∞ Infinite Mixtures of Infinite Factor Analysers ∞

Keefe Murphy ${ }^{1,2}$

Isobel Claire Gormley ${ }^{1,2}$

Cinzia Viroli ${ }^{3}$

${ }^{1}$ School of Mathematics and Statistics, UCD
${ }^{2}$ Insight Centre for Data Analytics, UCD
${ }^{3}$ Department of Statistical Sciences, University of Bologna
keefe.murphy@ucd.ie

- Model-based approaches to clustering are well-established methods that uncover sub-groups of observations:
- reproducibility due to statistical modelling basis
- objectivity through access to principled model selection tools
- interpretability through provision of parameter estimates and associated uncertainties
- However, they lose tractability when p, the dimension of the feature vectors, is comparable to or even greater than N, the number of observations
- Typical issues include handling large covariance matrices, optimisation issues, run times, selecting the number of clusters, ...

Methods for clustering big p data

- Bouveyron \& Brunet-Saumard (2014) provide a synoptic overview
- Classical distance-based: e.g. k-means scale relatively well to large p, but focus on detecting differences in mean signals
- Dimension reduction + clustering: caution is required ${ }^{1}$ but typically computationally cheap ${ }^{2}$
- Regularisation: eases covariance matrix inversion ${ }^{3}$

```
\({ }^{1}\) Chang (1983)
\({ }^{2}\) Rahman \& Johnson (2018); Taschler et al. (2019)
    \({ }^{3}\) Fraley \& Raftery (2007)
```


Methods for clustering big p data

- Penalisation: lasso-like method ${ }^{4}$
- Hybrids: estimate some parameters, but 'avoid' the covariance matrix ${ }^{5}$
- Parsimonious mixtures: Gaussian mixture models in mclust ${ }^{6}$
- Subspace clustering: exploit the 'simple structure' phenomenon and model data in low-dimensional subspaces, e.g. pgmm ${ }^{7}$

[^0]
Motivation

- We focus on factor-analytic Gaussian mixture models as a subspace clustering method
- Typically, the numbers of clusters G and subspace dimension q are specified in advance of model fitting, and remain fixed
- The pair (G, q) which optimises some model selection criterion (which one?) is usually chosen
- As the model search space can become vast, models in which $q_{g} \neq q_{g^{\prime}}$ are rarely considered

Motivation

- We introduce the family of infinite mixtures of infinite factor analysers models, in particular the flagship IMIFA model
- Bayesian nonparametric approach to both clustering and dimension reduction
- Facilitates automatic inference on the number of clusters G and the numbers of cluster-specific latent factors q_{g}
- Advantages:
- flexible
- computationally efficient
- enables uncertainty quantification
- removes reliance on model selection criteria

Agenda

- Mixtures of Factor Analysers (MFA)
- Mixtures of Infinite Factor Analysers (MIFA)
- Overfitted Mixtures of Infinite Factor Analysers (OMIFA)
- Infinite Mixtures of Infinite Factor Analysers (IMIFA)
- Examples \& Results
- Discussion

(Finite) Mixtures of (Finite) Factor Analysers (MFA)

- MFA is a Gaussian latent variable model, simultaneously achieving dimension reduction and clustering in high-dimensional data settings
- Supposes p-dimensional feature vector $\mathbf{x}_{i} \forall i=1, \ldots, N$ arises with probability $\pi_{g} \forall g=1, \ldots, G$ from a cluster-specific FA model:

$$
\mathbf{x}_{i}-\boldsymbol{\mu}_{g}=\boldsymbol{\Lambda}_{g} \boldsymbol{\eta}_{i}+\boldsymbol{\epsilon}_{i g}
$$

(Finite) Mixtures of (Finite) Factor Analysers (MFA)

