Deep Optimal Stopping

Sebastian Becker ZENAI Patrick Cheridito RiskLab, ETH Zurich Arnulf Jentzen Universität Münster

Vienna, November 2019

 $\sup_{\tau\in\mathcal{T}}\mathbb{E}\,g(\tau,X_{\tau}),$

where

• $(X_n)_{n=0}^N$ is a *d*-dimensional Markov process on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$

 $\sup_{\tau\in\mathcal{T}}\mathbb{E}\,g(\tau,X_{\tau}),$

where

- $(X_n)_{n=0}^N$ is a *d*-dimensional Markov process on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$
- $g: \{0, 1, \dots, N\} \times \mathbb{R}^d \to \mathbb{R}$ a measurable function such that

 $\mathbb{E}|g(n,X_n)| < \infty$ for all n = 0, ..., N

 $\sup_{\tau\in\mathcal{T}}\mathbb{E}\,g(\tau,X_{\tau}),$

where

- $(X_n)_{n=0}^N$ is a *d*-dimensional Markov process on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$
- $g: \{0, 1, \dots, N\} \times \mathbb{R}^d \to \mathbb{R}$ a measurable function such that

 $\mathbb{E}|g(n,X_n)| < \infty$ for all n = 0, ..., N

• \mathcal{T} is the set of all X-stopping times τ

that is, $\{\tau = n\} \in \sigma(X_0, ..., X_n)$ for all n = 0, 1, ..., N

• Discrete time

• Discrete time

• Many problems are already in discrete time

• Discrete time

- Many problems are already in discrete time
- Most relevant continuous-time problems can be approximated by time-discretized versions

• Discrete time

- Many problems are already in discrete time
- Most relevant continuous-time problems can be approximated by time-discretized versions

• Markov assumption

• Discrete time

- Many problems are already in discrete time
- Most relevant continuous-time problems can be approximated by time-discretized versions

• Markov assumption

• Every discrete-time process can be made Markov by including all relevant information in the current state ... by increasing the dimension of $(X_n)_{n=0}^N$

O Bermudan max-call options

Bermudan max-call options

Consider d assets with prices evolving according to a multi-dimensional Black–Scholes model

$$S_t^i = s_0^i \exp\left([r-\delta_i-\sigma_i^2/2]t+\sigma_i W_t^i
ight), \quad i=1,2,\ldots,d,$$

Bermudan max-call options

Consider d assets with prices evolving according to a multi-dimensional Black–Scholes model

$$S_t^i = s_0^i \exp\left([r - \delta_i - \sigma_i^2/2]t + \sigma_i W_t^i\right), \quad i = 1, 2, \dots, d,$$

for

• initial values $s_0^i \in (0,\infty)$

Bermudan max-call options

Consider d assets with prices evolving according to a multi-dimensional Black–Scholes model

$$S_t^i = s_0^i \exp\left([r - \delta_i - \sigma_i^2/2]t + \sigma_i W_t^i\right), \quad i = 1, 2, \dots, d,$$

- initial values $s_0^i \in (0,\infty)$
- a risk-free interest rate $r \in \mathbb{R}$

Bermudan max-call options

Consider d assets with prices evolving according to a multi-dimensional Black–Scholes model

$$S_t^i = s_0^i \exp\left([r - \delta_i - \sigma_i^2/2]t + \sigma_i W_t^i\right), \quad i = 1, 2, \dots, d,$$

- initial values $s_0^i \in (0,\infty)$
- a risk-free interest rate $r \in \mathbb{R}$
- dividend yields $\delta_i \in [0,\infty)$

Bermudan max-call options

Consider d assets with prices evolving according to a multi-dimensional Black-Scholes model

$$S_t^i = s_0^i \exp\left([r - \delta_i - \sigma_i^2/2]t + \sigma_i W_t^i\right), \quad i = 1, 2, \dots, d,$$

- initial values $s_0^i \in (0,\infty)$
- a risk-free interest rate $r \in \mathbb{R}$
- dividend yields $\delta_i \in [0,\infty)$
- volatilities $\sigma_i \in (0,\infty)$

Bermudan max-call options

Consider d assets with prices evolving according to a multi-dimensional Black-Scholes model

$$S_t^i = s_0^i \exp\left([r - \delta_i - \sigma_i^2/2]t + \sigma_i W_t^i\right), \quad i = 1, 2, \dots, d,$$

- initial values $s_0^i \in (0,\infty)$
- a risk-free interest rate $r \in \mathbb{R}$
- dividend yields $\delta_i \in [0,\infty)$
- volatilities $\sigma_i \in (0,\infty)$
- and a *d*-dimensional Brownian motion *W* with constant correlation ρ_{ij} between increments of different components W^i and W^j

Bermudan max-call options

Consider d assets with prices evolving according to a multi-dimensional Black-Scholes model

$$S_t^i = s_0^i \exp\left([r - \delta_i - \sigma_i^2/2]t + \sigma_i W_t^i\right), \quad i = 1, 2, \dots, d,$$

for

- initial values $s_0^i \in (0,\infty)$
- a risk-free interest rate $r \in \mathbb{R}$
- dividend yields $\delta_i \in [0,\infty)$
- volatilities $\sigma_i \in (0,\infty)$
- and a *d*-dimensional Brownian motion *W* with constant correlation ρ_{ij} between increments of different components W^i and W^j

A Bermudan max-call option has time-*t* payoff $(\max_{1 \le i \le d} S_t^i - K)^+$

Bermudan max-call options

Consider d assets with prices evolving according to a multi-dimensional Black-Scholes model

$$S_t^i = s_0^i \exp\left([r - \delta_i - \sigma_i^2/2]t + \sigma_i W_t^i\right), \quad i = 1, 2, \dots, d,$$

for

- initial values $s_0^i \in (0,\infty)$
- a risk-free interest rate $r \in \mathbb{R}$
- dividend yields $\delta_i \in [0,\infty)$
- volatilities $\sigma_i \in (0,\infty)$
- and a *d*-dimensional Brownian motion *W* with constant correlation ρ_{ij} between increments of different components W^i and W^j

A Bermudan max-call option has time-*t* payoff $(\max_{1 \le i \le d} S_t^i - K)^+$ and can be exercised at one of finitely many times $0 = t_0 < t_1 = \frac{T}{N} < t_2 = \frac{2T}{N} < \cdots < t_N = T$

Bermudan max-call options

Consider d assets with prices evolving according to a multi-dimensional Black-Scholes model

$$S_t^i = s_0^i \exp\left([r - \delta_i - \sigma_i^2/2]t + \sigma_i W_t^i\right), \quad i = 1, 2, \dots, d,$$

for

- initial values $s_0^i \in (0,\infty)$
- a risk-free interest rate $r \in \mathbb{R}$
- dividend yields $\delta_i \in [0,\infty)$
- volatilities $\sigma_i \in (0,\infty)$
- and a *d*-dimensional Brownian motion *W* with constant correlation ρ_{ij} between increments of different components W^i and W^j

A Bermudan max-call option has time-*t* payoff $(\max_{1 \le i \le d} S_t^i - K)^+$ and can be exercised at one of finitely many times $0 = t_0 < t_1 = \frac{T}{N} < t_2 = \frac{2T}{N} < \cdots < t_N = T$

Price:
$$\sup_{\tau \in \{t_0, t_1, \dots, T\}} \mathbb{E}\left[e^{-r\tau} \left(\max_{1 \le i \le d} S^i_{\tau} - K\right)^+\right]$$

