Deep Optimal Stopping

Sebastian Becker
ZENAI

Patrick Cheridito
RiskLab, ETH Zurich

Arnulf Jentzen
Universität Münster

Vienna, November 2019

The Problem
$\sup _{\tau \in \mathcal{T}} \mathbb{E} g\left(\tau, X_{\tau}\right)$,

The Problem

$$
\sup _{\tau \in \mathcal{T}} \mathbb{E} g\left(\tau, X_{\tau}\right),
$$

where

- $\left(X_{n}\right)_{n=0}^{N}$ is a d-dimensional Markov process on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$

$$
\sup _{\tau \in \mathcal{T}} \mathbb{E} g\left(\tau, X_{\tau}\right),
$$

where

- $\left(X_{n}\right)_{n=0}^{N}$ is a d-dimensional Markov process on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$
- $g:\{0,1, \ldots, N\} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ a measurable function such that

$$
\mathbb{E}\left|g\left(n, X_{n}\right)\right|<\infty \quad \text { for all } n=0, \ldots, N
$$

$$
\sup _{\tau \in \mathcal{T}} \mathbb{E} g\left(\tau, X_{\tau}\right),
$$

where

- $\left(X_{n}\right)_{n=0}^{N}$ is a d-dimensional Markov process on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$
- $g:\{0,1, \ldots, N\} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ a measurable function such that

$$
\mathbb{E}\left|g\left(n, X_{n}\right)\right|<\infty \quad \text { for all } n=0, \ldots, N
$$

- \mathcal{T} is the set of all X-stopping times τ

$$
\text { that is, }\{\tau=n\} \in \sigma\left(X_{0}, \ldots, X_{n}\right) \text { for all } n=0,1, \ldots, N
$$

About the assumptions

- Discrete time

About the assumptions

- Discrete time
- Many problems are already in discrete time

About the assumptions

- Discrete time
- Many problems are already in discrete time
- Most relevant continuous-time problems can be approximated by time-discretized versions

About the assumptions

- Discrete time
- Many problems are already in discrete time
- Most relevant continuous-time problems can be approximated by time-discretized versions
- Markov assumption

About the assumptions

- Discrete time
- Many problems are already in discrete time
- Most relevant continuous-time problems can be approximated by time-discretized versions
- Markov assumption
- Every discrete-time process can be made Markov by including all relevant information in the current state ... by increasing the dimension of $\left(X_{n}\right)_{n=0}^{N}$

Examples

(1) Bermudan max-call options

Examples

(1) Bermudan max-call options

Consider d assets with prices evolving according to a multi-dimensional Black-Scholes model

$$
S_{t}^{i}=s_{0}^{i} \exp \left(\left[r-\delta_{i}-\sigma_{i}^{2} / 2\right] t+\sigma_{i} W_{t}^{i}\right), \quad i=1,2, \ldots, d
$$

Examples

(1) Bermudan max-call options

Consider d assets with prices evolving according to a multi-dimensional Black-Scholes model

$$
S_{t}^{i}=s_{0}^{i} \exp \left(\left[r-\delta_{i}-\sigma_{i}^{2} / 2\right] t+\sigma_{i} W_{t}^{i}\right), \quad i=1,2, \ldots, d,
$$

for

- initial values $s_{0}^{i} \in(0, \infty)$

Examples

(1) Bermudan max-call options

Consider d assets with prices evolving according to a multi-dimensional Black-Scholes model

$$
S_{t}^{i}=s_{0}^{i} \exp \left(\left[r-\delta_{i}-\sigma_{i}^{2} / 2\right] t+\sigma_{i} W_{t}^{i}\right), \quad i=1,2, \ldots, d
$$

for

- initial values $s_{0}^{i} \in(0, \infty)$
- a risk-free interest rate $r \in \mathbb{R}$

Examples

(1) Bermudan max-call options

Consider d assets with prices evolving according to a multi-dimensional Black-Scholes model

$$
S_{t}^{i}=s_{0}^{i} \exp \left(\left[r-\delta_{i}-\sigma_{i}^{2} / 2\right] t+\sigma_{i} W_{t}^{i}\right), \quad i=1,2, \ldots, d
$$

for

- initial values $s_{0}^{i} \in(0, \infty)$
- a risk-free interest rate $r \in \mathbb{R}$
- dividend yields $\delta_{i} \in[0, \infty)$

Examples

(1) Bermudan max-call options

Consider d assets with prices evolving according to a multi-dimensional Black-Scholes model

$$
S_{t}^{i}=s_{0}^{i} \exp \left(\left[r-\delta_{i}-\sigma_{i}^{2} / 2\right] t+\sigma_{i} W_{t}^{i}\right), \quad i=1,2, \ldots, d
$$

for

- initial values $s_{0}^{i} \in(0, \infty)$
- a risk-free interest rate $r \in \mathbb{R}$
- dividend yields $\delta_{i} \in[0, \infty)$
- volatilities $\sigma_{i} \in(0, \infty)$

Examples

(1) Bermudan max-call options

Consider d assets with prices evolving according to a multi-dimensional Black-Scholes model

$$
S_{t}^{i}=s_{0}^{i} \exp \left(\left[r-\delta_{i}-\sigma_{i}^{2} / 2\right] t+\sigma_{i} W_{t}^{i}\right), \quad i=1,2, \ldots, d,
$$

for

- initial values $s_{0}^{i} \in(0, \infty)$
- a risk-free interest rate $r \in \mathbb{R}$
- dividend yields $\delta_{i} \in[0, \infty)$
- volatilities $\sigma_{i} \in(0, \infty)$
- and a d-dimensional Brownian motion W with constant correlation $\rho_{i j}$ between increments of different components W^{i} and W^{j}

Examples

(1) Bermudan max-call options

Consider d assets with prices evolving according to a multi-dimensional Black-Scholes model

$$
S_{t}^{i}=s_{0}^{i} \exp \left(\left[r-\delta_{i}-\sigma_{i}^{2} / 2\right] t+\sigma_{i} W_{t}^{i}\right), \quad i=1,2, \ldots, d
$$

for

- initial values $s_{0}^{i} \in(0, \infty)$
- a risk-free interest rate $r \in \mathbb{R}$
- dividend yields $\delta_{i} \in[0, \infty)$
- volatilities $\sigma_{i} \in(0, \infty)$
- and a d-dimensional Brownian motion W with constant correlation $\rho_{i j}$ between increments of different components W^{i} and W^{j}

A Bermudan max-call option has time- t payoff $\left(\max _{1 \leq i \leq d} S_{t}^{i}-K\right)^{+}$

Examples

(1) Bermudan max-call options

Consider d assets with prices evolving according to a multi-dimensional Black-Scholes model

$$
S_{t}^{i}=s_{0}^{i} \exp \left(\left[r-\delta_{i}-\sigma_{i}^{2} / 2\right] t+\sigma_{i} W_{t}^{i}\right), \quad i=1,2, \ldots, d
$$

for

- initial values $s_{0}^{i} \in(0, \infty)$
- a risk-free interest rate $r \in \mathbb{R}$
- dividend yields $\delta_{i} \in[0, \infty)$
- volatilities $\sigma_{i} \in(0, \infty)$
- and a d-dimensional Brownian motion W with constant correlation $\rho_{i j}$ between increments of different components W^{i} and W^{j}
A Bermudan max-call option has time- t payoff $\left(\max _{1 \leq i \leq d} S_{t}^{i}-K\right){ }^{+}$ and can be exercised at one of finitely many times $0=t_{0}<t_{1}=\frac{T}{N}<t_{2}=\frac{2 T}{N}<\cdots<t_{N}=T$

Examples

(1) Bermudan max-call options

Consider d assets with prices evolving according to a multi-dimensional Black-Scholes model

$$
S_{t}^{i}=s_{0}^{i} \exp \left(\left[r-\delta_{i}-\sigma_{i}^{2} / 2\right] t+\sigma_{i} W_{t}^{i}\right), \quad i=1,2, \ldots, d
$$

for

- initial values $s_{0}^{i} \in(0, \infty)$
- a risk-free interest rate $r \in \mathbb{R}$
- dividend yields $\delta_{i} \in[0, \infty)$
- volatilities $\sigma_{i} \in(0, \infty)$
- and a d-dimensional Brownian motion W with constant correlation $\rho_{i j}$ between increments of different components W^{i} and W^{j}
A Bermudan max-call option has time- t payoff $\left(\max _{1 \leq i \leq d} S_{t}^{i}-K\right){ }^{+}$ and can be exercised at one of finitely many times $0=t_{0}<t_{1}=\frac{T}{N}<t_{2}=\frac{2 T}{N}<\cdots<t_{N}=T$

$$
\text { Price: } \sup _{\tau \in\left\{t_{0}, t_{1}, \ldots, T\right\}} \mathbb{E}\left[e^{-r \tau}\left(\max _{1 \leq i \leq d} S_{\tau}^{i}-K\right)^{+}\right]
$$

