More than Unigrams Can Say:
 Detecting Meaningful Multi-word Expressions in Political Text

Kenneth Benoit

November 28, 2019

Outline

1. My background and perspective on this problem
2. Characterizing the problem
3. What are "meaningful multi-word expressions"
4. Detecting MWEs
5. Using MWEs to improve bag-of-words
6. Practical delivery of the solution

ME

Kenneth Benoit

- PhD in political science, specialization in statistics
- Department of Methodology
- "Computational social science"
- research and PhD supervision in applications in data science to the social world
- teach "Data for Data Scientists", "Quantitative Text Analysis", " Computer Programming", " Introduction to Machine Learning", among others
- R package author (quanteda and related packages)

THE PROBLEM

The problem: lots of MWEs in domain-specific text

Phrase	German equivalent	Left prefers to
Income tax	Einkommensteuer	Raise
Payroll tax	Lohnsteuer	Raise
Sales tax	Umsatzsteuer	Lower
Value added tax	Mehrwertsteuer	Lower
Flat tax	Abgeltungssteuer	Abolish
Carbon tax	Kohlenstoffsteuer	Raise
Inheritance tax	Erbschaftssteuer	Raise
Capital gains tax	Wertzuwachssteuer	Raise
Corporate tax	Körperschaftssteuer	Raise
Property tax	Vermögenssteuer	Raise
Real estate transfer tax	Grunderwerbsteuer	Raise
Motor vehicle tax	Kraftfahrzeugsteuer	Not mention
Employer's National Insurance Contribution	Sozialversicherungsbeiträge	Raise

Table 1: Tax-related multi-word expressions in English and German.
Domain-specific terminology is rife with MWEs - up to 40%

a worst case

Rindfleischetikettierungsüberwachungsaufgabenübertragungsgesetz

a worst case

Rindfleischetikettierungsüberwachungsaufgabenübertragungsgesetz
meaning: "the law concerning the delegation of duties for the supervision of cattle marking and the labelling of beef"

even worse?

Austrittsvertragsratifizierungsgesetzentwurf

even worse?

Austrittsvertragsratifizierungsgesetzentwurf
meaning: "withdrawal agreement bill"

Especially true in politics (and economics)

	Robertson			Safire		
	N	\%	Examples	N	\%	Examples
Unigrams	300	54\%	Watergate	645	33\%	bork
Bigrams	199	36\%		806	42\%	
A-N	116		agrarian parties	338		Young Turks
$\mathrm{N}-\mathrm{N}$	69		cabinet government	314		gunboat diplomacy
Other	14		politically correct	154 *		bridge building
Trigrams	38	7\%		236	12\%	
A-A-N	3		single transferable vote	8		redheaded Eskimo bill
A-N-N	6		additional member system	10		yellow dog democrat
$\mathrm{N}-\mathrm{A}-\mathrm{N}$	0		--	1		illegitimi non carborundum
$\mathrm{N}-\mathrm{N}-\mathrm{N}$	2		war crimes tribunals	6		Rose Garden rubbish
N-P-N	13		equality of opportunity	65		milk for Hottentots
Other	11		raison de guerre	13		buck stops here
> 3-grams	16		vanguard of the proletariat	247	13\%	chicken in every pot
Total entries	553	100\%		1934	100\%	

Sources: Robertson, David. 2004. The Routledge dictionary of politics. Routledge;
Safire, William. 2008. Safires political dictionary. Oxford University Press.

Problem: BOW is wrong

- violates conditional independence assumption
- probability of observing one word significantly increases the probability of observing a second
- causes underestimation of uncertainty
- conflates different feature associations
- national, insurance, security, socialist or national_insurance, national_security, National_Socialist?
- double weighting affects averaging-based models for two-word terms, such as European Union

How to solve this?

1. NOT: "simply include all ngrams"

How to solve this?

1. NOT: "simply include all ngrams"
2. Determine a functional method to detect MWEs in political corpora

- through association measures
- through filtering: stopwords, parts-of-speech (POS)
- predictive methods, against human annotation of two baseline corpora

How to solve this?