Bermudan max-call options

Consider d assets with prices evolving according to a multi-dimensional Black-Scholes model

$$S_t^i = s_0^i \exp\left([r - \delta_i - \sigma_i^2/2]t + \sigma_i W_t^i\right), \quad i = 1, 2, \dots, d,$$

for

- initial values $s_0^i \in (0,\infty)$
- a risk-free interest rate $r \in \mathbb{R}$
- dividend yields $\delta_i \in [0,\infty)$
- volatilities $\sigma_i \in (0,\infty)$
- and a *d*-dimensional Brownian motion *W* with constant correlation ρ_{ij} between increments of different components W^i and W^j

A Bermudan max-call option has time-*t* payoff $(\max_{1 \le i \le d} S_t^i - K)^+$ and can be exercised at one of finitely many times $0 = t_0 < t_1 = \frac{T}{N} < t_2 = \frac{2T}{N} < \cdots < t_N = T$

Price:
$$\sup_{\tau \in \{t_0, t_1, \dots, T\}} \mathbb{E}\left[e^{-r\tau} \left(\max_{1 \le i \le d} S^i_{\tau} - K\right)^+\right] = \sup_{\tau \in \mathcal{T}} \mathbb{E}g(\tau, X_{\tau})$$

This problem has been studied for d = 2, 3, 5 (among others) by

- Longstaff and Schwartz (2001)
- Rogers (2002)
- García (2003)
- Boyle, Kolkiewicz and Tan (2003)
- Haugh and Kogan (2004)
- Broadie and Glasserman (2004)
- Andersen and Broadie (2004)
- Broadie and Cao (2008)
- Berridge and Schumacher (2008)
- Belomestny (2011, 2013)
- Jain and Oosterlee (2015)
- Lelong (2016)

Our price estimates

for $s_0^i = 100$, $\sigma_i = 20\%$, r = 5%, $\delta = 10\%$, $\rho_{ij} = 0$, K = 100, T = 3, N = 9:

# assets	Point Est.	Comp. Time	95% Conf. Int.	Bin. Tree	
2	13.899	28.7s	[13.880, 13.910]	13.902	
3	18.690	28.9s	[18.673, 18.699]	18.69	

Our price estimates

for $s_0^i = 100$, $\sigma_i = 20\%$, r = 5%, $\delta = 10\%$, $\rho_{ij} = 0$, K = 100, T = 3, N = 9:

# assets	Point Est.	Comp. Time	95% Conf. Int.	Bin. Tree	Broadie-Cao 95% Conf. Int.
2	13.899	28.7 <i>s</i>	[13.880, 13.910]	13.902	
3	18.690	28.9s	[18.673, 18.699]	18.69	
5	26.159	28.1 <i>s</i>	[26.138, 26.174]		[26.115, 26.164]

Our price estimates

for $s_0^i = 100$, $\sigma_i = 20\%$, r = 5%, $\delta = 10\%$, $\rho_{ij} = 0$, K = 100, T = 3, N = 9:

# Assets	Point Est.	Comp. Time	95% Conf. Int.	Bin. Tree	Broadie–Cao 95% Conf. Int.
2	13.899	28.7s	[13.880, 13.910]	13.902	
3	18.690	28.9 <i>s</i>	[18.673, 18.699]	18.69	
5	26.159	28.1 <i>s</i>	[26.138, 26.174]		[26.115, 26.164]
10	38.337	30.5 <i>s</i>	[38.300, 38.367]		
20	51.668	37.5 <i>s</i>	[51.549, 51.803]		
30	59.659	45.5 <i>s</i>	[59.476, 59.872]		
50	69.736	59.1 <i>s</i>	[69.560, 69.945]		
100	83.584	95.9 <i>s</i>	[83.357, 83.862]		
200	97.612	170.1 <i>s</i>	[97.381,97.889]		
500	116.425	493.5 <i>s</i>	[116.210, 116.685]		

$$\operatorname{Cov}(W_t^H, W_s^H) = \frac{1}{2} \left(t^{2H} + s^{2H} - |t - s|^{2H} \right)$$

A fractional Brownian motion with Hurst parameter $H \in (0, 1]$ is a continuous centered Gaussian process $(W_t^H)_{t>0}$ with covariance structure

$$\operatorname{Cov}(W_t^H, W_s^H) = \frac{1}{2} \left(t^{2H} + s^{2H} - |t - s|^{2H} \right)$$

• For H = 1/2, W^H is a Brownian motion

$$\operatorname{Cov}(W_t^H, W_s^H) = \frac{1}{2} \left(t^{2H} + s^{2H} - |t - s|^{2H} \right)$$

- For H = 1/2, W^H is a Brownian motion
- For H > 1/2, W^H has positively correlated increments

$$\operatorname{Cov}(W_t^H, W_s^H) = \frac{1}{2} \left(t^{2H} + s^{2H} - |t - s|^{2H} \right)$$

- For H = 1/2, W^H is a Brownian motion
- For H > 1/2, W^H has positively correlated increments
- For H < 1/2, W^H has negatively correlated increments

$$\operatorname{Cov}(W_t^H, W_s^H) = \frac{1}{2} \left(t^{2H} + s^{2H} - |t - s|^{2H} \right)$$

- For H = 1/2, W^H is a Brownian motion
- For H > 1/2, W^H has positively correlated increments
- For H < 1/2, W^H has negatively correlated increments

Problem:
$$\sup_{0 \le \tau \le 1} \mathbb{E} W_{\tau}^{H}$$
 (*)

• denote $t_n = n/100, n = 0, 1, 2, \dots, 100$

Problem:
$$\sup_{0 \le \tau \le 1} \mathbb{E} W^H_{\tau}$$
 (*)

• denote
$$t_n = n/100, n = 0, 1, 2, \dots, 100$$

• introduce the 100-dimensional Markov process $(X_n)_{n=0}^{100}$ given by

$$X_0 = (0, 0, \dots, 0)$$

$$X_1 = (W_{t_1}^H, 0, \dots, 0)$$

$$X_2 = (W_{t_2}^H, W_{t_1}^H, 0, \dots, 0)$$

$$\vdots$$

$$X_{100} = (W_{t_{100}}^H, W_{t_{99}}^H, \dots, W_{t_1}^H).$$

Problem:
$$\sup_{0 \le \tau \le 1} \mathbb{E} W^H_{\tau}$$
 (*)

• denote
$$t_n = n/100, n = 0, 1, 2, \dots, 100$$

• introduce the 100-dimensional Markov process $(X_n)_{n=0}^{100}$ given by

$$\begin{aligned} X_0 &= (0, 0, \dots, 0) \\ X_1 &= (W_{t_1}^H, 0, \dots, 0) \\ X_2 &= (W_{t_2}^H, W_{t_1}^H, 0, \dots, 0) \\ &\vdots \\ X_{100} &= (W_{t_{100}}^H, W_{t_{99}}^H, \dots, W_{t_1}^H). \end{aligned}$$

The discretized stopping problem

$$\sup_{\tau\in\mathcal{T}}\mathbb{E}\,g(X_{\tau})\quad\text{for }g(x^1,\ldots,x^{100})=x^1,$$

approximates the continuous-time problem (*) from below

Results of Kulikov and Gusyatnikov (2016) (based on heuristic stopping rules)

Results of Kulikov and Gusyatnikov (2016) (based on heuristic stopping rules)