- MFA is a Gaussian latent variable model, simultaneously achieving dimension reduction and clustering in high-dimensional data settings
- Supposes p-dimensional feature vector $\mathbf{x}_{i} \forall i=1, \ldots, N$ arises with probability $\pi_{g} \forall g=1, \ldots, G$ from a cluster-specific FA model:

$$
\mathbf{x}_{i}-\boldsymbol{\mu}_{g}=\boldsymbol{\Lambda}_{g} \boldsymbol{\eta}_{i}+\boldsymbol{\epsilon}_{i g}
$$

where:
$\boldsymbol{\mu}_{g}=$ mean vector for cluster g
$\boldsymbol{\eta}_{i}=q$-vector of unobserved latent factors where $0 \leq q \ll p$
$\boldsymbol{\Lambda}_{g}=p \times q$ loadings matrix for cluster g
$\boldsymbol{\epsilon}_{i g}=$ error vector $\sim \mathrm{N}_{p}\left(\mathbf{0}, \boldsymbol{\Psi}_{g}\right)$
$\boldsymbol{\Psi}_{g}=$ diagonal matrix of non-zero uniquenesses for cluster g
$\boldsymbol{\pi}=$ cluster mixing proportions

(Finite) Mixtures of (Finite) Factor Analysers (MFA)

- A latent indicator \mathbf{z}_{i} is introduced, s.t.

$$
z_{i g}= \begin{cases}1 & \text { if } i \in \text { cluster } g \\ 0 & \text { otherwise }\end{cases}
$$

- Provides parsimonious covariance structure:

$$
f\left(\mathbf{x}_{i} \mid \boldsymbol{\theta}\right)=\sum_{g=1}^{G} \pi_{g} \mathrm{~N}_{p}\left(\mathbf{x}_{i} ; \boldsymbol{\mu}_{g}, \boldsymbol{\Sigma}_{g}=\boldsymbol{\Lambda}_{g} \boldsymbol{\Lambda}_{g}^{\top}+\boldsymbol{\Psi}_{g}\right)
$$

- Flat conditionally conjugate priors assumed: facilitates MCMC sampling via Gibbs updates
- Isotropic constraint: $\boldsymbol{\Psi}_{g}=\psi_{g} \mathcal{I}_{p}$ provides link to MPPCA ${ }^{8}$

[^1]- Assume:

$$
\begin{aligned}
\left(\lambda_{j 1 g}, \ldots, \lambda_{j q g}\right) & \sim \mathrm{N}_{p}\left(\mathbf{0}, \boldsymbol{\mathcal { I }}_{q}\right) \quad(\text { for now }) \\
\boldsymbol{\eta}_{i} & \sim \mathrm{~N}_{p}\left(\mathbf{0}, \boldsymbol{\mathcal { I }}_{q}\right) \\
\left(\pi_{1}, \ldots, \pi_{G}\right) & \sim \operatorname{Dir}(\boldsymbol{\alpha}=\alpha, \ldots, \alpha) \quad(\alpha=1 \text { for now }) \\
\mathbf{z}_{i} & \sim \operatorname{Mult}(1, \boldsymbol{\pi}) \\
\boldsymbol{\mu}_{g} & \sim \mathrm{~N}_{p}\left(\tilde{\boldsymbol{\mu}}, \varphi^{-1} \boldsymbol{\mathcal { I }}_{p}\right) \\
\psi_{j g}^{-1} & \sim \operatorname{IG}\left(\alpha_{0}, \beta_{j}\right)
\end{aligned}
$$

- $\tilde{\boldsymbol{\mu}}$ is the overall sample mean \& the scalar φ controls the level of diffusion
- The variable-specific scales β_{j} are derived from the (estimated) sample precision matrix ${ }^{9}$

[^2]
(Finite) Mixtures of Infinite Factor Analysers (MIFA)

- Allows each Λ_{g} matrix to theoretically have infinitely many factors, using a multiplicative gamma process shrinkage prior ${ }^{10}$ (MGP)

