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The Problem

sup
τ∈T

E g(τ,Xτ ),

where

(Xn)N
n=0 is a d-dimensional Markov process on a probability space (Ω,F ,P)

g: {0, 1, . . . ,N} × Rd → R a measurable function such that

E|g(n,Xn)|<∞ for all n = 0, ...,N

T is the set of all X-stopping times τ
that is, {τ = n} ∈ σ(X0, . . . ,Xn) for all n = 0, 1, . . . ,N
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About the assumptions

Discrete time

Many problems are already in discrete time

Most relevant continuous-time problems can be approximated by time-discretized versions

Markov assumption

Every discrete-time process can be made Markov by including all relevant information

in the current state ... by increasing the dimension of (Xn)
N
n=0
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Examples

1 Bermudan max-call options

Consider d assets with prices evolving according to a multi-dimensional Black–Scholes model

Si
t = si

0 exp
(
[r − δi − σ2

i /2]t + σiW i
t

)
, i = 1, 2, . . . , d,

for
initial values si

0 ∈ (0,∞)

a risk-free interest rate r ∈ R
dividend yields δi ∈ [0,∞)

volatilities σi ∈ (0,∞)

and a d-dimensional Brownian motion W with constant correlation ρij between
increments of different components W i and W j

A Bermudan max-call option has time-t payoff
(
max1≤i≤d Si

t − K
)+

and can be exercised at one of finitely many times 0 = t0 < t1 = T
N < t2 = 2T

N < · · · < tN = T

Price: sup
τ∈{t0,t1,...,T}

E

[
e−rτ

(
max
1≤i≤d

Si
τ − K

)+
]

= sup
τ∈T

E g(τ,Xτ )
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This problem has been studied for d = 2, 3, 5 (among others) by

Longstaff and Schwartz (2001)
Rogers (2002)
García (2003)
Boyle, Kolkiewicz and Tan (2003)
Haugh and Kogan (2004)
Broadie and Glasserman (2004)
Andersen and Broadie (2004)
Broadie and Cao (2008)
Berridge and Schumacher (2008)
Belomestny (2011, 2013)
Jain and Oosterlee (2015)
Lelong (2016)



Our price estimates

for si
0 = 100, σi = 20%, r = 5%, δ = 10%, ρij = 0, K = 100, T = 3, N = 9:

# assets Point Est. Comp. Time 95% Conf. Int. Bin. Tree

2 13.899 28.7s [13.880, 13.910] 13.902
3 18.690 28.9s [18.673, 18.699] 18.69
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# Assets Point Est. Comp. Time 95% Conf. Int. Bin. Tree Broadie–Cao 95% Conf. Int.

2 13.899 28.7s [13.880, 13.910] 13.902
3 18.690 28.9s [18.673, 18.699] 18.69
5 26.159 28.1s [26.138, 26.174] [26.115, 26.164]
10 38.337 30.5s [38.300, 38.367]
20 51.668 37.5s [51.549, 51.803]
30 59.659 45.5s [59.476, 59.872]
50 69.736 59.1s [69.560, 69.945]
100 83.584 95.9s [83.357, 83.862]
200 97.612 170.1s [97.381, 97.889]
500 116.425 493.5s [116.210, 116.685]



2 Optimally stopping a fractional Brownian motion

A fractional Brownian motion with Hurst parameter H ∈ (0, 1] is a continuous centered
Gaussian process (WH

t )t≥0 with covariance structure

Cov(WH
t ,W

H
s ) =

1
2
(
t2H + s2H − |t − s|2H)

For H = 1/2, WH is a Brownian motion

For H > 1/2, WH has positively correlated increments

For H < 1/2, WH has negatively correlated increments

H = 0.1 H = 0.5 H = 0.8
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Problem: sup
0≤τ≤1

EWH
τ (∗)

denote tn = n/100, n = 0, 1, 2, . . . , 100
introduce the 100-dimensional Markov process (Xn)100

n=0 given by

X0 = (0, 0, . . . , 0)

X1 = (WH
t1 , 0, . . . , 0)

X2 = (WH
t2 ,W

H
t1 , 0, . . . , 0)

...

X100 = (WH
t100
,WH

t99
, . . . ,WH

t1 ).