Our results

Computing a candidate optimal stopping time

• Introduce the sequence of auxiliary stopping problems

$$V_n = \sup_{ au \in \mathcal{T}_n} \mathbb{E} g(au, X_{ au}), \quad n = 0, 1, \dots, N,$$

where \mathcal{T}_n is the set of all stopping times $n \leq \tau \leq N$

Computing a candidate optimal stopping time

• Introduce the sequence of auxiliary stopping problems

$$V_n = \sup_{ au \in \mathcal{T}_n} \mathbb{E} g(au, X_{ au}), \quad n = 0, 1, \dots, N,$$

where \mathcal{T}_n is the set of all stopping times $n \leq \tau \leq N$

• Stopping times and stopping decisions

Let $f_n, f_{n+1}, \ldots, f_N : \mathbb{R}^d \to \{0, 1\}$ be measurable functions such that $f_N \equiv 1$. Then

$$\tau_n = \sum_{m=n}^N m f_m(X_m) \prod_{j=n}^{m-1} (1 - f_j(X_j)) \quad \text{with} \quad \prod_{j=n}^{n-1} (1 - f_j(X_j)) := 1$$

is a stopping time in \mathcal{T}_n

Theorem

For a given $n \in \{0, 1, ..., N-1\}$, let τ_{n+1} be a stopping time in \mathcal{T}_{n+1} of the form

$$\tau_{n+1} = \sum_{m=n+1}^{N} m f_m(X_m) \prod_{j=n+1}^{m-1} (1 - f_j(X_j)),$$

for measurable functions $f_{n+1}, \ldots, f_N : \mathbb{R}^d \to \{0, 1\}$ with $f_N \equiv 1$.

Theorem

For a given $n \in \{0, 1, ..., N-1\}$, let τ_{n+1} be a stopping time in \mathcal{T}_{n+1} of the form

$$\tau_{n+1} = \sum_{m=n+1}^{N} m f_m(X_m) \prod_{j=n+1}^{m-1} (1 - f_j(X_j)),$$

for measurable functions $f_{n+1}, \ldots, f_N : \mathbb{R}^d \to \{0, 1\}$ with $f_N \equiv 1$.

Then there exists a measurable function $f_n : \mathbb{R}^d \to \{0, 1\}$ such that the stopping time

$$\tau_n = nf_n(X_n) + \tau_{n+1}(1 - f_n(X_n)) = \sum_{m=n}^N mf_m(X_m) \prod_{j=n}^{m-1} (1 - f_j(X_j))$$

satisfies

$$\mathbb{E} g(\tau_n, X_{\tau_n}) \geq V_n - \left(V_{n+1} - \mathbb{E} g(\tau_{n+1}, X_{\tau_{n+1}})\right)$$

Theorem

For a given $n \in \{0, 1, ..., N-1\}$, let τ_{n+1} be a stopping time in \mathcal{T}_{n+1} of the form

$$\tau_{n+1} = \sum_{m=n+1}^{N} m f_m(X_m) \prod_{j=n+1}^{m-1} (1 - f_j(X_j)),$$

for measurable functions $f_{n+1}, \ldots, f_N : \mathbb{R}^d \to \{0, 1\}$ with $f_N \equiv 1$.

Then there exists a measurable function $f_n : \mathbb{R}^d \to \{0, 1\}$ such that the stopping time

$$\tau_n = nf_n(X_n) + \tau_{n+1}(1 - f_n(X_n)) = \sum_{m=n}^N mf_m(X_m) \prod_{j=n}^{m-1} (1 - f_j(X_j))$$

satisfies

$$\mathbb{E} g(\tau_n, X_{\tau_n}) \geq V_n - \left(V_{n+1} - \mathbb{E} g(\tau_{n+1}, X_{\tau_{n+1}})\right)$$

Proof: Compare $g(n, X_n)$ to $\mathbb{E}[g(\tau_{n+1}, X_{\tau_{n+1}}) | X_0, X_1, \dots, X_n] = \mathbb{E}[g(\tau_{n+1}, X_{\tau_{n+1}}) | X_n]$

Idea Recursively approximate f_n by a neural network $f^{\theta} \colon \mathbb{R}^d \to \{0, 1\}$ of the form $f^{\theta} = 1_{[0,\infty)} \circ a_3^{\theta} \circ \varphi_{q_2} \circ a_2^{\theta} \circ \varphi_{q_1} \circ a_1^{\theta},$

Idea Recursively approximate f_n by a neural network $f^{\theta} \colon \mathbb{R}^d \to \{0, 1\}$ of the form $f^{\theta} = 1_{[0,\infty)} \circ a_3^{\theta} \circ \varphi_{q_2} \circ a_2^{\theta} \circ \varphi_{q_1} \circ a_1^{\theta},$

where

• q_1 and q_2 are positive integers specifying the number of nodes in the two hidden layers,

Idea Recursively approximate f_n by a neural network $f^{\theta} \colon \mathbb{R}^d \to \{0, 1\}$ of the form $f^{\theta} = 1_{[0,\infty)} \circ a_3^{\theta} \circ \varphi_{q_2} \circ a_2^{\theta} \circ \varphi_{q_1} \circ a_1^{\theta},$

where

• q_1 and q_2 are positive integers specifying the number of nodes in the two hidden layers,

 a^θ₁: ℝ^d → ℝ^{q₁}, a^θ₂: ℝ^{q₁} → ℝ^{q₂} and a^θ₃: ℝ^{q₂} → ℝ are affine functions given by a^θ_i(x) = A_ix + b_i, i = 1, 2, 3,

Idea Recursively approximate f_n by a neural network $f^{\theta} \colon \mathbb{R}^d \to \{0, 1\}$ of the form $f^{\theta} = 1_{[0,\infty)} \circ a_3^{\theta} \circ \varphi_{q_2} \circ a_2^{\theta} \circ \varphi_{q_1} \circ a_1^{\theta},$

where

- q_1 and q_2 are positive integers specifying the number of nodes in the two hidden layers,
- $a_1^{\theta} \colon \mathbb{R}^d \to \mathbb{R}^{q_1}, a_2^{\theta} \colon \mathbb{R}^{q_1} \to \mathbb{R}^{q_2} \text{ and } a_3^{\theta} \colon \mathbb{R}^{q_2} \to \mathbb{R} \text{ are affine functions given by}$ $a_i^{\theta}(x) = A_i x + b_i, i = 1, 2, 3,$
- for *j* ∈ N, φ_j: ℝ^j → ℝ^j is the component-wise ReLU activation function given by φ_j(x₁,...,x_j) = (x₁⁺,...,x_j⁺)

Idea Recursively approximate f_n by a neural network $f^{\theta} \colon \mathbb{R}^d \to \{0, 1\}$ of the form $f^{\theta} = 1_{[0,\infty)} \circ a_3^{\theta} \circ \varphi_{q_2} \circ a_2^{\theta} \circ \varphi_{q_1} \circ a_1^{\theta},$

where

- q_1 and q_2 are positive integers specifying the number of nodes in the two hidden layers,
- $a_1^{\theta} : \mathbb{R}^d \to \mathbb{R}^{q_1}, a_2^{\theta} : \mathbb{R}^{q_1} \to \mathbb{R}^{q_2} \text{ and } a_3^{\theta} : \mathbb{R}^{q_2} \to \mathbb{R} \text{ are affine functions given by}$ $a_i^{\theta}(x) = A_i x + b_i, i = 1, 2, 3,$
- for $j \in \mathbb{N}$, $\varphi_j : \mathbb{R}^j \to \mathbb{R}^j$ is the component-wise ReLU activation function given by $\varphi_j(x_1, \ldots, x_j) = (x_1^+, \ldots, x_j^+)$