Loadings: $\lambda_{j k g} \sim \mathrm{~N}\left(0, \phi_{j k g}^{-1} \tau_{k g}^{-1} \sigma_{g}^{-1}\right)$
Local Shrinkage: $\phi_{j k g} \sim \operatorname{Ga}\left(\nu_{1}, \nu_{2}\right)$
Column Shrinkage: $\tau_{k g}=\prod_{h=1}^{k} \delta_{h g} \quad \delta_{1 g} \sim \mathrm{Ga}\left(\alpha_{1}, 1\right) \quad \delta_{h g} \sim \mathrm{Ga}\left(\alpha_{2}, 1\right) \quad \forall h \geq 2$
Cluster Shrinkage: $\sigma_{g} \sim \mathrm{Ga}\left(\varrho_{1}, \varrho_{2}\right)$

- Increasingly shrinks loadings toward zero as column index $k \rightarrow \infty$ under certain hyperparameter settings ${ }^{11}$
- Conditional conjugacy facilitates block updates of the loadings matrices
${ }^{10}$ Bhattacharya \& Dunson (2011)
${ }^{11}$ Durante (2017)

(Finite) Mixtures of Infinite Factor Analysers (MIFA)

- Prior distribution of loadings in $1^{\text {st }}, 2^{\text {nd }} \& 3^{\text {rd }}$ columns of typical $\boldsymbol{\Lambda}_{g}$ matrix

- MIFA allows different clusters be modelled by different numbers of factors
- MIFA significantly reduces model search to one for G only, as q_{g} is estimated automatically during model fitting

Adaptive Gibbs Sampler

- Used to automatically truncate infinite loadings matrices and estimate q_{g}
- Don't want to 'lose' important factors; don't want the computational burden of redundant factors
- Check which loadings columns have some proportion of elements within some small neighbourhood of 0
- If none, simulate new columns from the MGP prior and new scores $\boldsymbol{\eta}$; otherwise, discard redundant columns
- Decrease adaptation frequency exponentially fast after burn-in.
- Use the modal number of effective factors in each cluster as the \widehat{q}_{g} estimate
- Identifiability: rotational invariance addressed via Procrustean methods ${ }^{12}$; each sampled $\boldsymbol{\Lambda}_{g}$ mapped to a template matrix at burn-in to ensure sensible posterior means
- Label switching: addressed offline by also mapping \mathbf{z}_{i} samples to a template, using the square-assignment algorithm ${ }^{13}$
- Model selection: optimal G chosen via BICM^{14}, which is particularly useful for nonparametric models where the number of 'free' parameters is hard to quantify

[^3]
Overfitted Mixtures of Infinite Factor Analysers (OMIFA)

- Overfitted mixtures ${ }^{15}$ obviate the need to choose the optimal G, as a simple alternative to transdimensional MCMC methods
- Papastamoulis (2018) simultaneously proposed an overfitted mixture of finite factor analysers (OMFA), which is a member of the IMIFA family
- Initially overfit the number of clusters expected to be present and estimate G by the number of non-empty clusters visited most often
- Prior on the mixing proportions plays an important role: small values of the Dirichlet hyperparameter α encourage emptying excess components
- Following Früwirth-Schnatter and Malsiner-Walli (2019), assume a 'sparse' Gamma hyperprior for α, allowing it to be learned
- Employing the (MGP) prior on the infinite loadings matrices and modifying the adaptation to account for empty components gives rise to OMIFA
${ }^{15}$ Rousseau \& Mengersen (2011); van Havre et al. (2015)
- Infinite mixture models are another approach to automating estimation of G
- IMIFA employs a nonparametric Pitman-Yor process prior PYP and is thus a PYP-MGP mixture model:

$$
\begin{aligned}
\left(\mathbf{x}_{i} \mid i \in g, \boldsymbol{\theta}_{g}\right) & \sim f\left(\mathbf{x}_{i} ; \boldsymbol{\theta}_{g}\right) \\
\boldsymbol{\theta}_{g} & \sim H \\
H & \sim \operatorname{PYP}\left(\alpha, d, H_{0}\right)
\end{aligned}
$$

where $\boldsymbol{\theta}_{g}=$ cluster-specific parameters $\left\{\boldsymbol{\mu}_{g}, \boldsymbol{\Lambda}_{g}, \boldsymbol{\Psi}_{g}\right\}$
$\alpha=$ concentration parameter
$d=$ discount parameter $\in[0,1)$ s.t. $\alpha>-d$
$H_{0}=$ base distribution