Examples

(1) Bermudan max-call options

Consider d assets with prices evolving according to a multi-dimensional Black-Scholes model

$$
S_{t}^{i}=s_{0}^{i} \exp \left(\left[r-\delta_{i}-\sigma_{i}^{2} / 2\right] t+\sigma_{i} W_{t}^{i}\right), \quad i=1,2, \ldots, d
$$

for

- initial values $s_{0}^{i} \in(0, \infty)$
- a risk-free interest rate $r \in \mathbb{R}$
- dividend yields $\delta_{i} \in[0, \infty)$
- volatilities $\sigma_{i} \in(0, \infty)$
- and a d-dimensional Brownian motion W with constant correlation $\rho_{i j}$ between increments of different components W^{i} and W^{j}
A Bermudan max-call option has time- t payoff $\left(\max _{1 \leq i \leq d} S_{t}^{i}-K\right){ }^{+}$ and can be exercised at one of finitely many times $0=t_{0}<t_{1}=\frac{T}{N}<t_{2}=\frac{2 T}{N}<\cdots<t_{N}=T$

$$
\text { Price: } \sup _{\tau \in\left\{t_{0}, t_{1}, \ldots, T\right\}} \mathbb{E}\left[e^{-r \tau}\left(\max _{1 \leq i \leq d} S_{\tau}^{i}-K\right)^{+}\right]=\sup _{\tau \in \mathcal{T}} \mathbb{E} g\left(\tau, X_{\tau}\right)
$$

This problem has been studied for $d=2,3,5$ (among others) by

- Longstaff and Schwartz (2001)
- Rogers (2002)
- García (2003)
- Boyle, Kolkiewicz and Tan (2003)
- Haugh and Kogan (2004)
- Broadie and Glasserman (2004)
- Andersen and Broadie (2004)
- Broadie and Cao (2008)
- Berridge and Schumacher (2008)
- Belomestny $(2011,2013)$
- Jain and Oosterlee (2015)
- Lelong (2016)

Our price estimates

for $s_{0}^{i}=100, \sigma_{i}=20 \%, r=5 \%, \delta=10 \%, \rho_{i j}=0, K=100, T=3, N=9$:

\# assets	Point Est.	Comp. Time	95% Conf. Int.	Bin. Tree
2	13.899	$28.7 s$	$[13.880,13.910]$	13.902
3	18.690	$28.9 s$	$[18.673,18.699]$	18.69

Our price estimates

for $s_{0}^{i}=100, \sigma_{i}=20 \%, r=5 \%, \delta=10 \%, \rho_{i j}=0, K=100, T=3, N=9$:

\# assets	Point Est.	Comp. Time	95\% Conf. Int.	Bin. Tree	Broadie-Cao 95\% Conf. Int.
2	13.899	$28.7 s$	$[13.880,13.910]$	13.902	
3	18.690	$28.9 s$	$[18.673,18.699]$	18.69	
5	26.159	$28.1 s$	$[26.138,26.174]$		$[26.115,26.164]$

Our price estimates

$$
\text { for } s_{0}^{i}=100, \sigma_{i}=20 \%, r=5 \%, \delta=10 \%, \rho_{i j}=0, K=100, T=3, N=9 \text { : }
$$

\# Assets	Point Est.	Comp. Time	95% Conf. Int.	Bin. Tree	Broadie-Cao 95\% Conf. Int.
2	13.899	$28.7 s$	$[13.880,13.910]$	13.902	
3	18.690	$28.9 s$	$[18.673,18.699]$	18.69	
5	26.159	$28.1 s$	$[26.138,26.174]$		$[26.115,26.164]$
10	38.337	$30.5 s$	$[38.300,38.367]$		
20	51.668	$37.5 s$	$[51.549,51.803]$		
30	59.659	$45.5 s$	$[59.476,59.872]$		
50	69.736	$59.1 s$	$[69.560,69.945]$		
100	83.584	$95.9 s$	$[83.357,83.862]$		
200	97.612	$170.1 s$	$[97.381,97.889]$		
500	116.425	$493.5 s$	$[116.210,116.685]$		

(2) Optimally stopping a fractional Brownian motion
(2) Optimally stopping a fractional Brownian motion

A fractional Brownian motion with Hurst parameter $H \in(0,1]$ is a continuous centered Gaussian process $\left(W_{t}^{H}\right)_{t \geq 0}$ with covariance structure

$$
\operatorname{Cov}\left(W_{t}^{H}, W_{s}^{H}\right)=\frac{1}{2}\left(t^{2 H}+s^{2 H}-|t-s|^{2 H}\right)
$$

(2) Optimally stopping a fractional Brownian motion

A fractional Brownian motion with Hurst parameter $H \in(0,1]$ is a continuous centered Gaussian process $\left(W_{t}^{H}\right)_{t \geq 0}$ with covariance structure

$$
\operatorname{Cov}\left(W_{t}^{H}, W_{s}^{H}\right)=\frac{1}{2}\left(t^{2 H}+s^{2 H}-|t-s|^{2 H}\right)
$$

- For $H=1 / 2, W^{H}$ is a Brownian motion

(2) Optimally stopping a fractional Brownian motion

A fractional Brownian motion with Hurst parameter $H \in(0,1]$ is a continuous centered Gaussian process $\left(W_{t}^{H}\right)_{t \geq 0}$ with covariance structure

$$
\operatorname{Cov}\left(W_{t}^{H}, W_{s}^{H}\right)=\frac{1}{2}\left(t^{2 H}+s^{2 H}-|t-s|^{2 H}\right)
$$

- For $H=1 / 2, W^{H}$ is a Brownian motion
- For $H>1 / 2, W^{H}$ has positively correlated increments

(2) Optimally stopping a fractional Brownian motion

A fractional Brownian motion with Hurst parameter $H \in(0,1]$ is a continuous centered Gaussian process $\left(W_{t}^{H}\right)_{t \geq 0}$ with covariance structure

$$
\operatorname{Cov}\left(W_{t}^{H}, W_{s}^{H}\right)=\frac{1}{2}\left(t^{2 H}+s^{2 H}-|t-s|^{2 H}\right)
$$

- For $H=1 / 2, W^{H}$ is a Brownian motion
- For $H>1 / 2, W^{H}$ has positively correlated increments
- For $H<1 / 2, W^{H}$ has negatively correlated increments

(2) Optimally stopping a fractional Brownian motion

A fractional Brownian motion with Hurst parameter $H \in(0,1]$ is a continuous centered Gaussian process $\left(W_{t}^{H}\right)_{t \geq 0}$ with covariance structure

$$
\operatorname{Cov}\left(W_{t}^{H}, W_{s}^{H}\right)=\frac{1}{2}\left(t^{2 H}+s^{2 H}-|t-s|^{2 H}\right)
$$

- For $H=1 / 2, W^{H}$ is a Brownian motion
- For $H>1 / 2, W^{H}$ has positively correlated increments
- For $H<1 / 2, W^{H}$ has negatively correlated increments

$H=0.1$

$H=0.5$

$H=0.8$

Problem:

Problem: $\quad \sup _{0<\tau<1} \mathbb{E} W_{\tau}^{H}$

 (*)- denote $t_{n}=n / 100, n=0,1,2, \ldots, 100$
- denote $t_{n}=n / 100, n=0,1,2, \ldots, 100$
- introduce the 100 -dimensional Markov process $\left(X_{n}\right)_{n=0}^{100}$ given by

$$
\begin{aligned}
X_{0} & =(0,0, \ldots, 0) \\
X_{1} & =\left(W_{t_{1}}^{H}, 0, \ldots, 0\right) \\
X_{2} & =\left(W_{t_{2}}^{H}, W_{t_{1}}^{H}, 0, \ldots, 0\right) \\
\vdots & \\
X_{100} & =\left(W_{t_{100}}^{H}, W_{t_{999}}^{H}, \ldots, W_{t_{1}}^{H}\right) .
\end{aligned}
$$

- denote $t_{n}=n / 100, n=0,1,2, \ldots, 100$
- introduce the 100 -dimensional Markov process $\left(X_{n}\right)_{n=0}^{100}$ given by

$$
\begin{aligned}
X_{0} & =(0,0, \ldots, 0) \\
X_{1} & =\left(W_{t_{1}}^{H}, 0, \ldots, 0\right) \\
X_{2} & =\left(W_{t_{2}}^{H}, W_{t_{1}}^{H}, 0, \ldots, 0\right) \\
\vdots & \\
X_{100} & =\left(W_{t_{100}}^{H}, W_{t_{99}}^{H}, \ldots, W_{t_{1}}^{H}\right) .
\end{aligned}
$$

The discretized stopping problem

$$
\sup _{\tau \in \mathcal{T}} \mathbb{E} g\left(X_{\tau}\right) \quad \text { for } g\left(x^{1}, \ldots, x^{100}\right)=x^{1}
$$

approximates the continuous-time problem (*) from below

Results of Kulikov and Gusyatnikov (2016) (based on heuristic stopping rules)

Results of Kulikov and Gusyatnikov (2016) (based on heuristic stopping rules)