The components of θ consist of the entries of A_i and b_i , i = 1, 2, 3

Idea Recursively approximate f_n by a neural network $f^{\theta} \colon \mathbb{R}^d \to \{0, 1\}$ of the form $f^{\theta} = 1_{[0,\infty)} \circ a_3^{\theta} \circ \varphi_{q_2} \circ a_2^{\theta} \circ \varphi_{q_1} \circ a_1^{\theta},$

where

- q_1 and q_2 are positive integers specifying the number of nodes in the two hidden layers,
- $a_1^{\theta} : \mathbb{R}^d \to \mathbb{R}^{q_1}, a_2^{\theta} : \mathbb{R}^{q_1} \to \mathbb{R}^{q_2} \text{ and } a_3^{\theta} : \mathbb{R}^{q_2} \to \mathbb{R} \text{ are affine functions given by}$ $a_i^{\theta}(x) = A_i x + b_i, i = 1, 2, 3,$
- for *j* ∈ N, φ_j: ℝ^j → ℝ^j is the component-wise ReLU activation function given by φ_j(x₁,...,x_j) = (x₁⁺,...,x_j⁺)

The components of θ consist of the entries of A_i and b_i , $i = 1, 2, 3 \rightsquigarrow \text{so } \# \text{ of parameters} \approx d^2$

More precisely,

• assume parameter values $\theta_{n+1}, \theta_{n+2}, \dots, \theta_N \in \mathbb{R}^q$ have been found such that $f^{\theta_N} \equiv 1$ and the stopping time

$$\tau_{n+1} = \sum_{m=n+1}^{N} m f^{\theta_m}(X_m) \prod_{j=n+1}^{m-1} (1 - f^{\theta_j}(X_j))$$

produces an expectation $\mathbb{E} g(\tau_{n+1}, X_{\tau_{n+1}})$ close to the optimal value V_{n+1}

More precisely,

• assume parameter values $\theta_{n+1}, \theta_{n+2}, \dots, \theta_N \in \mathbb{R}^q$ have been found such that $f^{\theta_N} \equiv 1$ and the stopping time

$$\tau_{n+1} = \sum_{m=n+1}^{N} m f^{\theta_m}(X_m) \prod_{j=n+1}^{m-1} (1 - f^{\theta_j}(X_j))$$

produces an expectation $\mathbb{E} g(\tau_{n+1}, X_{\tau_{n+1}})$ close to the optimal value V_{n+1}

• now try to find a maximizer $\theta_n \in \mathbb{R}^q$ of

$$heta \mapsto \mathbb{E}\left[g(n, X_n)f^{ heta}(X_n) + g(au_{n+1}, X_{n+1})(1 - f^{ heta}(X_n))
ight]$$

• Goal find an (approximately) optimal $\theta_n \in \mathbb{R}^q$ with a stochastic gradient ascent method

- Goal find an (approximately) optimal $\theta_n \in \mathbb{R}^q$ with a stochastic gradient ascent method
- **Problem** for $x \in \mathbb{R}^d$, the θ -gradient of

$$f^{\theta}(x) = 1_{[0,\infty)} \circ a_3^{\theta} \circ \varphi_{q_2} \circ a_2^{\theta} \circ \varphi_{q_1} \circ a_1^{\theta}(x)$$

- Goal find an (approximately) optimal $\theta_n \in \mathbb{R}^q$ with a stochastic gradient ascent method
- **Problem** for $x \in \mathbb{R}^d$, the θ -gradient of

$$f^{\theta}(x) = \mathbf{1}_{[0,\infty)} \circ a_3^{\theta} \circ \varphi_{q_2} \circ a_2^{\theta} \circ \varphi_{q_1} \circ a_1^{\theta}(x)$$

• As an intermediate step consider a neural network F^{θ} : $\mathbb{R}^d \to (0,1)$ of the form

$$F^{\theta} = \psi \circ a_3^{\theta} \circ \varphi_{q_2} \circ a_2^{\theta} \circ \varphi_{q_1} \circ a_1^{\theta} \quad \text{for} \quad \psi(x) = \frac{e^x}{1 + e^x}$$

- Goal find an (approximately) optimal $\theta_n \in \mathbb{R}^q$ with a stochastic gradient ascent method
- **Problem** for $x \in \mathbb{R}^d$, the θ -gradient of

$$f^{\theta}(x) = \mathbf{1}_{[0,\infty)} \circ a_3^{\theta} \circ \varphi_{q_2} \circ a_2^{\theta} \circ \varphi_{q_1} \circ a_1^{\theta}(x)$$

• As an intermediate step consider a neural network F^{θ} : $\mathbb{R}^d \to (0, 1)$ of the form

$$F^{\theta} = \psi \circ a_3^{\theta} \circ \varphi_{q_2} \circ a_2^{\theta} \circ \varphi_{q_1} \circ a_1^{\theta} \quad \text{for} \quad \psi(x) = \frac{e^x}{1 + e^x}$$

• Use stochastic gradient ascent to find an approximate optimizer $\theta_n \in \mathbb{R}^q$ of

$$heta \mapsto \mathbb{E}\left[g(n, X_n)F^{ heta}(X_n) + g(au_{n+1}, X_{ au_{n+1}})(1 - F^{ heta}(X_n))
ight]$$

- Goal find an (approximately) optimal $\theta_n \in \mathbb{R}^q$ with a stochastic gradient ascent method
- **Problem** for $x \in \mathbb{R}^d$, the θ -gradient of

$$f^{\theta}(x) = \mathbf{1}_{[0,\infty)} \circ a_3^{\theta} \circ \varphi_{q_2} \circ a_2^{\theta} \circ \varphi_{q_1} \circ a_1^{\theta}(x)$$

• As an intermediate step consider a neural network F^{θ} : $\mathbb{R}^d \to (0, 1)$ of the form

$$F^{\theta} = \psi \circ a_3^{\theta} \circ \varphi_{q_2} \circ a_2^{\theta} \circ \varphi_{q_1} \circ a_1^{\theta}$$
 for $\psi(x) = \frac{e^x}{1 + e^x}$

• Use stochastic gradient ascent to find an approximate optimizer $\theta_n \in \mathbb{R}^q$ of

$$\theta \mapsto \mathbb{E}\left[g(n, X_n)F^{\theta}(X_n) + g(\tau_{n+1}, X_{\tau_{n+1}})(1 - F^{\theta}(X_n))\right]$$

• Approximate
$$f_n \approx f^{\theta_n} = 1_{[0,\infty)} \circ a_3^{\theta_n} \circ \varphi_{q_2} \circ a_2^{\theta_n} \circ \varphi_{q_1} \circ a_1^{\theta_n}$$

- Goal find an (approximately) optimal $\theta_n \in \mathbb{R}^q$ with a stochastic gradient ascent method
- **Problem** for $x \in \mathbb{R}^d$, the θ -gradient of

$$f^{\theta}(x) = \mathbf{1}_{[0,\infty)} \circ a_3^{\theta} \circ \varphi_{q_2} \circ a_2^{\theta} \circ \varphi_{q_1} \circ a_1^{\theta}(x)$$

• As an intermediate step consider a neural network F^{θ} : $\mathbb{R}^d \to (0, 1)$ of the form

$$F^{\theta} = \psi \circ a_3^{\theta} \circ \varphi_{q_2} \circ a_2^{\theta} \circ \varphi_{q_1} \circ a_1^{\theta}$$
 for $\psi(x) = \frac{e^x}{1 + e^x}$