1. NOT: "simply include all ngrams"
2. Determine a functional method to detect MWEs in political corpora

- through association measures
- through filtering: stopwords, parts-of-speech (POS)
- predictive methods, against human annotation of two baseline corpora

3. Apply the method to a massive set of political text, to develop a (comprehensive) standard list

How to solve this?

1. NOT: "simply include all ngrams"
2. Determine a functional method to detect MWEs in political corpora

- through association measures
- through filtering: stopwords, parts-of-speech (POS)
- predictive methods, against human annotation of two baseline corpora

3. Apply the method to a massive set of political text, to develop a (comprehensive) standard list
4. Use the MWEs instead of unigram tokenization in applications

How to solve this?

1. NOT: "simply include all ngrams"
2. Determine a functional method to detect MWEs in political corpora

- through association measures
- through filtering: stopwords, parts-of-speech (POS)
- predictive methods, against human annotation of two baseline corpora

3. Apply the method to a massive set of political text, to develop a (comprehensive) standard list
4. Use the MWEs instead of unigram tokenization in applications
5. Show it makes a difference.

WHAT ARE (MEANINGFUL) MWEs?

Defining a "collocation"

There are both linguistic and statistical criteria.

- Linguistic: MWE is a meaningful sequence of words that can have a meaning as a unit, rather than a string of individual words
- Statistical: a series of tokens whose collocated occurrence is not by chance
Here, however, we focus on statistical criteria for MWE candidate detection, and linguistic criteria for filtering meaningful MWEs being MWE
- In essence, based on co-occurrence of words: a sequence of K successive words is a candidate for MWE if occurs sufficiently often in the corpus
- Not sufficient, but necessary for an expression being MWE in the linguistic sense

Taxonomy of MWEs (Sag et al 2002)

Category	Subcategory	Examples
Fixed expressions	Proper names Foreign terms	Labour Party, New York City coup d'état, habeas corpus banana republic, off the record Semi-fixed expressions
Fixed phrases Idioms Compound nominals attorney general, Member of Parliament child benefit, alternative minimum tax		

Table 2: Examples of political MWEs according to Sag et al. (2002)'s typology.

Define: "meaningful"

- fixedness of a phrase: hung parliament qualifies because we do not say "a parliament that is hung"
- orthographic lexicalisation: some words have taken the "German route", e.g. "dataset" indicates that data set is a MWE
- non-compositionality: when you cannot detect a phrases meaning from a simple combination of the meaning of its component words, e.g. hanging chad, first lady
- proper nouns: almost always indicate MWEs, such as Native American or Supreme Court

Statistical definition of a "collocation"

For a given value of K, turn the corpus into a dataset of observed K-word sequences.

1. For each candidate expression in turn (e.g. every K-word sequence which appears in the corpus), calculate the value of some statistic θ defined in such a way that higher values of θ are regarded as stronger evidence that the expression is MWE
2. Order candidate expressions by their values of θ
3. Make decisions about which expressions will be treated as MWEs, e.g. all above some cut-off for θ or (more likely) human review and decision-making
4. Treat selected expressions as single words in subsequent text analysis

Statistical definition of a "collocation" (cont)

For expressions of different lengths, start with some maximum value $K=K_{\text {max }}$ and proceed toward smaller K. In other words, a K-word expression declared to be MWE is treated as a single word when we examine ($K-1$)-word expressions, and thus in effect removed from consideration.

How to choose θ

The main focus of the paper, however, is on choosing the statistic θ.