- When $d=0$, the PYP reduces to the Dirichlet process (DP)
- Stick-Breaking ${ }^{16}$ Representation:

$$
\begin{array}{ll}
v_{g} \sim \operatorname{Beta}(1-d, \alpha+g d), & \boldsymbol{\theta}_{g} \sim H_{0}, f\left(\mathbf{x}_{i} \mid \boldsymbol{\theta}\right)=\sum_{g=1}^{\infty} \pi_{g} \mathrm{~N}_{p}\left(\mathbf{x}_{i} ; \boldsymbol{\theta}_{g}\right) \\
\pi_{g}=v_{g} \prod_{l=1}^{g-1}\left(1-v_{l}\right), & H=\sum_{g=1}^{\infty} \pi_{g} \delta_{\boldsymbol{\theta}_{g}} \quad \sim \mathbf{P Y P}\left(\alpha, d, H_{0}\right)
\end{array}
$$

- Stick-Breaking ${ }^{16}$ Representation:

$$
\begin{array}{ll}
v_{g} \sim \operatorname{Beta}(1-d, \alpha+g d), & \boldsymbol{\theta}_{g} \sim H_{0}, f\left(\mathbf{x}_{i} \mid \boldsymbol{\theta}\right)=\sum_{g=1}^{\infty} \pi_{g} \mathrm{~N}_{p}\left(\mathbf{x}_{i} ; \boldsymbol{\theta}_{g}\right) \\
\pi_{g}=v_{g} \prod_{l=1}^{g-1}\left(1-v_{l}\right), & H=\sum_{g=1}^{\infty} \pi_{g} \delta_{\boldsymbol{\theta}_{g}} \quad \sim \operatorname{PYP}\left(\alpha, d, H_{0}\right)
\end{array}
$$

- 'Independent' Slice-Efficient Sampler ${ }^{17}$ introduces an auxiliary variable s.t. $\mathbf{x}_{i} \mid u_{i}$ can be written as a finite mixture model
- Facilitates adaptively truncating sufficient number of 'active' components needed to be sampled at each iteration
- Label-switching moves ${ }^{18}$ incorporated in order to improve mixing due to highly multimodal state spaces

```
*16Pitman (1996)
\({ }^{17}\) Kalli et al. (2011)
\({ }^{18}\) Papaspiliopoulos \& Roberts (2008)
```


- Under the DP, $v_{g} \sim \operatorname{Beta}(1, \alpha)$
- Mass shifts to the right with increasing dispersion as α increases
- Reliable prior information on the number of clusters is required; the high-peakedness of the distributions prevents the wrong prior information from being overruled

- Under the PYP, $v_{g} \sim \operatorname{Beta}(1-d, \alpha+g d): d>0$ obtains heavy-tailed less informative prior with no tractability sacrifices
- A joint hyperprior of the form $\mathrm{p}(\alpha, d)=\mathrm{p}(d) \mathrm{p}(\alpha \mid d)$ is assumed:
- $(\alpha \mid d) \sim \mathrm{Ga}(\alpha+d \mid a, b), \quad \alpha+d \in(-d, \infty)$
- Spike-and-slab prior $d \sim \kappa \delta_{0}+(1-\kappa) \operatorname{Beta}\left(d \mid a^{\prime}, b^{\prime}\right)$ used to assess whether data arose from DP or PYP at little extra computational cost

Infinite Mixtures of Infinite Factor Analysers (IMITA)