• Use stochastic gradient ascent to find an approximate optimizer $\theta_n \in \mathbb{R}^q$ of

$$\theta \mapsto \mathbb{E}\left[g(n, X_n)F^{\theta}(X_n) + g(\tau_{n+1}, X_{\tau_{n+1}})(1 - F^{\theta}(X_n))\right]$$

- Approximate $f_n \approx f^{\theta_n} = 1_{[0,\infty)} \circ a_3^{\theta_n} \circ \varphi_{q_2} \circ a_2^{\theta_n} \circ \varphi_{q_1} \circ a_1^{\theta_n}$
- **Repeat the same steps** at times $n 1, n 2, \dots, 0$

Let $n \in \{0, 1, ..., N-1\}$ and fix a stopping time $\tau_{n+1} \in \mathcal{T}_{n+1}$. Then, for every constant $\varepsilon > 0$, there exist numbers of hidden nodes q_1 and q_2 such that

$$\begin{split} \sup_{\theta \in \mathbb{R}^q} \mathbb{E} \left[g(n, X_n) f^{\theta}(X_n) + g(\tau_{n+1}, X_{\tau_{n+1}}) (1 - f^{\theta}(X_n)) \right] \\ \geq \sup_{f \in \mathcal{D}} \mathbb{E} \left[g(n, X_n) f(X_n) + g(\tau_{n+1}, X_{\tau_{n+1}}) (1 - f(X_n)) \right] - \varepsilon, \end{split}$$

where \mathcal{D} is the set of all measurable functions $f : \mathbb{R}^d \to \{0, 1\}$.

Let $n \in \{0, 1, ..., N-1\}$ and fix a stopping time $\tau_{n+1} \in \mathcal{T}_{n+1}$. Then, for every constant $\varepsilon > 0$, there exist numbers of hidden nodes q_1 and q_2 such that

$$\begin{split} \sup_{\theta \in \mathbb{R}^q} \mathbb{E} \left[g(n, X_n) f^{\theta}(X_n) + g(\tau_{n+1}, X_{\tau_{n+1}}) (1 - f^{\theta}(X_n)) \right] \\ \geq \sup_{f \in \mathcal{D}} \mathbb{E} \left[g(n, X_n) f(X_n) + g(\tau_{n+1}, X_{\tau_{n+1}}) (1 - f(X_n)) \right] - \varepsilon, \end{split}$$

where \mathcal{D} is the set of all measurable functions $f : \mathbb{R}^d \to \{0, 1\}$.

Proof

• Every measurable set $A \subseteq \mathbb{R}^d$ can be approximated in measure by compact sets $K \subseteq A$

Let $n \in \{0, 1, ..., N-1\}$ and fix a stopping time $\tau_{n+1} \in \mathcal{T}_{n+1}$. Then, for every constant $\varepsilon > 0$, there exist numbers of hidden nodes q_1 and q_2 such that

$$\begin{split} \sup_{\theta \in \mathbb{R}^q} \mathbb{E} \left[g(n, X_n) f^{\theta}(X_n) + g(\tau_{n+1}, X_{\tau_{n+1}}) (1 - f^{\theta}(X_n)) \right] \\ \geq \sup_{f \in \mathcal{D}} \mathbb{E} \left[g(n, X_n) f(X_n) + g(\tau_{n+1}, X_{\tau_{n+1}}) (1 - f(X_n)) \right] - \varepsilon, \end{split}$$

where \mathcal{D} is the set of all measurable functions $f : \mathbb{R}^d \to \{0, 1\}$.

Proof

- Every measurable set $A \subseteq \mathbb{R}^d$ can be approximated in measure by compact sets $K \subseteq A$
- **2** $1_K 1_{K^c}$ can be approximated by continuous functions k_j

Let $n \in \{0, 1, ..., N-1\}$ and fix a stopping time $\tau_{n+1} \in \mathcal{T}_{n+1}$. Then, for every constant $\varepsilon > 0$, there exist numbers of hidden nodes q_1 and q_2 such that

$$\begin{split} \sup_{\theta \in \mathbb{R}^q} \mathbb{E} \left[g(n, X_n) f^{\theta}(X_n) + g(\tau_{n+1}, X_{\tau_{n+1}}) (1 - f^{\theta}(X_n)) \right] \\ \geq \sup_{f \in \mathcal{D}} \mathbb{E} \left[g(n, X_n) f(X_n) + g(\tau_{n+1}, X_{\tau_{n+1}}) (1 - f(X_n)) \right] - \varepsilon, \end{split}$$

where \mathcal{D} is the set of all measurable functions $f : \mathbb{R}^d \to \{0, 1\}$.

Proof

- Every measurable set $A \subseteq \mathbb{R}^d$ can be approximated in measure by compact sets $K \subseteq A$
- **2** $1_K 1_{K^c}$ can be approximated by continuous functions k_i

(a) k_j can be approximated uniformly on compacts by functions of the form

$$h(x) = \sum_{i=1}^{r} (v_i^T x + c_i)^+ - \sum_{i=1}^{s} (w_i^T x + d_i)^+ \quad \text{(Leshno-Lin-Pinkus-Schocken, 1993)}$$

Let $n \in \{0, 1, ..., N-1\}$ and fix a stopping time $\tau_{n+1} \in \mathcal{T}_{n+1}$. Then, for every constant $\varepsilon > 0$, there exist numbers of hidden nodes q_1 and q_2 such that

$$\begin{split} \sup_{\theta \in \mathbb{R}^q} \mathbb{E} \left[g(n, X_n) f^{\theta}(X_n) + g(\tau_{n+1}, X_{\tau_{n+1}}) (1 - f^{\theta}(X_n)) \right] \\ \geq \sup_{f \in \mathcal{D}} \mathbb{E} \left[g(n, X_n) f(X_n) + g(\tau_{n+1}, X_{\tau_{n+1}}) (1 - f(X_n)) \right] - \varepsilon, \end{split}$$

where \mathcal{D} is the set of all measurable functions $f : \mathbb{R}^d \to \{0, 1\}$.

Proof

- Every measurable set $A \subseteq \mathbb{R}^d$ can be approximated in measure by compact sets $K \subseteq A$
- **2** $1_K 1_{K^c}$ can be approximated by continuous functions k_i

So k_j can be approximated uniformly on compacts by functions of the form

 $h(x) = \sum_{i=1}^{r} (v_i^T x + c_i)^+ - \sum_{i=1}^{s} (w_i^T x + d_i)^+ \quad \text{(Leshno-Lin-Pinkus-Schocken, 1993)}$ $1_{[0,\infty)} \circ h \text{ can be written as a neural network of the form } f^{\theta} = 1_{[0,\infty)} \circ a_3^{\theta} \circ \varphi_{q_2} \circ a_2^{\theta} \circ \varphi_{q_1} \circ a_1^{\theta}$