Our results

Modeling results for different k

Computing a candidate optimal stopping time

- Introduce the sequence of auxiliary stopping problems

$$
V_{n}=\sup _{\tau \in \mathcal{T}_{n}} \mathbb{E} g\left(\tau, X_{\tau}\right), \quad n=0,1, \ldots, N
$$

where \mathcal{T}_{n} is the set of all stopping times $n \leq \tau \leq N$

Computing a candidate optimal stopping time

- Introduce the sequence of auxiliary stopping problems

$$
V_{n}=\sup _{\tau \in \mathcal{T}_{n}} \mathbb{E} g\left(\tau, X_{\tau}\right), \quad n=0,1, \ldots, N,
$$

where \mathcal{T}_{n} is the set of all stopping times $n \leq \tau \leq N$

- Stopping times and stopping decisions

Let $f_{n}, f_{n+1}, \ldots, f_{N}: \mathbb{R}^{d} \rightarrow\{0,1\}$ be measurable functions such that $f_{N} \equiv 1$. Then

$$
\tau_{n}=\sum_{m=n}^{N} m f_{m}\left(X_{m}\right) \prod_{j=n}^{m-1}\left(1-f_{j}\left(X_{j}\right)\right) \quad \text { with } \quad \prod_{j=n}^{n-1}\left(1-f_{j}\left(X_{j}\right)\right):=1
$$

is a stopping time in \mathcal{T}_{n}

Theorem

For a given $n \in\{0,1, \ldots, N-1\}$, let τ_{n+1} be a stopping time in \mathcal{T}_{n+1} of the form

$$
\tau_{n+1}=\sum_{m=n+1}^{N} m f_{m}\left(X_{m}\right) \prod_{j=n+1}^{m-1}\left(1-f_{j}\left(X_{j}\right)\right)
$$

for measurable functions $f_{n+1}, \ldots, f_{N}: \mathbb{R}^{d} \rightarrow\{0,1\}$ with $f_{N} \equiv 1$.

Theorem

For a given $n \in\{0,1, \ldots, N-1\}$, let τ_{n+1} be a stopping time in \mathcal{T}_{n+1} of the form

$$
\tau_{n+1}=\sum_{m=n+1}^{N} m f_{m}\left(X_{m}\right) \prod_{j=n+1}^{m-1}\left(1-f_{j}\left(X_{j}\right)\right)
$$

for measurable functions $f_{n+1}, \ldots, f_{N}: \mathbb{R}^{d} \rightarrow\{0,1\}$ with $f_{N} \equiv 1$.
Then there exists a measurable function $f_{n}: \mathbb{R}^{d} \rightarrow\{0,1\}$ such that the stopping time

$$
\tau_{n}=n f_{n}\left(X_{n}\right)+\tau_{n+1}\left(1-f_{n}\left(X_{n}\right)\right)=\sum_{m=n}^{N} m f_{m}\left(X_{m}\right) \prod_{j=n}^{m-1}\left(1-f_{j}\left(X_{j}\right)\right)
$$

satisfies

$$
\mathbb{E} g\left(\tau_{n}, X_{\tau_{n}}\right) \geq V_{n}-\left(V_{n+1}-\mathbb{E} g\left(\tau_{n+1}, X_{\tau_{n+1}}\right)\right)
$$

Theorem

For a given $n \in\{0,1, \ldots, N-1\}$, let τ_{n+1} be a stopping time in \mathcal{T}_{n+1} of the form

$$
\tau_{n+1}=\sum_{m=n+1}^{N} m f_{m}\left(X_{m}\right) \prod_{j=n+1}^{m-1}\left(1-f_{j}\left(X_{j}\right)\right)
$$

for measurable functions $f_{n+1}, \ldots, f_{N}: \mathbb{R}^{d} \rightarrow\{0,1\}$ with $f_{N} \equiv 1$.
Then there exists a measurable function $f_{n}: \mathbb{R}^{d} \rightarrow\{0,1\}$ such that the stopping time

$$
\tau_{n}=n f_{n}\left(X_{n}\right)+\tau_{n+1}\left(1-f_{n}\left(X_{n}\right)\right)=\sum_{m=n}^{N} m f_{m}\left(X_{m}\right) \prod_{j=n}^{m-1}\left(1-f_{j}\left(X_{j}\right)\right)
$$

satisfies

$$
\mathbb{E} g\left(\tau_{n}, X_{\tau_{n}}\right) \geq V_{n}-\left(V_{n+1}-\mathbb{E} g\left(\tau_{n+1}, X_{\tau_{n+1}}\right)\right)
$$

Proof: \quad Compare $g\left(n, X_{n}\right)$ to $\mathbb{E}\left[g\left(\tau_{n+1}, X_{\tau_{n+1}}\right) \mid X_{0}, X_{1}, \ldots, X_{n}\right]=\mathbb{E}\left[g\left(\tau_{n+1}, X_{\tau_{n+1}}\right) \mid X_{n}\right]$

Neural network approximation

Neural network approximation

Idea Recursively approximate f_{n} by a neural network $f^{\theta}: \mathbb{R}^{d} \rightarrow\{0,1\}$ of the form

$$
f^{\theta}=1_{[0, \infty)} \circ a_{3}^{\theta} \circ \varphi_{q_{2}} \circ a_{2}^{\theta} \circ \varphi_{q_{1}} \circ a_{1}^{\theta},
$$

Neural network approximation

Idea Recursively approximate f_{n} by a neural network $f^{\theta}: \mathbb{R}^{d} \rightarrow\{0,1\}$ of the form

$$
f^{\theta}=1_{[0, \infty)} \circ a_{3}^{\theta} \circ \varphi_{q_{2}} \circ a_{2}^{\theta} \circ \varphi_{q_{1}} \circ a_{1}^{\theta},
$$

where

- q_{1} and q_{2} are positive integers specifying the number of nodes in the two hidden layers,

Neural network approximation

Idea Recursively approximate f_{n} by a neural network $f^{\theta}: \mathbb{R}^{d} \rightarrow\{0,1\}$ of the form

$$
f^{\theta}=1_{[0, \infty)} \circ a_{3}^{\theta} \circ \varphi_{q_{2}} \circ a_{2}^{\theta} \circ \varphi_{q_{1}} \circ a_{1}^{\theta},
$$

where

- q_{1} and q_{2} are positive integers specifying the number of nodes in the two hidden layers,
- $a_{1}^{\theta}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{q_{1}}, a_{2}^{\theta}: \mathbb{R}^{q_{1}} \rightarrow \mathbb{R}^{q_{2}}$ and $a_{3}^{\theta}: \mathbb{R}^{q_{2}} \rightarrow \mathbb{R}$ are affine functions given by

$$
a_{i}^{\theta}(x)=A_{i} x+b_{i}, i=1,2,3,
$$

Neural network approximation

Idea Recursively approximate f_{n} by a neural network $f^{\theta}: \mathbb{R}^{d} \rightarrow\{0,1\}$ of the form

$$
f^{\theta}=1_{[0, \infty)} \circ a_{3}^{\theta} \circ \varphi_{q_{2}} \circ a_{2}^{\theta} \circ \varphi_{q_{1}} \circ a_{1}^{\theta},
$$

where

- q_{1} and q_{2} are positive integers specifying the number of nodes in the two hidden layers,
- $a_{1}^{\theta}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{q_{1}}, a_{2}^{\theta}: \mathbb{R}^{q_{1}} \rightarrow \mathbb{R}^{q_{2}}$ and $a_{3}^{\theta}: \mathbb{R}^{q_{2}} \rightarrow \mathbb{R}$ are affine functions given by

$$
a_{i}^{\theta}(x)=A_{i} x+b_{i}, i=1,2,3,
$$

- for $j \in \mathbb{N}, \varphi_{j}: \mathbb{R}^{j} \rightarrow \mathbb{R}^{j}$ is the component-wise ReLU activation function given by $\varphi_{j}\left(x_{1}, \ldots, x_{j}\right)=\left(x_{1}^{+}, \ldots, x_{j}^{+}\right)$

Neural network approximation

Idea Recursively approximate f_{n} by a neural network $f^{\theta}: \mathbb{R}^{d} \rightarrow\{0,1\}$ of the form

$$
f^{\theta}=1_{[0, \infty)} \circ a_{3}^{\theta} \circ \varphi_{q_{2}} \circ a_{2}^{\theta} \circ \varphi_{q_{1}} \circ a_{1}^{\theta},
$$

where

- q_{1} and q_{2} are positive integers specifying the number of nodes in the two hidden layers,
- $a_{1}^{\theta}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{q_{1}}, a_{2}^{\theta}: \mathbb{R}^{q_{1}} \rightarrow \mathbb{R}^{q_{2}}$ and $a_{3}^{\theta}: \mathbb{R}^{q_{2}} \rightarrow \mathbb{R}$ are affine functions given by

$$
a_{i}^{\theta}(x)=A_{i} x+b_{i}, i=1,2,3,
$$

- for $j \in \mathbb{N}, \varphi_{j}: \mathbb{R}^{j} \rightarrow \mathbb{R}^{j}$ is the component-wise ReLU activation function given by $\varphi_{j}\left(x_{1}, \ldots, x_{j}\right)=\left(x_{1}^{+}, \ldots, x_{j}^{+}\right)$
The components of θ consist of the entries of A_{i} and $b_{i}, i=1,2,3$