- $f(\mathbf{X}, \boldsymbol{\eta}, \mathbf{Z}, \mathbf{u}, \Upsilon, \boldsymbol{\theta}) \propto f(\mathbf{X} \mid \boldsymbol{\eta}, \mathbf{Z}, \mathbf{u}, \boldsymbol{\Upsilon}, \boldsymbol{\theta}) f(\boldsymbol{\eta}) f(\mathbf{Z}, \mathbf{u} \mid \boldsymbol{\Upsilon}, \boldsymbol{\pi}) f(\mathbf{\Upsilon} \mid \alpha, d) f(\boldsymbol{\theta})$

$$
\begin{aligned}
= & \left\{\prod_{i=1}^{N} \prod_{g \in \mathcal{A}_{\xi}\left(u_{i}\right)} \mathrm{N}_{p}\left(\mathbf{x}_{i} ; \boldsymbol{\mu}_{g}+\boldsymbol{\Lambda}_{g} \boldsymbol{\eta}_{i}, \boldsymbol{\Psi}_{g}\right)^{z_{i g}}\right\}\left\{\prod_{i=1}^{N} \mathrm{~N}_{q}\left(\boldsymbol{\eta}_{i} ; \mathbf{0}, \boldsymbol{\mathcal { I }}_{q}\right)\right\} \\
& \left\{\prod_{i=1}^{N} \prod_{g=1}^{\infty}\left(\frac{\pi_{g}}{\xi_{g}} \mathbb{1}\left(u_{i}<\xi_{g}\right)\right)^{z_{i g}}\right\}\left\{\prod_{g=1}^{\infty} \frac{\left(1-v_{g}\right)^{\alpha+g d-1}}{v_{g}^{d} \mathrm{~B}(1-d, \alpha+g d)}\right\} f(\boldsymbol{\theta})
\end{aligned}
$$

where $f(\boldsymbol{\theta})$ is the product of the conjugate priors

- Only the 'active' components need to be sampled from at each iteration
- Allocations sampled efficiently, accounting for tiny $z_{i g}$ samples, using the Gumbel-Max trick ${ }^{19}$
- True G estimated by number of non-empty clusters visited most often; cluster-specific inference conducted only on those visits

	$\mathbf{Q}=\infty$	$\mathbf{Q}<\infty$
$G=\infty$	IMIFA	IMFA
$G<\infty$	OMIFA	OMFA
$G<\infty$	MIFA	MFA
$G=1$	IFA	FA

Italian olive oils ${ }^{20}$

- Data on \%-composition of 8 fatty acids found in 572 Italian olive oils
- Oils are from 3 areas, Sardinia, Southern Italy and Northern Italy, composed of 9 regions:

- Fit IMIFA with 50,000 iterations, 10,000 burn-in, and every $2^{\text {nd }}$ iteration thinned

${ }_{\mathrm{G}}$

Adj. Rand $=0.9371$

	1	2	3	4
South	323	0	0	0
Sardinia	0	98	0	0
North	0	0	103	48

Adj. Rand $=0.9371$

	1	2	3	4
South	323	0	0	0
Sardinia	0	98	0	0
North	0	0	103	48

Adj. Rand $=0.9943$

	1	2	3	4
South	323	0	0	0
Sardinia	0	98	0	0
Liguria	0	0	100	0
Umbria	0	0	3	48

Italian olive oils and the IMIIFA model

Adj. Rand $=0.9371$

	1	2	3	4
South	323	0	0	0
Sardinia	0	98	0	0
North	0	0	103	48

Adj. Rand $=0.9943$

	1	2	3	4
South	323	0	0	0
Sardinia	0	98	0	0
Liguria	0	0	100	0
Umbria	0	0	3	48

- $\hat{q}_{1}=6[5,6], \hat{q}_{2}=3[1,6]$, $\hat{q}_{3}=6[3,6], \hat{q}_{4}=2[1,4]$.
- Large Southern Italy cluster requires large number of factors.
- Flexibility to model other clusters with less factors.
- Clustering uncertainties: $\widehat{U}_{i}=\min _{g \in\{1, \ldots, \widehat{G}\}}\left\{1-\widehat{z}_{i g}\right\}$

Italian olive oils and the IMIFA model family

- Consider other members of the IMIFA family, with $G=1, \ldots, 9$, $q=0, \ldots, 6$ and BICM used for model selection where necessary.
- Consider other members of the IMIFA family, with $G=1, \ldots, 9$, $q=0, \ldots, 6$ and BICM used for model selection where necessary.