Corollary

For a given optimal stopping problem of the form

 $\sup_{\tau\in\mathcal{T}}\mathbb{E}\,g(\tau,X_{\tau})$

and a constant $\varepsilon > 0$,

Corollary

For a given optimal stopping problem of the form

 $\sup_{\tau\in\mathcal{T}}\mathbb{E}\,g(\tau,X_{\tau})$

and a constant $\varepsilon > 0$, there exist

- numbers of hidden nodes q_1, q_2 and
- functions $f^{\theta_0}, f^{\theta_1}, \dots, f^{\theta_N} : \mathbb{R}^d \to \{0, 1\}$ of the form

$$f^{ heta_n} = \mathbb{1}_{[0,\infty)} \circ a_3^{ heta_n} \circ arphi_{q_2} \circ a_2^{ heta_n} \circ arphi_{q_1} \circ a_1^{ heta_n}$$

such that $f^{\theta_N} \equiv 1$ and the stopping time

$$\tau^{\Theta} = \sum_{n=1}^{N} n f^{\theta_n}(X_n) \prod_{j=0}^{n-1} (1 - f^{\theta_j}(X_j))$$

satisfies $\mathbb{E} g(\tau^{\Theta}, X_{\tau^{\Theta}}) \geq \sup_{\tau \in \mathcal{T}} \mathbb{E} g(\tau, X_{\tau}) - \varepsilon$

• Let $(x_n^k)_{n=0}^N$, k = 1, 2, ... be independent simulations of $(X_n)_{n=0}^N$

• Let $(x_n^k)_{n=0}^N$, k = 1, 2, ... be independent simulations of $(X_n)_{n=0}^N$

• Let $\theta_{n+1}, \ldots, \theta_N \in \mathbb{R}^q$ be given, and consider the corresponding stopping time

$$\tau_{n+1} = \sum_{m=n+1}^{N} m f^{\theta_m}(X_m) \prod_{j=n+1}^{m-1} (1 - f^{\theta_j}(X_j))$$

• Let $(x_n^k)_{n=0}^N$, k = 1, 2, ... be independent simulations of $(X_n)_{n=0}^N$

• Let $\theta_{n+1}, \ldots, \theta_N \in \mathbb{R}^q$ be given, and consider the corresponding stopping time

$$\tau_{n+1} = \sum_{m=n+1}^{N} m f^{\theta_m}(X_m) \prod_{j=n+1}^{m-1} (1 - f^{\theta_j}(X_j))$$

• τ_{n+1} is of the form $\tau_{n+1} = l_{n+1}(X_{n+1}, \ldots, X_{N-1})$ for a measurable function

$$l_{n+1}: \mathbb{R}^{d(N-n-1)} \to \{n+1, n+2, \dots, N\}$$

• Let $(x_n^k)_{n=0}^N$, k = 1, 2, ... be independent simulations of $(X_n)_{n=0}^N$

• Let $\theta_{n+1}, \ldots, \theta_N \in \mathbb{R}^q$ be given, and consider the corresponding stopping time

$$\tau_{n+1} = \sum_{m=n+1}^{N} m f^{\theta_m}(X_m) \prod_{j=n+1}^{m-1} (1 - f^{\theta_j}(X_j))$$

• τ_{n+1} is of the form $\tau_{n+1} = l_{n+1}(X_{n+1}, \ldots, X_{N-1})$ for a measurable function

$$l_{n+1} : \mathbb{R}^{d(N-n-1)} \to \{n+1, n+2, \dots, N\}$$

Denote

$$l_{n+1}^{k} = \begin{cases} N & \text{if } n = N-1 \\ l_{n+1}(x_{n+1}^{k}, \dots, x_{N-1}^{k}) & \text{if } n \le N-2 \end{cases}$$

• Let $(x_n^k)_{n=0}^N$, k = 1, 2, ... be independent simulations of $(X_n)_{n=0}^N$

• Let $\theta_{n+1}, \ldots, \theta_N \in \mathbb{R}^q$ be given, and consider the corresponding stopping time

$$\tau_{n+1} = \sum_{m=n+1}^{N} m f^{\theta_m}(X_m) \prod_{j=n+1}^{m-1} (1 - f^{\theta_j}(X_j))$$

• τ_{n+1} is of the form $\tau_{n+1} = l_{n+1}(X_{n+1}, \ldots, X_{N-1})$ for a measurable function

$$l_{n+1}: \mathbb{R}^{d(N-n-1)} \to \{n+1, n+2, \dots, N\}$$

Denote

$$l_{n+1}^{k} = \begin{cases} N & \text{if } n = N-1 \\ l_{n+1}(x_{n+1}^{k}, \dots, x_{N-1}^{k}) & \text{if } n \le N-2 \end{cases}$$

• The realized reward

$$r_n^k(\theta) = g(n, x_n^k) F^{\theta}(x_n^k) + g(l_{n+1}^k, x_{l_{n+1}^k}^k) (1 - F^{\theta}(x_n^k))$$

is continuous and almost everywhere differentiable in θ

Stochastic Gradient Ascent

• **Initialize** $\theta_{n,0}$ typically random; e.g. Xavier initialization

Stochastic Gradient Ascent

- **Initialize** $\theta_{n,0}$ typically random; e.g. Xavier initialization
- Standard updating $\theta_{n,k+1} = \theta_{n,k} + \eta \nabla r_n^k(\theta_{n,k})$

Stochastic Gradient Ascent

- Initialize $\theta_{n,0}$ typically random; e.g. Xavier initialization
- Standard updating $\theta_{n,k+1} = \theta_{n,k} + \eta \nabla r_n^k(\theta_{n,k})$

• Variants

- Mini-batches
- Batch normalization
- Momentum
- Adagrad
- RMSProp
- AdaDelta
- ADAM
- Decoupling weight decay
- Warm restarts
- ...
Stochastic Gradient Ascent

- Initialize $\theta_{n,0}$ typically random; e.g. Xavier initialization
- Standard updating $\theta_{n,m+1} = \theta_{n,m} + \eta \nabla r_n^m(\theta_{n,m})$

• Variants

- Mini-batches
- Batch normalization
- Momentum
- Adagrad
- RMSProp
- AdaDelta
- ADAM
- Decoupling weight decay
- Warm restarts
- ...

• The candidate optimal stopping time

$$\tau^{\Theta} = \sum_{n=1}^{N} n f^{\theta_n}(X_n) \prod_{j=0}^{n-1} (1 - f^{\theta_j}(X_j))$$

yields a lower bound

$$L = \mathbb{E} g(\tau^{\Theta}, X_{\tau^{\Theta}})$$
 for the optimal value $V_0 = \sup_{\tau} \mathbb{E} g(\tau, X_{\tau})$

• The candidate optimal stopping time

$$\tau^{\Theta} = \sum_{n=1}^{N} n f^{\theta_n}(X_n) \prod_{j=0}^{n-1} (1 - f^{\theta_j}(X_j))$$

yields a lower bound

$$L = \mathbb{E} g(\tau^{\Theta}, X_{\tau^{\Theta}})$$
 for the optimal value $V_0 = \sup_{\tau} \mathbb{E} g(\tau, X_{\tau})$

• Let $(y_n^k)_{n=0}^N$, $k = 1, 2, ..., K_L$, be a new set of independent simulations of $(X_n)_{n=0}^N$

• The candidate optimal stopping time

$$\tau^{\Theta} = \sum_{n=1}^{N} n f^{\theta_n}(X_n) \prod_{j=0}^{n-1} (1 - f^{\theta_j}(X_j))$$

yields a lower bound

$$L = \mathbb{E} g(\tau^{\Theta}, X_{\tau^{\Theta}})$$
 for the optimal value $V_0 = \sup_{\tau} \mathbb{E} g(\tau, X_{\tau})$

• Let $(y_n^k)_{n=0}^N$, $k = 1, 2, ..., K_L$, be a new set of independent simulations of $(X_n)_{n=0}^N$

• τ^{Θ} can be written as $\tau^{\Theta} = l(X_0, \dots, X_{N-1})$ for a measurable function $l : \mathbb{R}^{dN} \to \{0, 1, \dots, N\}$