- Many possibilities have been proposed in the literature, but not always considered systematically, from statistical first principles
- we argue that this is best done drawing on some general ideas from models for categorical data
- a statistical definition of an MWE can be given in terms of a single quantity, the highest-order interaction parameter in a saturated loglinear model for a K-way contingency table defined by the appearances of the candidate expression and its sub-expressions in the corpus
- This parameter (λ) can itself be used as a statistic θ

DETECTING MWEs

Contingency tables for bigrams

In very basic terms, for bigrams only: tabulate every token against every other token as pairs, and compute for each pair:

	token2	\neg token2	Totals
token1	n_{11}	n_{12}	$n_{1 p}$
ᄀtoken1	n_{21}	n_{22}	$n_{1 p}$
Totals	$n_{p 1}$	$n_{p 2}$	$n_{p p}$

(Previous) statistical association measures

where $m_{i j}$ represents the cell frequency expected according to independence:
G^{2} likelihood ratio statistic (Dunning 1993), computed as:

$$
\begin{equation*}
2 * \sum_{i} \sum_{j}\left(n_{i j} * \log \frac{n_{i j}}{m_{i j}}\right) \tag{1}
\end{equation*}
$$

χ^{2} Pearson's χ^{2} statistic, computed as:

$$
\begin{equation*}
\sum_{i} \sum_{j} \frac{\left(n_{i j}-m_{i j}\right)^{2}}{m_{i j}} \tag{2}
\end{equation*}
$$

Statistical association measures (cont.)

pmi point-wise mutual information score, computed as $\log n_{11} / m_{11}$
dice the Dice coefficient, computed as

$$
\begin{equation*}
\frac{n_{11}}{n_{1 .}+n_{.1}} \tag{3}
\end{equation*}
$$

POS filtering

- With the exception of some middle-word prepositions, we removed all MWEs containing stopwords (about 80\% in our applicaitons)

POS filtering

- With the exception of some middle-word prepositions, we removed all MWEs containing stopwords (about 80\% in our applicaitons)
- Justeson and Katz (1995) found that the following parts of speech contained relevant MWEs:
- bigram MWEs: NOUN-NOUN and ADJECTIVE-NOUN
- trigram MWEs: N-N-N, ADJ-ADJ-N, ADJ-N-N, N-ADJ-N, and N-PREP-N
- we also included all exclusively NP (proper noun) MWEs, like Scottish National Party
- Note that advanced taggers can also identify named entities and noun phrases (e.g. spacy)

Our implementation

quanteda: :textstat_collocations()

- sliding window of size n is used to scan the token sequences.

These are tabulated (parallelized), and 0.5 added to counts as continuity correction factor

- uses a bitwise encoding method:

For an n-gram $X_{1}, X_{2}, \ldots, X_{n}$, if $n=3$, we use $m_{j_{1} \ldots j_{K}}, K=3$ to denote the count of the trigram
$X_{1}=x_{1} \wedge X_{2}=x_{2} \wedge X_{3}=x_{3}$. $\dot{j}_{i}=1$ if $X_{i}=x_{i}$, otherwise $j_{i}=0$

- Example:
- m_{111} count $X_{1}=$ United $\wedge X_{2}=$ State $\wedge X_{3}=$ Congress
- m_{010} counts $X_{1} \neq$ United $\wedge X_{2}=$ State $\wedge X_{3} \neq$ Congress

Our implementation (cont.)

So λ can be expressed as:

$$
\begin{equation*}
\lambda=\sum_{i=1}^{K}(-1)^{K-b_{j_{1} \ldots j_{K}}} * \log m_{j_{1} \ldots j_{K}} \tag{4}
\end{equation*}
$$

Details: $K=2$

Suppose we examine a corpus of text which has been turned into a dataset of observed K-word sequences $\mathbf{z}_{1}, \ldots, \mathbf{z}_{N *}$.

Our target expression is $\mathbf{x}=\left(x_{1}, x_{2}\right)$, and the comparisons between \mathbf{x} and the sequences \mathbf{z}_{j} observed in the corpus are summarised in a 2×2 contingency table.

Denote the dimensions of the table so that the probabilities p_{i} are written as $p_{c_{1} c_{2}}$ for $c_{1}, c_{2}=0,1$.

