes (numerically) invertible ?

mD Newton / Lagrange Interpolation

$$Q_f(x) = \sum_{\alpha, |\alpha| \le n} c_\alpha N_\alpha(x) = \sum_{\alpha, |\alpha| \le n} d_\alpha L_\alpha(x)$$

$$Q_{f,n} \xrightarrow[n \to \infty]{} f \quad \forall f \in H^k(\Omega), \ k > m/2$$

Sparse Chebyshev—grid

Adaptive Optics & Phase Reconstruction

Leslie Greengard

Charles L. Epstein

Newtons Telescope

Michael Bussmann

Gene Myers

A deeper view into Space, Biology and the Universe at all.

Sharper Selfies

Keppler Telescope

Light Microscopy

CERN Detector

Applications & Further Developments

Fourier Interpolation & Faster FFT's

Leslie Greengard

Manas Rachh

Multivariate Polynomial Regression & & Numerical Integration

Christian L. Mueller

Spectral Particle Methods & FFT's for Strong Oscillating Signals

Ivo F. Sbalzarini

Michael Bussmann

Numerical Integration (Outlook)

mD-Lagrange Polynomials $L_{\alpha}(p) = \delta_{p_{\alpha},p}$ $f(x) \approx Q_{f}(x) = \sum_{\|\alpha\|_{p} \le n} f(p_{\alpha})L_{\alpha}(x)$

$$\int_{\Omega} f(x) dx \approx \sum_{\|\alpha\|_p \le n} f(p_{\alpha}) \int_{\Omega} L_{\alpha}(x) dx = \sum_{\|\alpha\|_p \le n} f(p_{\alpha}) l_{\alpha}$$

Runtime $\mathcal{O}(N_p(m,n)), \quad N_p(m,n) \in \mathcal{O}(m^n/n!), p = 1$

Acknowledgements

Leslie Greengard

Christian L. Mueller

Manas Rachh

center for systems biology dresden

Ivo F. Sbalzarini

Karl B. Hoffmann

Michael Bussmann

Bevan L. Cheeseman

Jannik Michelfeit

Vladimir Sivkin

Thank You !

Multivariate Newton Interpolation on arXiv

Email: <u>hecht@mpi-cbg.de</u>