• The candidate optimal stopping time

$$\tau^{\Theta} = \sum_{n=1}^{N} n f^{\theta_n}(X_n) \prod_{j=0}^{n-1} (1 - f^{\theta_j}(X_j))$$

yields a lower bound

$$L = \mathbb{E} g(\tau^{\Theta}, X_{\tau^{\Theta}})$$
 for the optimal value $V_0 = \sup_{\tau} \mathbb{E} g(\tau, X_{\tau})$

• Let $(y_n^k)_{n=0}^N$, $k = 1, 2, ..., K_L$, be a new set of independent simulations of $(X_n)_{n=0}^N$

- τ^{Θ} can be written as $\tau^{\Theta} = l(X_0, \dots, X_{N-1})$ for a measurable function $l : \mathbb{R}^{dN} \to \{0, 1, \dots, N\}$
- Denote $l^k = l(y_0^k, ..., y_{N-1}^k)$

• The candidate optimal stopping time

$$\tau^{\Theta} = \sum_{n=1}^{N} n f^{\theta_n}(X_n) \prod_{j=0}^{n-1} (1 - f^{\theta_j}(X_j))$$

yields a lower bound

$$L = \mathbb{E} g(\tau^{\Theta}, X_{\tau^{\Theta}})$$
 for the optimal value $V_0 = \sup_{\tau} \mathbb{E} g(\tau, X_{\tau})$

• Let $(y_n^k)_{n=0}^N$, $k = 1, 2, ..., K_L$, be a new set of independent simulations of $(X_n)_{n=0}^N$

- τ^{Θ} can be written as $\tau^{\Theta} = l(X_0, \dots, X_{N-1})$ for a measurable function $l : \mathbb{R}^{dN} \to \{0, 1, \dots, N\}$
- Denote $l^k = l(y_0^k, ..., y_{N-1}^k)$
- Use the Monte Carlo approximation

$$\hat{L} = \frac{1}{K_L} \sum_{k=1}^{K_L} g(l^k, y_{l^k}^k)$$
 as an estimate for L

• Assume $\mathbb{E}\left[g(n, X_n)^2\right] < \infty$ for all $n = 0, 1, \dots, N$

- Assume $\mathbb{E}\left[g(n, X_n)^2\right] < \infty$ for all $n = 0, 1, \dots, N$
- Consider the sample variance

$$\hat{\sigma}_L^2 = rac{1}{K_L - 1} \sum_{k=1}^{K_L} \left(g(l^k, y_{l^k}^k) - \hat{L}
ight)^2$$

- Assume $\mathbb{E}\left[g(n, X_n)^2\right] < \infty$ for all $n = 0, 1, \dots, N$
- Consider the sample variance

$$\hat{\sigma}_L^2 = \frac{1}{K_L - 1} \sum_{k=1}^{K_L} \left(g(l^k, y_{l^k}^k) - \hat{L} \right)^2$$

• By the CLT,

$$\left[\hat{L} - z_{\alpha} \frac{\hat{\sigma}_L}{\sqrt{K_L}} \,, \, \infty\right)$$

is an asymptotically valid $1 - \alpha$ confidence interval for *L* where z_{α} is the $1 - \alpha$ quantile of the standard normal distribution

- Assume $\mathbb{E}\left[g(n, X_n)^2\right] < \infty$ for all $n = 0, 1, \dots, N$
- Consider the sample variance

$$\hat{\sigma}_L^2 = \frac{1}{K_L - 1} \sum_{k=1}^{K_L} \left(g(l^k, y_{l^k}^k) - \hat{L} \right)^2$$

• By the CLT,

$$\left[\hat{L}-z_{\alpha}\frac{\hat{\sigma}_{L}}{\sqrt{K_{L}}}\,,\,\infty\right)$$

is an asymptotically valid $1 - \alpha$ confidence interval for *L* where z_{α} is the $1 - \alpha$ quantile of the standard normal distribution

• Therefore,

$$\mathbb{P}\left[V_0 \ge \hat{L} - z_\alpha \frac{\hat{\sigma}_L}{\sqrt{K_L}}\right] \ge \mathbb{P}\left[L \ge \hat{L} - z_\alpha \frac{\hat{\sigma}_L}{\sqrt{K_L}}\right] \approx 1 - \alpha$$

Let (H_n) be the Snell envelope of $G_n = g(n, X_n), n = 0, 1, ..., N$,

Let (H_n) be the Snell envelope of $G_n = g(n, X_n), n = 0, 1, ..., N$, with Doob decomposition $H_n = H_0 + M_n^H - A_n^H$

Let (H_n) be the Snell envelope of $G_n = g(n, X_n), n = 0, 1, ..., N$, with Doob decomposition $H_n = H_0 + M_n^H - A_n^H$

The following is a variant of the dual formulation of Rogers (2002), Haugh–Kogan (2004) and Andersen–Broadie (2004)

Let (H_n) be the Snell envelope of $G_n = g(n, X_n), n = 0, 1, ..., N$, with Doob decomposition $H_n = H_0 + M_n^H - A_n^H$

The following is a variant of the dual formulation of Rogers (2002), Haugh–Kogan (2004) and Andersen–Broadie (2004)

Proposition

For every (\mathcal{F}_n^X) -martingale (M_n) with $M_0 = 0$ and estimation errors (ε_n) satisfying $\mathbb{E}[\varepsilon_n \mid \mathcal{F}_n^X] = 0$, one has

$$W_0 \leq \mathbb{E}\left[\max_{0 \leq n \leq N} \left(G_n - M_n - \varepsilon_n\right)
ight]$$

Let (H_n) be the Snell envelope of $G_n = g(n, X_n), n = 0, 1, ..., N$, with Doob decomposition $H_n = H_0 + M_n^H - A_n^H$

The following is a variant of the dual formulation of Rogers (2002), Haugh–Kogan (2004) and Andersen–Broadie (2004)

Proposition

For every (\mathcal{F}_n^X) -martingale (M_n) with $M_0 = 0$ and estimation errors (ε_n) satisfying $\mathbb{E}[\varepsilon_n \mid \mathcal{F}_n^X] = 0$, one has

$$V_0 \leq \mathbb{E}\left[\max_{0 \leq n \leq N} \left(G_n - M_n - \varepsilon_n\right)
ight]$$

On the other hand,

$$V_0 = \mathbb{E}\left[\max_{0 \leq n \leq N} \left(G_n - M_n^H\right)
ight]$$

• Approximate
$$H_n$$
 by $H_n^{\Theta} = \mathbb{E} \left[G_{\tau_n^{\Theta}} \mid \mathcal{F}_n^X \right]$

Approximate H_n by H_n^Θ = E [G_{τ_n^Θ} | F_n^X]
and ΔM_n^H = H_n − E [H_n | F_{n-1}^X] by ΔM_n^Θ = H_n^Θ − E [H_n^Θ | F_{n-1}] = f^{θ_n}(X_n)G_n + (1 − f^{θ_n}(X_n))C_n^Θ − C_{n-1}^Θ for the continuation values

$$C_n^{\Theta} = \mathbb{E}\left[G_{ au_{n+1}^{\Theta}} \mid \mathcal{F}_n^X
ight]$$