The discretized stopping problem

sup
τ∈T

E g(Xτ ) for g(x1, . . . , x100) = x1,

approximates the continuous-time problem (∗) from below
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Results of Kulikov and Gusyatnikov (2016)
(based on heuristic stopping rules)



Results of Kulikov and Gusyatnikov (2016) Our results
(based on heuristic stopping rules)
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Computing a candidate optimal stopping time

Introduce the sequence of auxiliary stopping problems

Vn = sup
τ∈Tn

E g(τ,Xτ ), n = 0, 1, . . . ,N,

where Tn is the set of all stopping times n ≤ τ ≤ N

Stopping times and stopping decisions

Let fn, fn+1, . . . , fN : Rd → {0, 1} be measurable functions such that fN ≡ 1. Then

τn =

N∑
m=n

m fm(Xm)

m−1∏
j=n

(1− fj(Xj)) with
n−1∏
j=n

(1− fj(Xj)) := 1

is a stopping time in Tn
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Theorem

For a given n ∈ {0, 1, . . . ,N − 1}, let τn+1be a stopping time in Tn+1 of the form

τn+1 =

N∑
m=n+1

m fm(Xm)

m−1∏
j=n+1

(1− fj(Xj)),

for measurable functions fn+1, . . . , fN : Rd → {0, 1} with fN ≡ 1.

Then there exists a measurable function fn : Rd → {0, 1} such that the stopping time

τn = n fn(Xn) + τn+1(1− fn(Xn)) =
N∑

m=n

m fm(Xm)
m−1∏
j=n

(1− fj(Xj))

satisfies
E g(τn,Xτn) ≥ Vn −

(
Vn+1 − E g(τn+1,Xτn+1)

)
Proof: Compare g(n,Xn) to E

[
g(τn+1,Xτn+1) | X0,X1, . . . ,Xn

]
= E

[
g(τn+1,Xτn+1) | Xn

]
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Neural network approximation

Idea Recursively approximate fn by a neural network f θ:Rd → {0, 1} of the form

f θ = 1[0,∞) ◦ aθ3 ◦ ϕq2 ◦ aθ2 ◦ ϕq1 ◦ aθ1 ,

where
q1 and q2 are positive integers specifying the number of nodes in the two hidden layers,

aθ
1 :Rd → Rq1 , aθ

2 :Rq1 → Rq2 and aθ
3 :Rq2 → R are affine functions given by

aθ
i (x) = Aix + bi, i = 1, 2, 3,

for j ∈ N, ϕj:Rj → Rj is the component-wise ReLU activation function given by
ϕj(x1, . . . , xj) = (x+1 , . . . , x

+
j )

The components of θ consist of the entries of Ai and bi, i = 1, 2, 3  so # of parameters ≈ d2
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More precisely,

assume parameter values θn+1, θn+2, . . . , θN ∈ Rq have been found such that f θN ≡ 1 and the
stopping time

τn+1 =

N∑
m=n+1

m f θm(Xm)

m−1∏
j=n+1

(1− f θj(Xj))

produces an expectation E g(τn+1,Xτn+1) close to the optimal value Vn+1

now try to find a maximizer θn ∈ Rq of

θ 7→ E
[
g(n,Xn) f θ(Xn) + g(τn+1,Xn+1)(1− f θ(Xn))

]



More precisely,

assume parameter values θn+1, θn+2, . . . , θN ∈ Rq have been found such that f θN ≡ 1 and the
stopping time

τn+1 =

N∑
m=n+1

m f θm(Xm)

m−1∏
j=n+1

(1− f θj(Xj))

produces an expectation E g(τn+1,Xτn+1) close to the optimal value Vn+1

now try to find a maximizer θn ∈ Rq of

θ 7→ E
[
g(n,Xn) f θ(Xn) + g(τn+1,Xn+1)(1− f θ(Xn))

]



Goal find an (approximately) optimal θn ∈ Rq with a stochastic gradient ascent method