Neural network approximation

Idea Recursively approximate f_{n} by a neural network $f^{\theta}: \mathbb{R}^{d} \rightarrow\{0,1\}$ of the form

$$
f^{\theta}=1_{[0, \infty)} \circ a_{3}^{\theta} \circ \varphi_{q_{2}} \circ a_{2}^{\theta} \circ \varphi_{q_{1}} \circ a_{1}^{\theta}
$$

where

- q_{1} and q_{2} are positive integers specifying the number of nodes in the two hidden layers,
- $a_{1}^{\theta}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{q_{1}}, a_{2}^{\theta}: \mathbb{R}^{q_{1}} \rightarrow \mathbb{R}^{q_{2}}$ and $a_{3}^{\theta}: \mathbb{R}^{q_{2}} \rightarrow \mathbb{R}$ are affine functions given by

$$
a_{i}^{\theta}(x)=A_{i} x+b_{i}, i=1,2,3,
$$

- for $j \in \mathbb{N}, \varphi_{j}: \mathbb{R}^{j} \rightarrow \mathbb{R}^{j}$ is the component-wise ReLU activation function given by $\varphi_{j}\left(x_{1}, \ldots, x_{j}\right)=\left(x_{1}^{+}, \ldots, x_{j}^{+}\right)$
The components of θ consist of the entries of A_{i} and $b_{i}, i=1,2,3 \rightsquigarrow$ so $\#$ of parameters $\approx d^{2}$

More precisely,

- assume parameter values $\theta_{n+1}, \theta_{n+2}, \ldots, \theta_{N} \in \mathbb{R}^{q}$ have been found such that $f^{\theta_{N}} \equiv 1$ and the stopping time

$$
\tau_{n+1}=\sum_{m=n+1}^{N} m f^{\theta_{m}}\left(X_{m}\right) \prod_{j=n+1}^{m-1}\left(1-f^{\theta_{j}}\left(X_{j}\right)\right)
$$

produces an expectation $\mathbb{E} g\left(\tau_{n+1}, X_{\tau_{n+1}}\right)$ close to the optimal value V_{n+1}

More precisely,

- assume parameter values $\theta_{n+1}, \theta_{n+2}, \ldots, \theta_{N} \in \mathbb{R}^{q}$ have been found such that $f^{\theta_{N}} \equiv 1$ and the stopping time

$$
\tau_{n+1}=\sum_{m=n+1}^{N} m f^{\theta_{m}}\left(X_{m}\right) \prod_{j=n+1}^{m-1}\left(1-f^{\theta_{j}}\left(X_{j}\right)\right)
$$

produces an expectation $\mathbb{E} g\left(\tau_{n+1}, X_{\tau_{n+1}}\right)$ close to the optimal value V_{n+1}

- now try to find a maximizer $\theta_{n} \in \mathbb{R}^{q}$ of

$$
\theta \mapsto \mathbb{E}\left[g\left(n, X_{n}\right) f^{\theta}\left(X_{n}\right)+g\left(\tau_{n+1}, X_{n+1}\right)\left(1-f^{\theta}\left(X_{n}\right)\right)\right]
$$

- Goal find an (approximately) optimal $\theta_{n} \in \mathbb{R}^{q}$ with a stochastic gradient ascent method
- Goal find an (approximately) optimal $\theta_{n} \in \mathbb{R}^{q}$ with a stochastic gradient ascent method
- Problem for $x \in \mathbb{R}^{d}$, the θ-gradient of

$$
f^{\theta}(x)=1_{[0, \infty)} \circ a_{3}^{\theta} \circ \varphi_{q_{2}} \circ a_{2}^{\theta} \circ \varphi_{q_{1}} \circ a_{1}^{\theta}(x)
$$

is 0 or does not exist

- Goal find an (approximately) optimal $\theta_{n} \in \mathbb{R}^{q}$ with a stochastic gradient ascent method
- Problem for $x \in \mathbb{R}^{d}$, the θ-gradient of

$$
f^{\theta}(x)=1_{[0, \infty)} \circ a_{3}^{\theta} \circ \varphi_{q_{2}} \circ a_{2}^{\theta} \circ \varphi_{q_{1}} \circ a_{1}^{\theta}(x)
$$

is 0 or does not exist

- As an intermediate step consider a neural network $F^{\theta}: \mathbb{R}^{d} \rightarrow(0,1)$ of the form

$$
F^{\theta}=\psi \circ a_{3}^{\theta} \circ \varphi_{q_{2}} \circ a_{2}^{\theta} \circ \varphi_{q_{1}} \circ a_{1}^{\theta} \quad \text { for } \quad \psi(x)=\frac{e^{x}}{1+e^{x}}
$$

- Goal find an (approximately) optimal $\theta_{n} \in \mathbb{R}^{q}$ with a stochastic gradient ascent method
- Problem for $x \in \mathbb{R}^{d}$, the θ-gradient of

$$
f^{\theta}(x)=1_{[0, \infty)} \circ a_{3}^{\theta} \circ \varphi_{q_{2}} \circ a_{2}^{\theta} \circ \varphi_{q_{1}} \circ a_{1}^{\theta}(x)
$$

is 0 or does not exist

- As an intermediate step consider a neural network $F^{\theta}: \mathbb{R}^{d} \rightarrow(0,1)$ of the form

$$
F^{\theta}=\psi \circ a_{3}^{\theta} \circ \varphi_{q_{2}} \circ a_{2}^{\theta} \circ \varphi_{q_{1}} \circ a_{1}^{\theta} \quad \text { for } \quad \psi(x)=\frac{e^{x}}{1+e^{x}}
$$

- Use stochastic gradient ascent to find an approximate optimizer $\theta_{n} \in \mathbb{R}^{q}$ of

$$
\theta \mapsto \mathbb{E}\left[g\left(n, X_{n}\right) F^{\theta}\left(X_{n}\right)+g\left(\tau_{n+1}, X_{\tau_{n+1}}\right)\left(1-F^{\theta}\left(X_{n}\right)\right)\right]
$$

- Goal find an (approximately) optimal $\theta_{n} \in \mathbb{R}^{q}$ with a stochastic gradient ascent method
- Problem for $x \in \mathbb{R}^{d}$, the θ-gradient of

$$
f^{\theta}(x)=1_{[0, \infty)} \circ a_{3}^{\theta} \circ \varphi_{q_{2}} \circ a_{2}^{\theta} \circ \varphi_{q_{1}} \circ a_{1}^{\theta}(x)
$$

is 0 or does not exist

- As an intermediate step consider a neural network $F^{\theta}: \mathbb{R}^{d} \rightarrow(0,1)$ of the form

$$
F^{\theta}=\psi \circ a_{3}^{\theta} \circ \varphi_{q_{2}} \circ a_{2}^{\theta} \circ \varphi_{q_{1}} \circ a_{1}^{\theta} \quad \text { for } \quad \psi(x)=\frac{e^{x}}{1+e^{x}}
$$

- Use stochastic gradient ascent to find an approximate optimizer $\theta_{n} \in \mathbb{R}^{q}$ of

$$
\theta \mapsto \mathbb{E}\left[g\left(n, X_{n}\right) F^{\theta}\left(X_{n}\right)+g\left(\tau_{n+1}, X_{\tau_{n+1}}\right)\left(1-F^{\theta}\left(X_{n}\right)\right)\right]
$$

- Approximate

$$
f_{n} \approx f^{\theta_{n}}=1_{[0, \infty)} \circ a_{3}^{\theta_{n}} \circ \varphi_{q_{2}} \circ a_{2}^{\theta_{n}} \circ \varphi_{q_{1}} \circ a_{1}^{\theta_{n}}
$$

- Goal find an (approximately) optimal $\theta_{n} \in \mathbb{R}^{q}$ with a stochastic gradient ascent method
- Problem for $x \in \mathbb{R}^{d}$, the θ-gradient of

$$
f^{\theta}(x)=1_{[0, \infty)} \circ a_{3}^{\theta} \circ \varphi_{q_{2}} \circ a_{2}^{\theta} \circ \varphi_{q_{1}} \circ a_{1}^{\theta}(x)
$$

is 0 or does not exist

- As an intermediate step consider a neural network $F^{\theta}: \mathbb{R}^{d} \rightarrow(0,1)$ of the form

$$
F^{\theta}=\psi \circ a_{3}^{\theta} \circ \varphi_{q_{2}} \circ a_{2}^{\theta} \circ \varphi_{q_{1}} \circ a_{1}^{\theta} \quad \text { for } \quad \psi(x)=\frac{e^{x}}{1+e^{x}}
$$

- Use stochastic gradient ascent to find an approximate optimizer $\theta_{n} \in \mathbb{R}^{q}$ of

$$
\theta \mapsto \mathbb{E}\left[g\left(n, X_{n}\right) F^{\theta}\left(X_{n}\right)+g\left(\tau_{n+1}, X_{\tau_{n+1}}\right)\left(1-F^{\theta}\left(X_{n}\right)\right)\right]
$$