• Approximate H_n by $H_n^{\Theta} = \mathbb{E} \left[G_{\tau_n^{\Theta}} \mid \mathcal{F}_n^X \right]$ • and $\Delta M_n^H = H_n - \mathbb{E} \left[H_n \mid \mathcal{F}_{n-1}^X \right]$ by $\Delta M_n^{\Theta} = H_n^{\Theta} - \mathbb{E} \left[H_n^{\Theta} \mid \mathcal{F}_{n-1} \right] = f^{\theta_n}(X_n)G_n + (1 - f^{\theta_n}(X_n))C_n^{\Theta} - C_{n-1}^{\Theta}$

for the continuation values

$$C_n^{\Theta} = \mathbb{E}\left[G_{ au^{\Theta}_{n+1}} \mid \mathcal{F}_n^X
ight]$$

• Let $(z_n^k)_{n=0}^N$, $k = 1, 2, ..., K_U$, be a third set of independent simulations of $(X_n)_{n=0}^N$

Approximate H_n by H_n^Θ = E [G_{τ_n^Θ} | F_n^X]
and ΔM_n^H = H_n − E [H_n | F_{n-1}^X] by ΔM_n^Θ = H_n^Θ − E [H_n^Θ | F_{n-1}] = f^{θ_n}(X_n)G_n + (1 − f^{θ_n}(X_n))C_n^Θ − C_{n-1}^Θ

for the continuation values

$$C_n^{\Theta} = \mathbb{E}\left[G_{ au^{\Theta}_{n+1}} \mid \mathcal{F}_n^X
ight]$$

• Let $(z_n^k)_{n=0}^N$, $k = 1, 2, ..., K_U$, be a third set of independent simulations of $(X_n)_{n=0}^N$

• For all z_n^k , simulate *J* independent continuation paths $\tilde{z}_{n+1}^{k,j}, \ldots, \tilde{z}_N^{k,j}$

Approximate H_n by H_n^Θ = E [G_{τ_n^Θ} | F_n^X]
and ΔM_n^H = H_n − E [H_n | F_{n-1}^X] by ΔM_n^Θ = H_n^Θ − E [H_n^Θ | F_{n-1}] = f^{θ_n}(X_n)G_n + (1 − f^{θ_n}(X_n))C_n^Θ − C_{n-1}^Θ

for the continuation values

۲

$$C_n^{\Theta} = \mathbb{E}\left[G_{ au^{\Theta}_{n+1}} \mid \mathcal{F}_n^X
ight]$$

• Let $(z_n^k)_{n=0}^N$, $k = 1, 2, ..., K_U$, be a third set of independent simulations of $(X_n)_{n=0}^N$

• For all z_n^k , simulate *J* independent continuation paths $\tilde{z}_{n+1}^{k,j}, \ldots, \tilde{z}_N^{k,j}$

$$C_n^k = \frac{1}{J} \sum_{j=1}^J g\left(\tau_{n+1}^{k,j}, \tilde{\boldsymbol{z}}_{\tau_{n+1}^{k,j}}^{k,j}\right)$$

can be understood as realizations of $C_n^{\Theta} + \tilde{\varepsilon}_n$

Approximate H_n by H_n^Θ = E [G_{τ_n^Θ} | F_n^X]
and ΔM_n^H = H_n − E [H_n | F_{n-1}^X] by ΔM_n^Θ = H_n^Θ − E [H_n^Θ | F_{n-1}] = f^{θ_n}(X_n)G_n + (1 − f^{θ_n}(X_n))C_n^Θ − C_{n-1}^Θ

for the continuation values

$$C_n^{\Theta} = \mathbb{E}\left[G_{ au^{\Theta}_{n+1}} \mid \mathcal{F}_n^X
ight]$$

• Let $(z_n^k)_{n=0}^N$, $k = 1, 2, ..., K_U$, be a third set of independent simulations of $(X_n)_{n=0}^N$

• For all z_n^k , simulate *J* independent continuation paths $\tilde{z}_{n+1}^{k,j}, \ldots, \tilde{z}_N^{k,j}$

$$C_n^k = rac{1}{J} \sum_{j=1}^J g\left(au_{n+1}^{k,j}, ilde{z}_{ au_{n+1}^{k,j}}^{k,j}
ight)$$

can be understood as realizations of $C_n^{\Theta} + \tilde{\varepsilon}_n$

• This gives realizations M_n^k of $M_n^{\Theta} + \varepsilon_n$

Estimating an upper bound

$$U = \mathbb{E}\left[\max_{0 \le n \le N} \left(G_n - M_n^{\Theta} - \varepsilon_n\right)\right] \text{ is an upper bound for } V_0$$

Estimating an upper bound

$$U = \mathbb{E}\left[\max_{0 \le n \le N} \left(G_n - M_n^{\Theta} - \varepsilon_n\right)\right] \text{ is an upper bound for } V_0$$

• Use the Monte Carlo approximation

$$\hat{U} = \frac{1}{K_U} \sum_{k=1}^{K_U} \max_{0 \le n \le N} \left(g(n, z_n^k) - M_n^k \right)$$
 as an estimate for U

Estimating an upper bound

$$U = \mathbb{E}\left[\max_{0 \le n \le N} \left(G_n - M_n^{\Theta} - \varepsilon_n\right)\right] \text{ is an upper bound for } V_0$$

• Use the Monte Carlo approximation

$$\hat{U} = \frac{1}{K_U} \sum_{k=1}^{K_U} \max_{0 \le n \le N} \left(g(n, z_n^k) - M_n^k \right)$$
 as an estimate for U

Our point estimate of
$$V_0$$
: $\frac{\hat{L}+\hat{U}}{2}$

Confidence intervals for V₀

• By the CLT,

$$\left(-\infty\,,\,\hat{U}+z_{lpha}rac{\hat{\sigma}_{U}}{\sqrt{K_{U}}}
ight]$$

is an asymptotically valid $1 - \alpha$ confidence interval for U, where $\hat{\sigma}_U$ is the corresponding sample standard deviation

Confidence intervals for V₀

• By the CLT,

$$\left(-\infty, \hat{U} + z_{\alpha} \frac{\hat{\sigma}_U}{\sqrt{K_U}}\right]$$

is an asymptotically valid $1 - \alpha$ confidence interval for U, where $\hat{\sigma}_U$ is the corresponding sample standard deviation

• One has

$$\mathbb{P}\left[V_0 \leq \hat{U} + z_\alpha \frac{\hat{\sigma}_U}{\sqrt{K_U}}\right] \geq \mathbb{P}\left[U \leq \hat{U} + z_\alpha \frac{\hat{\sigma}_U}{\sqrt{K_U}}\right] \approx 1 - \alpha.$$

Confidence intervals for V₀

• By the CLT,

$$\left(-\infty, \ \hat{U} + z_{lpha} \frac{\hat{\sigma}_U}{\sqrt{K_U}}\right]$$

is an asymptotically valid $1 - \alpha$ confidence interval for U, where $\hat{\sigma}_U$ is the corresponding sample standard deviation

• One has

$$\mathbb{P}\left[V_0 \leq \hat{U} + z_\alpha \frac{\hat{\sigma}_U}{\sqrt{K_U}}\right] \geq \mathbb{P}\left[U \leq \hat{U} + z_\alpha \frac{\hat{\sigma}_U}{\sqrt{K_U}}\right] \approx 1 - \alpha.$$

• So

$$\left[\hat{L} - z_{\alpha} \frac{\hat{\sigma}_L}{\sqrt{K_L}} , \ \hat{U} + z_{\alpha} \frac{\hat{\sigma}_U}{\sqrt{K_U}} \right]$$

is an asymptotically valid $1 - 2\alpha$ confidence interval

Thank You!