Model	\# Models	Rel. Time	α	d	G	\mathbf{Q}	Adj. Rand
IMIFA	1	1.00	0.48	0.01	4	$6,3,6,2$	0.94
IMFA	7	4.14	0.62	0.01	5	$6,6,6,6,6$	0.91

- Consider other members of the IMIFA family, with $G=1, \ldots, 9$, $q=0, \ldots, 6$ and BICM used for model selection where necessary.

Model	\# Models	Rel. Time	α	d	G	Q	Adj. Rand
IMIFA	1	1.00	0.48	0.01	4	$6,3,6,2$	0.94
IMFA	7	4.14	0.62	0.01	5	$6,6,6,6,6$	0.91
OMIFA	1	1.19	0.02	-	4	$6,3,6,4$	0.93
OMFA	7	5.11	0.02	-	5	$6,6,6,6,6$	0.85

Italian olive oils and the IMIFA model family

- Consider other members of the IMIFA family, with $G=1, \ldots, 9$, $q=0, \ldots, 6$ and BICM used for model selection where necessary.

Model	\# Models	Rel. Time	α	d	G	\mathbf{Q}	Adj. Rand
IMIFA	1	1.00	0.48	0.01	4	$6,3,6,2$	0.94
IMFA	7	4.14	0.62	0.01	5	$6,6,6,6,6$	0.91
OMIFA	1	1.19	0.02	-	4	$6,3,6,4$	0.93
OMFA	7	5.11	0.02	-	5	$6,6,6,6,6$	0.85
MIFA	9	3.41	1	-	5	$6,3,6,6,4$	0.92
MFA	63	13.86	1	-	2	5,5	0.82

Italian olive oils and the IMIFA model family

- Consider other members of the IMIFA family, with $G=1, \ldots, 9$, $q=0, \ldots, 6$ and BICM used for model selection where necessary.

Model	\# Models	Rel. Time	α	d	G	Q	Adj. Rand
IMIFA	1	1.00	0.48	0.01	4	$6,3,6,2$	0.94
IMFA	7	4.14	0.62	0.01	5	$6,6,6,6,6$	0.91
OMIFA	1	1.19	0.02	-	4	$6,3,6,4$	0.93
OMFA	7	5.11	0.02	-	5	$6,6,6,6,6$	0.85
MIFA	9	3.41	1	-	5	$6,3,6,6,4$	0.92
MFA	63	13.86	1	-	2	5,5	0.82

- Optimal models chosen by BICM were not all optimal in a clustering sense: candidate $G=4$ MIFA model yields Adj. Rand $=0.94$.
- Fully automatic IMIFA requires one quick run, gives optimal clustering performance, and does not rely on model selection criteria.

Italian olive oils and the IMIFA model family

- Comparison to other state-of-the-art methods:
- mclust: mixture of Gaussians
(Scrucca et al (2017))
- MFMA: mixture of factor mixture analysers (Viroli (2010))
- pgmm: parsimonious Gaussian mixture models (McNicholas et al. (2018))
- Comparison to other state-of-the-art methods:
- mclust: mixture of Gaussians
(Scrucca et al (2017))
- MFMA: mixture of factor mixture analysers
(Viroli (2010))
- pgmm: parsimonious Gaussian mixture models (McNicholas et al. (2018))