- Approximate

$$
f_{n} \approx f^{\theta_{n}}=1_{[0, \infty)} \circ a_{3}^{\theta_{n}} \circ \varphi_{q_{2}} \circ a_{2}^{\theta_{n}} \circ \varphi_{q_{1}} \circ a_{1}^{\theta_{n}}
$$

- Repeat the same steps at times $n-1, n-2, \ldots, 0$

Proposition

Let $n \in\{0,1, \ldots, N-1\}$ and fix a stopping time $\tau_{n+1} \in \mathcal{T}_{n+1}$. Then, for every constant $\varepsilon>0$, there exist numbers of hidden nodes q_{1} and q_{2} such that

$$
\begin{aligned}
& \sup _{\theta \in \mathbb{R}^{q}} \mathbb{E}\left[g\left(n, X_{n}\right) f^{\theta}\left(X_{n}\right)+g\left(\tau_{n+1}, X_{\tau_{n+1}}\right)\left(1-f^{\theta}\left(X_{n}\right)\right)\right] \\
& \geq \sup _{f \in \mathcal{D}} \mathbb{E}\left[g\left(n, X_{n}\right) f\left(X_{n}\right)+g\left(\tau_{n+1}, X_{\tau_{n+1}}\right)\left(1-f\left(X_{n}\right)\right)\right]-\varepsilon,
\end{aligned}
$$

where \mathcal{D} is the set of all measurable functions $f: \mathbb{R}^{d} \rightarrow\{0,1\}$.

Proposition

Let $n \in\{0,1, \ldots, N-1\}$ and fix a stopping time $\tau_{n+1} \in \mathcal{T}_{n+1}$. Then, for every constant $\varepsilon>0$, there exist numbers of hidden nodes q_{1} and q_{2} such that

$$
\begin{aligned}
& \sup _{\theta \in \mathbb{R}^{q}} \mathbb{E}\left[g\left(n, X_{n}\right) f^{\theta}\left(X_{n}\right)+g\left(\tau_{n+1}, X_{\tau_{n+1}}\right)\left(1-f^{\theta}\left(X_{n}\right)\right)\right] \\
& \geq \sup _{f \in \mathcal{D}} \mathbb{E}\left[g\left(n, X_{n}\right) f\left(X_{n}\right)+g\left(\tau_{n+1}, X_{\tau_{n+1}}\right)\left(1-f\left(X_{n}\right)\right)\right]-\varepsilon,
\end{aligned}
$$

where \mathcal{D} is the set of all measurable functions $f: \mathbb{R}^{d} \rightarrow\{0,1\}$.

Proof

(c) Every measurable set $A \subseteq \mathbb{R}^{d}$ can be approximated in measure by compact sets $K \subseteq A$

Proposition

Let $n \in\{0,1, \ldots, N-1\}$ and fix a stopping time $\tau_{n+1} \in \mathcal{T}_{n+1}$. Then, for every constant $\varepsilon>0$, there exist numbers of hidden nodes q_{1} and q_{2} such that

$$
\begin{aligned}
& \sup _{\theta \in \mathbb{R}^{q}} \mathbb{E}\left[g\left(n, X_{n}\right) f^{\theta}\left(X_{n}\right)+g\left(\tau_{n+1}, X_{\tau_{n+1}}\right)\left(1-f^{\theta}\left(X_{n}\right)\right)\right] \\
& \geq \sup _{f \in \mathcal{D}} \mathbb{E}\left[g\left(n, X_{n}\right) f\left(X_{n}\right)+g\left(\tau_{n+1}, X_{\tau_{n+1}}\right)\left(1-f\left(X_{n}\right)\right)\right]-\varepsilon,
\end{aligned}
$$

where \mathcal{D} is the set of all measurable functions $f: \mathbb{R}^{d} \rightarrow\{0,1\}$.

Proof

(1) Every measurable set $A \subseteq \mathbb{R}^{d}$ can be approximated in measure by compact sets $K \subseteq A$

- $1_{K}-1_{K^{c}}$ can be approximated by continuous functions k_{j}

Proposition

Let $n \in\{0,1, \ldots, N-1\}$ and fix a stopping time $\tau_{n+1} \in \mathcal{T}_{n+1}$. Then, for every constant $\varepsilon>0$, there exist numbers of hidden nodes q_{1} and q_{2} such that

$$
\begin{aligned}
& \sup _{\theta \in \mathbb{R}^{q}} \mathbb{E}\left[g\left(n, X_{n}\right) f^{\theta}\left(X_{n}\right)+g\left(\tau_{n+1}, X_{\tau_{n+1}}\right)\left(1-f^{\theta}\left(X_{n}\right)\right)\right] \\
& \geq \sup _{f \in \mathcal{D}} \mathbb{E}\left[g\left(n, X_{n}\right) f\left(X_{n}\right)+g\left(\tau_{n+1}, X_{\tau_{n+1}}\right)\left(1-f\left(X_{n}\right)\right)\right]-\varepsilon,
\end{aligned}
$$

where \mathcal{D} is the set of all measurable functions $f: \mathbb{R}^{d} \rightarrow\{0,1\}$.

Proof

(1) Every measurable set $A \subseteq \mathbb{R}^{d}$ can be approximated in measure by compact sets $K \subseteq A$
($1_{K}-1_{K^{c}}$ can be approximated by continuous functions k_{j}

- k_{j} can be approximated uniformly on compacts by functions of the form

$$
h(x)=\sum_{i=1}^{r}\left(v_{i}^{T} x+c_{i}\right)^{+}-\sum_{i=1}^{s}\left(w_{i}^{T} x+d_{i}\right)^{+} \quad \text { (Leshno-Lin-Pinkus-Schocken, 1993) }
$$

Proposition

Let $n \in\{0,1, \ldots, N-1\}$ and fix a stopping time $\tau_{n+1} \in \mathcal{T}_{n+1}$. Then, for every constant $\varepsilon>0$, there exist numbers of hidden nodes q_{1} and q_{2} such that

$$
\begin{aligned}
& \sup _{\theta \in \mathbb{R}^{q}} \mathbb{E}\left[g\left(n, X_{n}\right) f^{\theta}\left(X_{n}\right)+g\left(\tau_{n+1}, X_{\tau_{n+1}}\right)\left(1-f^{\theta}\left(X_{n}\right)\right)\right] \\
& \geq \sup _{f \in \mathcal{D}} \mathbb{E}\left[g\left(n, X_{n}\right) f\left(X_{n}\right)+g\left(\tau_{n+1}, X_{\tau_{n+1}}\right)\left(1-f\left(X_{n}\right)\right)\right]-\varepsilon,
\end{aligned}
$$

where \mathcal{D} is the set of all measurable functions $f: \mathbb{R}^{d} \rightarrow\{0,1\}$.

Proof

(1) Every measurable set $A \subseteq \mathbb{R}^{d}$ can be approximated in measure by compact sets $K \subseteq A$

- $1_{K}-1_{K^{c}}$ can be approximated by continuous functions k_{j}
- k_{j} can be approximated uniformly on compacts by functions of the form

$$
h(x)=\sum_{i=1}^{r}\left(v_{i}^{T} x+c_{i}\right)^{+}-\sum_{i=1}^{s}\left(w_{i}^{T} x+d_{i}\right)^{+} \quad \text { (Leshno-Lin-Pinkus-Schocken, 1993) }
$$

(- $1_{[0, \infty)} \circ h$ can be written as a neural network of the form $f^{\theta}=1_{[0, \infty)} \circ a_{3}^{\theta} \circ \varphi_{q_{2}} \circ a_{2}^{\theta} \circ \varphi_{q_{1}} \circ a_{1}^{\theta}$

Corollary

For a given optimal stopping problem of the form

$$
\sup _{\tau \in \mathcal{T}} \mathbb{E} g\left(\tau, X_{\tau}\right)
$$

and a constant $\varepsilon>0$,

Corollary

For a given optimal stopping problem of the form

$$
\sup _{\tau \in \mathcal{T}} \mathbb{E} g\left(\tau, X_{\tau}\right)
$$

and a constant $\varepsilon>0$, there exist

- numbers of hidden nodes q_{1}, q_{2} and
- functions $f^{\theta_{0}}, f^{\theta_{1}}, \ldots, f^{\theta_{N}}: \mathbb{R}^{d} \rightarrow\{0,1\}$ of the form

$$
f^{\theta_{n}}=1_{[0, \infty)} \circ a_{3}^{\theta_{n}} \circ \varphi_{q_{2}} \circ a_{2}^{\theta_{n}} \circ \varphi_{q_{1}} \circ a_{1}^{\theta_{n}}
$$

such that $f^{\theta_{N}} \equiv 1$ and the stopping time

$$
\tau^{\Theta}=\sum_{n=1}^{N} n f^{\theta_{n}}\left(X_{n}\right) \prod_{j=0}^{n-1}\left(1-f^{\theta_{j}}\left(X_{j}\right)\right)
$$

satisfies $\mathbb{E} g\left(\tau^{\Theta}, X_{\tau}{ }^{\ominus}\right) \geq \sup _{\tau \in \mathcal{T}} \mathbb{E} g\left(\tau, X_{\tau}\right)-\varepsilon$