Problem for x ∈ Rd, the θ-gradient of

f θ(x) = 1[0,∞) ◦ aθ3 ◦ ϕq2 ◦ aθ2 ◦ ϕq1 ◦ aθ1(x)

is 0 or does not exist

As an intermediate step consider a neural network Fθ:Rd → (0, 1) of the form

Fθ = ψ ◦ aθ3 ◦ ϕq2 ◦ aθ2 ◦ ϕq1 ◦ aθ1 for ψ(x) =
ex

1 + ex

Use stochastic gradient ascent to find an approximate optimizer θn ∈ Rq of

θ 7→ E
[
g(n,Xn)Fθ(Xn) + g(τn+1,Xτn+1)(1− Fθ(Xn))

]
Approximate fn ≈ f θn = 1[0,∞) ◦ aθn

3 ◦ ϕq2 ◦ aθn
2 ◦ ϕq1 ◦ aθn

1

Repeat the same steps at times n− 1, n− 2, . . . , 0
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Proposition
Let n ∈ {0, 1, . . . ,N − 1} and fix a stopping time τn+1 ∈ Tn+1. Then, for every constant ε > 0,
there exist numbers of hidden nodes q1 and q2 such that

sup
θ∈Rq

E
[
g(n,Xn) f θ(Xn) + g(τn+1,Xτn+1)(1− f θ(Xn))

]
≥ sup

f∈D
E
[
g(n,Xn) f (Xn) + g(τn+1,Xτn+1)(1− f (Xn))

]
− ε,

where D is the set of all measurable functions f : Rd → {0, 1}.

Proof
1 Every measurable set A ⊆ Rd can be approximated in measure by compact sets K ⊆ A

2 1K − 1Kc can be approximated by continuous functions kj

3 kj can be approximated uniformly on compacts by functions of the form

h(x) =

r∑
i=1

(vT
i x + ci)

+ −
s∑

i=1

(wT
i x + di)

+ (Leshno–Lin–Pinkus–Schocken, 1993)

4 1[0,∞) ◦ h can be written as a neural network of the form f θ = 1[0,∞) ◦ aθ3 ◦ ϕq2 ◦ aθ2 ◦ ϕq1 ◦ aθ1
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Corollary
For a given optimal stopping problem of the form

sup
τ∈T

E g(τ,Xτ )

and a constant ε > 0,

there exist
numbers of hidden nodes q1, q2 and
functions f θ0 , f θ1 , . . . , f θN : Rd → {0, 1} of the form

f θn = 1[0,∞) ◦ aθn
3 ◦ ϕq2 ◦ aθn

2 ◦ ϕq1 ◦ aθn
1

such that f θN ≡ 1 and the stopping time

τΘ =

N∑
n=1

n f θn(Xn)

n−1∏
j=0

(1− f θj(Xj))

satisfies E g(τΘ,XτΘ) ≥ supτ∈T E g(τ,Xτ )− ε
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Training the networks

Let (xk
n)N

n=0, k = 1, 2, . . . be independent simulations of (Xn)N
n=0

Let θn+1, . . . , θN ∈ Rq be given, and consider the corresponding stopping time

τn+1 =

N∑
m=n+1

m f θm(Xm)

m−1∏
j=n+1

(1− f θj(Xj))

τn+1 is of the form τn+1 = ln+1(Xn+1, . . . ,XN−1) for a measurable function

ln+1 : Rd(N−n−1) → {n + 1, n + 2, . . . ,N}

Denote

lkn+1 =

{
N if n = N − 1
ln+1(xk

n+1, . . . , x
k
N−1) if n ≤ N − 2

The realized reward

rk
n(θ) = g(n, xk

n)Fθ(xk
n) + g(lkn+1, x

k
lkn+1

)(1− Fθ(xk
n))

is continuous and almost everywhere differentiable in θ
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τn+1 =

N∑
m=n+1

m f θm(Xm)

m−1∏
j=n+1

(1− f θj(Xj))

τn+1 is of the form τn+1 = ln+1(Xn+1, . . . ,XN−1) for a measurable function

ln+1 : Rd(N−n−1) → {n + 1, n + 2, . . . ,N}

Denote

lkn+1 =

{
N if n = N − 1
ln+1(xk

n+1, . . . , x
k
N−1) if n ≤ N − 2

The realized reward

rk
n(θ) = g(n, xk

n)Fθ(xk
n) + g(lkn+1, x

k
lkn+1

)(1− Fθ(xk
n))

is continuous and almost everywhere differentiable in θ
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Stochastic Gradient Ascent