Model	\# Models	Rel. Time	α	d	G	Q	Adj. Rand
IMIFA	1	1.00	0.48	0.01	4	$6,3,6,2$	0.94

- Comparison to other state-of-the-art methods:
- mclust: mixture of Gaussians
(Scrucca et al (2017))
- MFMA: mixture of factor mixture analysers
(Viroli (2010))
- pgmm: parsimonious Gaussian mixture models (McNicholas et al. (2018))

Model	\# Models	Rel. Time	α	d	G	Q	Adj. Rand
IMIFA	1	1.00	0.48	0.01	4	$6,3,6,2$	0.94
mclust	115	0.01	-	-	6	-	0.56
MFMA	1350	4.68	-	-	4	$5,5,5,5$	0.68
pgmm	588	4.46	-	-	5	$6,6,6,6,6$	0.53

- Urine samples of $N=18$ subjects; half have epilepsy, half are controls
- NMR spectra with $p=189$ peaks $(N \ll p)$.

- Urine samples of $N=18$ subjects; half have epilepsy, half are controls
- NMR spectra with $p=189$ peaks $(N \ll p)$.

- MFA for $G=2$ and $q=0, \ldots, 10$:
$\widehat{G}=2$ and $\widehat{q}=3$, with 4 subjects clustered 'incorrectly'
- MIFA for $G \in\{1, \ldots, 5\}: \widehat{G}=2$ is optimal, 1 subject clustered 'incorrectly'
${ }^{21}$ Carmody et al. (2010)

- IMIFA finds $\widehat{G}=2$, with Adj. Rand $=1$
- $95 \% \mathrm{Cl}: \widehat{q}_{1}=3[2,9]$ and $\widehat{q}_{2}=5[4,13]$
- Cluster 2 captures the epileptic group: more complex model required

- Elevated loadings in cluster 2 for the first two factors for chemical shift values between 8 and 10
- This activity is not present for other factors in either cluster
- $N=7,291$ images of the digits $0, \ldots, 9$, taken from handwritten zip codes from the United States Postal Service (USPS)
- Each digit is represented by a 16×16 grayscale grid concatenated into a $P=256$-dimensional vector.
- Fitting many MFA or MIFA models is practically infeasible for this data
- IMIFA uncovers $\widehat{G}=21$ clusters and assigns images of the same digit, albeit written differently, to different clusters with different \widehat{q}_{g} values
- Allowing cluster-specific numbers of factors helps characterise digits with different geometric features and complexities

USPS Digits

- Cluster posterior means, with cluster-specific numbers of factors and uncertainty:

$\hat{\mathrm{a}}_{8}=1[0,4]$

- Aspect of (Bayesian) clustering methods that is often ignored
- Posterior predictive checking: how to do it in multimodal and multidimensional settings?
- Small p : examine histograms comparing bin counts of modelled versus replicate data for each variable

Model Checking

- Large p : proposed the 'Posterior Predictive Reconstruction Error' (PPRE):
(1) Transformed modelled data \mathbf{X} into a $h \times p$ matrix \mathcal{H}

Each column j contains bin counts of histogram for variable j No. of bins $h=$ max over all p variables, padded with 0 s as required
(2) Generate R replicate data sets $\mathbf{X}^{(r)}$ from the posterior predictive distribution, $r=1, \ldots, R$
(3) Create a similar histogram based matrix of $\mathcal{H}^{(r)}$ for each $\mathbf{X}^{(r)}$
(9) Compute the Frobenius norm:

$$
\left\|\mathcal{H}-\mathcal{H}^{(r)}\right\|_{\mathcal{F}}
$$

(5) Standardise to $[0,1]$ to obtain the PPRE via:

$$
\left|\|\mathcal{H}\|_{\mathcal{F}}-\left\|\mathcal{H}^{(r)}\right\|_{\mathcal{F}}\right| \leq\left\|\mathcal{H}-\mathcal{H}^{(r)}\right\|_{\mathcal{F}} \leq\|\mathcal{H}\|_{\mathcal{F}}+\left\|\mathcal{H}^{(r)}\right\|_{\mathcal{F}}
$$