Training the networks

- Let $\left(x_{n}^{k}\right)_{n=0}^{N}, k=1,2, \ldots$ be independent simulations of $\left(X_{n}\right)_{n=0}^{N}$

Training the networks

- Let $\left(x_{n}^{k}\right)_{n=0}^{N}, k=1,2, \ldots$ be independent simulations of $\left(X_{n}\right)_{n=0}^{N}$
- Let $\theta_{n+1}, \ldots, \theta_{N} \in \mathbb{R}^{q}$ be given, and consider the corresponding stopping time

$$
\tau_{n+1}=\sum_{m=n+1}^{N} m f^{\theta_{m}}\left(X_{m}\right) \prod_{j=n+1}^{m-1}\left(1-f^{\theta_{j}}\left(X_{j}\right)\right)
$$

Training the networks

- Let $\left(x_{n}^{k}\right)_{n=0}^{N}, k=1,2, \ldots$ be independent simulations of $\left(X_{n}\right)_{n=0}^{N}$
- Let $\theta_{n+1}, \ldots, \theta_{N} \in \mathbb{R}^{q}$ be given, and consider the corresponding stopping time

$$
\tau_{n+1}=\sum_{m=n+1}^{N} m f^{\theta_{m}}\left(X_{m}\right) \prod_{j=n+1}^{m-1}\left(1-f^{\theta_{j}}\left(X_{j}\right)\right)
$$

- τ_{n+1} is of the form $\tau_{n+1}=l_{n+1}\left(X_{n+1}, \ldots, X_{N-1}\right)$ for a measurable function

$$
l_{n+1}: \mathbb{R}^{d(N-n-1)} \rightarrow\{n+1, n+2, \ldots, N\}
$$

Training the networks

- Let $\left(x_{n}^{k}\right)_{n=0}^{N}, k=1,2, \ldots$ be independent simulations of $\left(X_{n}\right)_{n=0}^{N}$
- Let $\theta_{n+1}, \ldots, \theta_{N} \in \mathbb{R}^{q}$ be given, and consider the corresponding stopping time

$$
\tau_{n+1}=\sum_{m=n+1}^{N} m f^{\theta_{m}}\left(X_{m}\right) \prod_{j=n+1}^{m-1}\left(1-f^{\theta_{j}}\left(X_{j}\right)\right)
$$

- τ_{n+1} is of the form $\tau_{n+1}=l_{n+1}\left(X_{n+1}, \ldots, X_{N-1}\right)$ for a measurable function

$$
l_{n+1}: \mathbb{R}^{d(N-n-1)} \rightarrow\{n+1, n+2, \ldots, N\}
$$

- Denote

$$
l_{n+1}^{k}= \begin{cases}N & \text { if } n=N-1 \\ l_{n+1}\left(x_{n+1}^{k}, \ldots, x_{N-1}^{k}\right) & \text { if } n \leq N-2\end{cases}
$$

Training the networks

- Let $\left(x_{n}^{k}\right)_{n=0}^{N}, k=1,2, \ldots$ be independent simulations of $\left(X_{n}\right)_{n=0}^{N}$
- Let $\theta_{n+1}, \ldots, \theta_{N} \in \mathbb{R}^{q}$ be given, and consider the corresponding stopping time

$$
\tau_{n+1}=\sum_{m=n+1}^{N} m f^{\theta_{m}}\left(X_{m}\right) \prod_{j=n+1}^{m-1}\left(1-f^{\theta_{j}}\left(X_{j}\right)\right)
$$

- τ_{n+1} is of the form $\tau_{n+1}=l_{n+1}\left(X_{n+1}, \ldots, X_{N-1}\right)$ for a measurable function

$$
l_{n+1}: \mathbb{R}^{d(N-n-1)} \rightarrow\{n+1, n+2, \ldots, N\}
$$

- Denote

$$
l_{n+1}^{k}= \begin{cases}N & \text { if } n=N-1 \\ l_{n+1}\left(x_{n+1}^{k}, \ldots, x_{N-1}^{k}\right) & \text { if } n \leq N-2\end{cases}
$$

- The realized reward

$$
r_{n}^{k}(\theta)=g\left(n, x_{n}^{k}\right) F^{\theta}\left(x_{n}^{k}\right)+g\left(l_{n+1}^{k}, x_{l_{n+1}^{k}}^{k}\right)\left(1-F^{\theta}\left(x_{n}^{k}\right)\right)
$$

is continuous and almost everywhere differentiable in θ

Stochastic Gradient Ascent

- Initialize $\theta_{n, 0}$ typically random; e.g. Xavier initialization

Stochastic Gradient Ascent

- Initialize $\theta_{n, 0}$ typically random; e.g. Xavier initialization
- Standard updating $\quad \theta_{n, k+1}=\theta_{n, k}+\eta \nabla r_{n}^{k}\left(\theta_{n, k}\right)$

Stochastic Gradient Ascent

- Initialize $\theta_{n, 0}$ typically random; e.g. Xavier initialization
- Standard updating $\quad \theta_{n, k+1}=\theta_{n, k}+\eta \nabla r_{n}^{k}\left(\theta_{n, k}\right)$
- Variants
- Mini-batches
- Batch normalization
- Momentum
- Adagrad
- RMSProp
- AdaDelta
- ADAM
- Decoupling weight decay
- Warm restarts
- ...

Stochastic Gradient Ascent

- Initialize $\theta_{n, 0}$ typically random; e.g. Xavier initialization
- Standard updating $\quad \theta_{n, m+1}=\theta_{n, m}+\eta \nabla r_{n}^{m}\left(\theta_{n, m}\right)$
- Variants
- Mini-batches
- Batch normalization
- Momentum
- Adagrad
- RMSProp
- AdaDelta
- ADAM
- Decoupling weight decay
- Warm restarts
- ...

Lower bound

- The candidate optimal stopping time

$$
\tau^{\Theta}=\sum_{n=1}^{N} n f^{\theta_{n}}\left(X_{n}\right) \prod_{j=0}^{n-1}\left(1-f^{\theta_{j}}\left(X_{j}\right)\right)
$$

yields a lower bound

$$
L=\mathbb{E} g\left(\tau^{\Theta}, X_{\tau} \Theta\right) \quad \text { for the optimal value } \quad V_{0}=\sup _{\tau} \mathbb{E} g\left(\tau, X_{\tau}\right)
$$

- The candidate optimal stopping time

$$
\tau^{\Theta}=\sum_{n=1}^{N} n f^{\theta_{n}}\left(X_{n}\right) \prod_{j=0}^{n-1}\left(1-f^{\theta_{j}}\left(X_{j}\right)\right)
$$

yields a lower bound

$$
L=\mathbb{E} g\left(\tau^{\Theta}, X_{\tau}\right) \quad \text { for the optimal value } \quad V_{0}=\sup _{\tau} \mathbb{E} g\left(\tau, X_{\tau}\right)
$$

- Let $\left(y_{n}^{k}\right)_{n=0}^{N}, k=1,2, \ldots, K_{L}$, be a new set of independent simulations of $\left(X_{n}\right)_{n=0}^{N}$
- The candidate optimal stopping time

$$
\tau^{\Theta}=\sum_{n=1}^{N} n f^{\theta_{n}}\left(X_{n}\right) \prod_{j=0}^{n-1}\left(1-f^{\theta_{j}}\left(X_{j}\right)\right)
$$

yields a lower bound

$$
L=\mathbb{E} g\left(\tau^{\Theta}, X_{\tau} \Theta\right) \quad \text { for the optimal value } \quad V_{0}=\sup _{\tau} \mathbb{E} g\left(\tau, X_{\tau}\right)
$$

- Let $\left(y_{n}^{k}\right)_{n=0}^{N}, k=1,2, \ldots, K_{L}$, be a new set of independent simulations of $\left(X_{n}\right)_{n=0}^{N}$
- τ^{Θ} can be written as $\tau^{\Theta}=l\left(X_{0}, \ldots, X_{N-1}\right)$ for a measurable function $l: \mathbb{R}^{d N} \rightarrow\{0,1, \ldots, N\}$
- The candidate optimal stopping time

$$
\tau^{\Theta}=\sum_{n=1}^{N} n f^{\theta_{n}}\left(X_{n}\right) \prod_{j=0}^{n-1}\left(1-f^{\theta_{j}}\left(X_{j}\right)\right)
$$

yields a lower bound

$$
L=\mathbb{E} g\left(\tau^{\Theta}, X_{\tau} \Theta\right) \quad \text { for the optimal value } \quad V_{0}=\sup _{\tau} \mathbb{E} g\left(\tau, X_{\tau}\right)
$$