Initialize θn,0 typically random; e.g. Xavier initialization

Standard updating θn,k+1 = θn,k + η∇rk
n(θn,k)

Variants

Mini-batches

Batch normalization

Momentum

Adagrad

RMSProp

AdaDelta

ADAM

Decoupling weight decay

Warm restarts

...
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Lower bound

The candidate optimal stopping time

τΘ =

N∑
n=1

n f θn(Xn)

n−1∏
j=0

(1− f θj(Xj))

yields a lower bound

L = E g(τΘ,XτΘ) for the optimal value V0 = sup
τ

E g(τ,Xτ )

Let (yk
n)N

n=0, k = 1, 2, . . . ,KL, be a new set of independent simulations of (Xn)N
n=0

τΘ can be written as τΘ = l(X0, . . . ,XN−1) for a measurable function l : RdN → {0, 1, . . . ,N}

Denote lk = l(yk
0, . . . , y

k
N−1)

Use the Monte Carlo approximation

L̂ =
1

KL

KL∑
k=1

g(lk, yk
lk ) as an estimate for L
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Lower confidence bounds

Assume E
[
g(n,Xn)2

]
<∞ for all n = 0, 1, . . . ,N

Consider the sample variance

σ̂2
L =

1
KL − 1

KL∑
k=1

(
g(lk, yk

lk )− L̂
)2

By the CLT, [
L̂− zα

σ̂L√
KL

, ∞
)

is an asymptotically valid 1− α confidence interval for L
where zα is the 1− α quantile of the standard normal distribution

Therefore,

P
[

V0 ≥ L̂− zα
σ̂L√
KL

]
≥ P

[
L ≥ L̂− zα

σ̂L√
KL

]
≈ 1− α
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Upper bound

Let (Hn) be the Snell envelope of Gn = g(n,Xn), n = 0, 1, . . . ,N,

with Doob decomposition Hn = H0 + MH
n − AH

n

The following is a variant of the dual formulation of Rogers (2002), Haugh–Kogan (2004)
and Andersen–Broadie (2004)

Proposition
For every (FX

n )-martingale (Mn) with M0 = 0 and estimation errors (εn) satisfying E[εn | FX
n ] = 0,

one has

V0 ≤ E
[

max
0≤n≤N

(Gn −Mn − εn)

]
On the other hand,

V0 = E
[

max
0≤n≤N

(
Gn −MH

n

)]
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Estimating a good dual martingale

Approximate Hn by HΘ
n = E

[
GτΘ

n
| FX

n

]

and ∆MH
n = Hn − E

[
Hn | FX

n−1

]
by

∆MΘ
n = HΘ

n − E
[
HΘ

n | Fn−1
]

= f θn(Xn)Gn + (1− f θn(Xn))CΘ
n − CΘ

n−1

for the continuation values
CΘ

n = E
[
GτΘ

n+1
| FX

n

]
Let (zk

n)N
n=0, k = 1, 2, . . . ,KU , be a third set of independent simulations of (Xn)N

n=0

For all zk
n, simulate J independent continuation paths z̃k,j

n+1, . . . , z̃
k,j
N

Ck
n =

1
J

J∑
j=1

g
(
τ k,j

n+1, z̃
k,j
τ k,j

n+1

)
can be understood as realizations of CΘ

n + ε̃n

This gives realizations Mk
n of MΘ

n + εn
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Estimating an upper bound

U = E
[

max
0≤n≤N

(
Gn −MΘ

n − εn
)]

is an upper bound for V0

Use the Monte Carlo approximation

Û =
1

KU

KU∑
k=1

max
0≤n≤N

(
g(n, zk

n)−Mk
n

)
as an estimate for U

Our point estimate of V0: L̂ + Û
2
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Confidence intervals for V0

By the CLT, (
−∞ , Û + zα

σ̂U√
KU

]
is an asymptotically valid 1− α confidence interval for U, where σ̂U is the corresponding
sample standard deviation

One has

P
[

V0 ≤ Û + zα
σ̂U√
KU

]
≥ P

[
U ≤ Û + zα

σ̂U√
KU

]
≈ 1− α.

So [
L̂− zα

σ̂L√
KL

, Û + zα
σ̂U√
KU

]

is an asymptotically valid 1− 2α confidence interval
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Thank You!
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