Model Checking

- Olive oil data:

- Metabolomic data: median PPRE $=0.21[0.18,0.24]$
- USPS data: median PPRE $=0.05[0.04,0.06]$
- Proposed a family hierarchy of IMIFA models, from FA to IMIFA
- Potentially broader IMIFA family than that considered here:
- alternative shrinkage priors, e.g. IBP, BP, spike-and-slab ${ }^{23}$
- alternative mixture settings, e.g. DP- BP^{24}
- PYP-MGP: continuous shrinkage ethos DP-BP: exact shrinkage ethos (worse performance on digit data)
- PYP-MGP is the flagship of the (current) family:
- flexible
- computationally efficient
- enables uncertainty quantification
- removes reliance on model selection criteria
${ }^{23}$ Legramanti (2019)
${ }^{24}$ Chen et al. (2010)
- The model family includes both sparse finite (i.e. overfitted) mixtures and infinite mixtures
- Following Früwirth-Schnatter \& Malsiner-Walli (2019), the priors governing their mixing proportions are 'matched', leading to 'sparsified' PYP mixtures
- This helps address concerns around overestimation of G under the PYP prior ${ }^{25}$
- De Blasi et al. (2015) refer to an alternative formulation of the PYP with $d<0$ and $\alpha=m|d|$, for integer m
- This setting will be explored in future work, by virtue of its equivalence with a prior on m to a sparse finite mixture with a prior on G, to further unify the two model classes
${ }^{25}$ Miller \& Harrison 2014
- Wealth of potential model extensions:
- constrained loadings as per pgmm (constrained uniquenesses already explored in the paper)
- inclusion of covariates: mixture of experts approach
- semi-supervised settings with infinite factors
- new shrinkage priors - computational efficiency?
- robustifying IMIFA family models with multivariate skew/tdistributions
- power-posterior tempering ${ }^{26}$
- variable selection
- heteroscedastic factors: improved inference / addressing rotational invariance?

[^4]- IMIFA R package on CRAN: cran.r-project.org/web/packages/IMIFA

- Article in Bayesian Analysis:

Murphy, K., C. Viroli, and I. C. Gormley (2019). Infinite mixtures of infinite factor analysers. Bayesian Analysis, advance publication, 1-27. URL: https://projecteuclid.org/euclid.ba/1570586978

Other work

- Murphy, K. and T. B. Murphy (2019). Gaussian parsimonious clustering models with covariates and a noise component. Advances in Data Analysis and Classification, advance publication, 1-33. URL: https://doi.org/10.1007/s11634-019-00373-8
- Murphy, K., T. B. Murphy, R. Piccarreta, and I. C. Gormley (2019). Clustering longitudinal life-course sequences using mixtures of exponential-distance models. arXiv pre-print: 1908.07963
- Murphy, K., C. Viroli, and I. C. Gormley (2019). Infinite mixtures of infinite factor analysers. Bayesian Analysis, advance publication, 1-27.
URL: https://projecteuclid.org/euclid.ba/1570586978
- Respective R packages: MoEClust, MEDseq, and of course IMIFA

[^0]: ${ }^{4}$ Zhou et al. (2009); Städler et al. (2017)
 ${ }^{5}$ Cai et al. (2019)
 ${ }^{6}$ Scrucca et al. (2016)
 ${ }^{7}$ Murtagh (2009); McNicholas et al. (2018)

[^1]: ${ }^{8}$ Tipping \& Bishop (1999)

[^2]: ${ }^{9}$ Früwirth-Schnatter \& Lopes (2010)

[^3]: ${ }^{12}$ Ghosh \& Dunson (2008)
 ${ }^{13}$ Carpaneto \& Toth (1980)
 ${ }^{14}$ Raftery et al. (2007)

[^4]: ${ }^{26}$ Miller \& Dunson (2018)