- Let $\left(y_{n}^{k}\right)_{n=0}^{N}, k=1,2, \ldots, K_{L}$, be a new set of independent simulations of $\left(X_{n}\right)_{n=0}^{N}$
- τ^{Θ} can be written as $\tau^{\Theta}=l\left(X_{0}, \ldots, X_{N-1}\right)$ for a measurable function $l: \mathbb{R}^{d N} \rightarrow\{0,1, \ldots, N\}$
- Denote $l^{k}=l\left(y_{0}^{k}, \ldots, y_{N-1}^{k}\right)$

Lower bound

- The candidate optimal stopping time

$$
\tau^{\Theta}=\sum_{n=1}^{N} n f^{\theta_{n}}\left(X_{n}\right) \prod_{j=0}^{n-1}\left(1-f^{\theta_{j}}\left(X_{j}\right)\right)
$$

yields a lower bound

$$
L=\mathbb{E} g\left(\tau^{\Theta}, X_{\tau}\right) \quad \text { for the optimal value } \quad V_{0}=\sup _{\tau} \mathbb{E} g\left(\tau, X_{\tau}\right)
$$

- Let $\left(y_{n}^{k}\right)_{n=0}^{N}, k=1,2, \ldots, K_{L}$, be a new set of independent simulations of $\left(X_{n}\right)_{n=0}^{N}$
- τ^{Θ} can be written as $\tau^{\Theta}=l\left(X_{0}, \ldots, X_{N-1}\right)$ for a measurable function $l: \mathbb{R}^{d N} \rightarrow\{0,1, \ldots, N\}$
- Denote $l^{k}=l\left(y_{0}^{k}, \ldots, y_{N-1}^{k}\right)$
- Use the Monte Carlo approximation

$$
\hat{L}=\frac{1}{K_{L}} \sum_{k=1}^{K_{L}} g\left(l^{k}, y_{l^{k}}^{k}\right) \quad \text { as an estimate for } \quad L
$$

Lower confidence bounds

- Assume $\mathbb{E}\left[g\left(n, X_{n}\right)^{2}\right]<\infty$ for all $n=0,1, \ldots, N$

Lower confidence bounds

- Assume $\mathbb{E}\left[g\left(n, X_{n}\right)^{2}\right]<\infty$ for all $n=0,1, \ldots, N$
- Consider the sample variance

$$
\hat{\sigma}_{L}^{2}=\frac{1}{K_{L}-1} \sum_{k=1}^{K_{L}}\left(g\left(l^{k}, y_{k}^{k}\right)-\hat{L}\right)^{2}
$$

Lower confidence bounds

- Assume $\mathbb{E}\left[g\left(n, X_{n}\right)^{2}\right]<\infty$ for all $n=0,1, \ldots, N$
- Consider the sample variance

$$
\hat{\sigma}_{L}^{2}=\frac{1}{K_{L}-1} \sum_{k=1}^{K_{L}}\left(g\left(l^{k}, y_{k}^{k}\right)-\hat{L}\right)^{2}
$$

- By the CLT,

$$
\left[\hat{L}-z_{\alpha} \frac{\hat{\sigma}_{L}}{\sqrt{K_{L}}}, \infty\right)
$$

is an asymptotically valid $1-\alpha$ confidence interval for L where z_{α} is the $1-\alpha$ quantile of the standard normal distribution

Lower confidence bounds

- Assume $\mathbb{E}\left[g\left(n, X_{n}\right)^{2}\right]<\infty$ for all $n=0,1, \ldots, N$
- Consider the sample variance

$$
\hat{\sigma}_{L}^{2}=\frac{1}{K_{L}-1} \sum_{k=1}^{K_{L}}\left(g\left(l^{k}, y_{l^{k}}^{k}\right)-\hat{L}\right)^{2}
$$

- By the CLT,

$$
\left[\hat{L}-z_{\alpha} \frac{\hat{\sigma}_{L}}{\sqrt{K_{L}}}, \infty\right)
$$

is an asymptotically valid $1-\alpha$ confidence interval for L where z_{α} is the $1-\alpha$ quantile of the standard normal distribution

- Therefore,

$$
\mathbb{P}\left[V_{0} \geq \hat{L}-z_{\alpha} \frac{\hat{\sigma}_{L}}{\sqrt{K_{L}}}\right] \geq \mathbb{P}\left[L \geq \hat{L}-z_{\alpha} \frac{\hat{\sigma}_{L}}{\sqrt{K_{L}}}\right] \approx 1-\alpha
$$

Upper bound

Let $\left(H_{n}\right)$ be the Snell envelope of $G_{n}=g\left(n, X_{n}\right), n=0,1, \ldots, N$,

Upper bound

Let $\left(H_{n}\right)$ be the Snell envelope of $G_{n}=g\left(n, X_{n}\right), n=0,1, \ldots, N$, with Doob decomposition $H_{n}=H_{0}+M_{n}^{H}-A_{n}^{H}$

Upper bound

Let $\left(H_{n}\right)$ be the Snell envelope of $G_{n}=g\left(n, X_{n}\right), n=0,1, \ldots, N$, with Doob decomposition $H_{n}=H_{0}+M_{n}^{H}-A_{n}^{H}$

The following is a variant of the dual formulation of Rogers (2002), Haugh-Kogan (2004) and Andersen-Broadie (2004)

Upper bound

Let $\left(H_{n}\right)$ be the Snell envelope of $G_{n}=g\left(n, X_{n}\right), n=0,1, \ldots, N$, with Doob decomposition $H_{n}=H_{0}+M_{n}^{H}-A_{n}^{H}$

The following is a variant of the dual formulation of Rogers (2002), Haugh-Kogan (2004) and Andersen-Broadie (2004)

Proposition

For every $\left(\mathcal{F}_{n}^{X}\right)$-martingale $\left(M_{n}\right)$ with $M_{0}=0$ and estimation errors $\left(\varepsilon_{n}\right)$ satisfying $\mathbb{E}\left[\varepsilon_{n} \mid \mathcal{F}_{n}^{X}\right]=0$, one has

$$
V_{0} \leq \mathbb{E}\left[\max _{0 \leq n \leq N}\left(G_{n}-M_{n}-\varepsilon_{n}\right)\right]
$$

Upper bound

Let $\left(H_{n}\right)$ be the Snell envelope of $G_{n}=g\left(n, X_{n}\right), n=0,1, \ldots, N$, with Doob decomposition $H_{n}=H_{0}+M_{n}^{H}-A_{n}^{H}$

The following is a variant of the dual formulation of Rogers (2002), Haugh-Kogan (2004) and Andersen-Broadie (2004)

Proposition

For every $\left(\mathcal{F}_{n}^{X}\right)$-martingale $\left(M_{n}\right)$ with $M_{0}=0$ and estimation errors $\left(\varepsilon_{n}\right)$ satisfying $\mathbb{E}\left[\varepsilon_{n} \mid \mathcal{F}_{n}^{X}\right]=0$, one has

$$
V_{0} \leq \mathbb{E}\left[\max _{0 \leq n \leq N}\left(G_{n}-M_{n}-\varepsilon_{n}\right)\right]
$$

On the other hand,

$$
V_{0}=\mathbb{E}\left[\max _{0 \leq n \leq N}\left(G_{n}-M_{n}^{H}\right)\right]
$$

Estimating a good dual martingale

- Approximate H_{n} by $H_{n}^{\Theta}=\mathbb{E}\left[G_{\tau_{n}^{\Theta}} \mid \mathcal{F}_{n}^{X}\right]$

Estimating a good dual martingale

- Approximate H_{n} by $H_{n}^{\Theta}=\mathbb{E}\left[G_{\tau_{n}^{\Theta}} \mid \mathcal{F}_{n}^{X}\right]$
- and $\Delta M_{n}^{H}=H_{n}-\mathbb{E}\left[H_{n} \mid \mathcal{F}_{n-1}^{X}\right]$ by

$$
\Delta M_{n}^{\Theta}=H_{n}^{\Theta}-\mathbb{E}\left[H_{n}^{\Theta} \mid \mathcal{F}_{n-1}\right]=f^{\theta_{n}}\left(X_{n}\right) G_{n}+\left(1-f^{\theta_{n}}\left(X_{n}\right)\right) C_{n}^{\Theta}-C_{n-1}^{\Theta}
$$

for the continuation values

$$
C_{n}^{\Theta}=\mathbb{E}\left[G_{\tau_{n+1}^{\Theta}} \mid \mathcal{F}_{n}^{X}\right]
$$

Estimating a good dual martingale

- Approximate H_{n} by $H_{n}^{\Theta}=\mathbb{E}\left[G_{\tau_{n}^{\Theta}} \mid \mathcal{F}_{n}^{X}\right]$
- and $\Delta M_{n}^{H}=H_{n}-\mathbb{E}\left[H_{n} \mid \mathcal{F}_{n-1}^{X}\right]$ by

$$
\Delta M_{n}^{\Theta}=H_{n}^{\Theta}-\mathbb{E}\left[H_{n}^{\Theta} \mid \mathcal{F}_{n-1}\right]=f^{\theta_{n}}\left(X_{n}\right) G_{n}+\left(1-f^{\theta_{n}}\left(X_{n}\right)\right) C_{n}^{\Theta}-C_{n-1}^{\Theta}
$$

for the continuation values

$$
C_{n}^{\Theta}=\mathbb{E}\left[G_{\tau_{n+1}^{\Theta}} \mid \mathcal{F}_{n}^{X}\right]
$$

- Let $\left(z_{n}^{k}\right)_{n=0}^{N}, k=1,2, \ldots, K_{U}$, be a third set of independent simulations of $\left(X_{n}\right)_{n=0}^{N}$

Estimating a good dual martingale

- Approximate H_{n} by $H_{n}^{\Theta}=\mathbb{E}\left[G_{\tau_{n}^{\Theta}} \mid \mathcal{F}_{n}^{X}\right]$
- and $\Delta M_{n}^{H}=H_{n}-\mathbb{E}\left[H_{n} \mid \mathcal{F}_{n-1}^{X}\right]$ by

$$
\Delta M_{n}^{\Theta}=H_{n}^{\Theta}-\mathbb{E}\left[H_{n}^{\Theta} \mid \mathcal{F}_{n-1}\right]=f^{\theta_{n}}\left(X_{n}\right) G_{n}+\left(1-f^{\theta_{n}}\left(X_{n}\right)\right) C_{n}^{\Theta}-C_{n-1}^{\Theta}
$$

for the continuation values

$$
C_{n}^{\Theta}=\mathbb{E}\left[G_{\tau_{n+1}^{\Theta}} \mid \mathcal{F}_{n}^{X}\right]
$$

- Let $\left(z_{n}^{k}\right)_{n=0}^{N}, k=1,2, \ldots, K_{U}$, be a third set of independent simulations of $\left(X_{n}\right)_{n=0}^{N}$
- For all z_{n}^{k}, simulate J independent continuation paths $\tilde{z}_{n+1}^{k, j}, \ldots, \tilde{z}_{N}^{k, j}$

Estimating a good dual martingale

- Approximate H_{n} by $H_{n}^{\Theta}=\mathbb{E}\left[G_{\tau_{n}^{\Theta}} \mid \mathcal{F}_{n}^{X}\right]$
- and $\Delta M_{n}^{H}=H_{n}-\mathbb{E}\left[H_{n} \mid \mathcal{F}_{n-1}^{X}\right]$ by

$$
\Delta M_{n}^{\Theta}=H_{n}^{\Theta}-\mathbb{E}\left[H_{n}^{\Theta} \mid \mathcal{F}_{n-1}\right]=f^{\theta_{n}}\left(X_{n}\right) G_{n}+\left(1-f^{\theta_{n}}\left(X_{n}\right)\right) C_{n}^{\Theta}-C_{n-1}^{\Theta}
$$

for the continuation values

$$
C_{n}^{\Theta}=\mathbb{E}\left[G_{\tau_{n+1}^{\Theta}} \mid \mathcal{F}_{n}^{X}\right]
$$

- Let $\left(z_{n}^{k}\right)_{n=0}^{N}, k=1,2, \ldots, K_{U}$, be a third set of independent simulations of $\left(X_{n}\right)_{n=0}^{N}$
- For all z_{n}^{k}, simulate J independent continuation paths $\tilde{z}_{n+1}^{k, j}, \ldots, \tilde{z}_{N}^{k, j}$

$$
C_{n}^{k}=\frac{1}{J} \sum_{j=1}^{J} g\left(\tau_{n+1}^{k, j}, \tilde{z}_{\tau_{n+1}^{k, j}}^{k, j}\right)
$$

can be understood as realizations of $C_{n}^{\Theta}+\tilde{\varepsilon}_{n}$

Estimating a good dual martingale

- Approximate H_{n} by $H_{n}^{\Theta}=\mathbb{E}\left[G_{\tau_{n}^{\Theta}} \mid \mathcal{F}_{n}^{X}\right]$
- and $\Delta M_{n}^{H}=H_{n}-\mathbb{E}\left[H_{n} \mid \mathcal{F}_{n-1}^{X}\right]$ by

$$
\Delta M_{n}^{\Theta}=H_{n}^{\Theta}-\mathbb{E}\left[H_{n}^{\Theta} \mid \mathcal{F}_{n-1}\right]=f^{\theta_{n}}\left(X_{n}\right) G_{n}+\left(1-f^{\theta_{n}}\left(X_{n}\right)\right) C_{n}^{\Theta}-C_{n-1}^{\Theta}
$$

for the continuation values

$$
C_{n}^{\Theta}=\mathbb{E}\left[G_{\tau_{n+1}^{\Theta}} \mid \mathcal{F}_{n}^{X}\right]
$$

- Let $\left(z_{n}^{k}\right)_{n=0}^{N}, k=1,2, \ldots, K_{U}$, be a third set of independent simulations of $\left(X_{n}\right)_{n=0}^{N}$
- For all z_{n}^{k}, simulate J independent continuation paths $\tilde{z}_{n+1}^{k, j}, \ldots, \tilde{z}_{N}^{k, j}$
-

$$
C_{n}^{k}=\frac{1}{J} \sum_{j=1}^{J} g\left(\tau_{n+1}^{k, j}, \tilde{z}_{\tau_{n+1}^{k, j}}^{k, j}\right)
$$

can be understood as realizations of $C_{n}^{\Theta}+\tilde{\varepsilon}_{n}$

- This gives realizations M_{n}^{k} of $M_{n}^{\Theta}+\varepsilon_{n}$

Estimating an upper bound

$$
U=\mathbb{E}\left[\max _{0 \leq n \leq N}\left(G_{n}-M_{n}^{\Theta}-\varepsilon_{n}\right)\right] \quad \text { is an upper bound for } \quad V_{0}
$$

Estimating an upper bound

-

$$
U=\mathbb{E}\left[\max _{0 \leq n \leq N}\left(G_{n}-M_{n}^{\Theta}-\varepsilon_{n}\right)\right] \quad \text { is an upper bound for } \quad V_{0}
$$

- Use the Monte Carlo approximation

$$
\hat{U}=\frac{1}{K_{U}} \sum_{k=1}^{K_{U}} \max _{0 \leq n \leq N}\left(g\left(n, z_{n}^{k}\right)-M_{n}^{k}\right) \quad \text { as an estimate for } \quad U
$$

Estimating an upper bound

-

$$
U=\mathbb{E}\left[\max _{0 \leq n \leq N}\left(G_{n}-M_{n}^{\Theta}-\varepsilon_{n}\right)\right] \quad \text { is an upper bound for } \quad V_{0}
$$

- Use the Monte Carlo approximation

$$
\hat{U}=\frac{1}{K_{U}} \sum_{k=1}^{K_{U}} \max _{0 \leq n \leq N}\left(g\left(n, z_{n}^{k}\right)-M_{n}^{k}\right) \quad \text { as an estimate for } \quad U
$$

Our point estimate of $V_{0}: \frac{\hat{L}+\hat{U}}{2}$

Confidence intervals for V_{0}

- By the CLT,

$$
\left(-\infty, \hat{U}+z_{\alpha} \frac{\hat{\sigma}_{U}}{\sqrt{K_{U}}}\right]
$$

is an asymptotically valid $1-\alpha$ confidence interval for U, where $\hat{\sigma}_{U}$ is the corresponding sample standard deviation

Confidence intervals for V_{0}

- By the CLT,

$$
\left(-\infty, \hat{U}+z_{\alpha} \frac{\hat{\sigma}_{U}}{\sqrt{K_{U}}}\right]
$$

is an asymptotically valid $1-\alpha$ confidence interval for U, where $\hat{\sigma}_{U}$ is the corresponding sample standard deviation

- One has

$$
\mathbb{P}\left[V_{0} \leq \hat{U}+z_{\alpha} \frac{\hat{\sigma}_{U}}{\sqrt{K_{U}}}\right] \geq \mathbb{P}\left[U \leq \hat{U}+z_{\alpha} \frac{\hat{\sigma}_{U}}{\sqrt{K_{U}}}\right] \approx 1-\alpha
$$

Confidence intervals for V_{0}

- By the CLT,

$$
\left(-\infty, \hat{U}+z_{\alpha} \frac{\hat{\sigma}_{U}}{\sqrt{K_{U}}}\right]
$$

is an asymptotically valid $1-\alpha$ confidence interval for U, where $\hat{\sigma}_{U}$ is the corresponding sample standard deviation

- One has

$$
\mathbb{P}\left[V_{0} \leq \hat{U}+z_{\alpha} \frac{\hat{\sigma}_{U}}{\sqrt{K_{U}}}\right] \geq \mathbb{P}\left[U \leq \hat{U}+z_{\alpha} \frac{\hat{\sigma}_{U}}{\sqrt{K_{U}}}\right] \approx 1-\alpha
$$

- So

$$
\left[\hat{L}-z_{\alpha} \frac{\hat{\sigma}_{L}}{\sqrt{K_{L}}}, \hat{U}+z_{\alpha} \frac{\hat{\sigma}_{U}}{\sqrt{K_{U}}}\right]
$$

is an asymptotically valid $1-2 \alpha$ confidence interval

Thank You!