These are the probabilities that neither word of a \mathbf{z}_{j} matches the corresponding word of $\mathbf{x}=\left(x_{1}, x_{2}\right)$ (probability $\left.p_{00}\right)$, the first word matches but the second does not $\left(p_{10}\right)$, the second word matches but the first does not (p_{01}), and that an observed expression matches the target exactly $\left(p_{11}\right)$.

Details: $K=2$ (cont.)

The log-linear formulation can be written as

$$
\begin{equation*}
\log p_{c_{1} c_{2}}=\lambda_{0}+\lambda_{1} I\left(c_{1}=1\right)+\lambda_{2} I\left(c_{2}=1\right)+\lambda I\left(c_{1} c_{2}=1\right) \tag{5}
\end{equation*}
$$

where $\lambda=\log \left[\left(p_{00} p_{11}\right) /\left(p_{01} p_{10}\right)\right]$ is the log odds ratio (log-OR) which desctribes the association between the two dimensions of the table.
$\lambda=0$ if the words x_{1} and x_{2} occur independently in the corpus as first and second words of two-word sequences

By contrast, $\lambda>0$ if the words x_{1} and x_{2} occur together (and in this order) more often than would be expected.

POS filtering and expectations of meaningful MWEs

- With the exception of some middle-word prepositions, we removed all MWEs containing stopwords (about 80% in our applicaitons)

POS filtering and expectations of meaningful MWEs

- With the exception of some middle-word prepositions, we removed all MWEs containing stopwords (about 80% in our applicaitons)
- Justeson and Katz (1995) found that the following parts of speech contained relevant MWEs:
- bigram MWEs: NOUN-NOUN and ADJECTIVE-NOUN
- trigram MWEs: N-N-N, ADJ-ADJ-N, ADJ-N-N, N-ADJ-N, and N-PREP-N
- we also included all exclusively NP (proper noun) MWEs, like Scottish National Party

POS filtering and expectations of meaningful MWEs

- With the exception of some middle-word prepositions, we removed all MWEs containing stopwords (about 80% in our applicaitons)
- Justeson and Katz (1995) found that the following parts of speech contained relevant MWEs:
- bigram MWEs: NOUN-NOUN and ADJECTIVE-NOUN
- trigram MWEs: N-N-N, ADJ-ADJ-N, ADJ-N-N, N-ADJ-N, and N-PREP-N
- we also included all exclusively NP (proper noun) MWEs, like Scottish National Party
- we tagged the text prior to tokenization, so that the tagger could use context

POS filtering and expectations of meaningful MWEs

- With the exception of some middle-word prepositions, we removed all MWEs containing stopwords (about 80% in our applicaitons)
- Justeson and Katz (1995) found that the following parts of speech contained relevant MWEs:
- bigram MWEs: NOUN-NOUN and ADJECTIVE-NOUN
- trigram MWEs: N-N-N, ADJ-ADJ-N, ADJ-N-N, N-ADJ-N, and N-PREP-N
- we also included all exclusively NP (proper noun) MWEs, like Scottish National Party
- we tagged the text prior to tokenization, so that the tagger could use context
- note: the tagger is often wrong

```
library("quanteda")
data(data\_corpus\_sotu, package = "quanteda.corpora")
toks <- tokens(data\_corpus\_sotu) %>%
    tokens\_remove("\\p{P}", padding = TRUE, valuetype = "regex") %>%
    tokens\_remove(stopwords("en"), padding = TRUE)
colls <- textstat\_collocations(toks, size = 2)
head(colls, 10)
collocation count count_nested length lambda z
1 united states 4811 0 2 9.533739 161.26344
2 last year 575 0 2 4.833398 98.77367
3 last session 427 0 2 6.629301 95.14509
4 fiscal year 840
5 federal government 477
6 american people 438
7 june 30 324
8 health care 237
9 social security 226
10 annual message 200
```

library("spacyr")
toks2 <- spacy_parse(data_corpus_sotu) $\%>\%$
\quad as.tokens(include_pos = "pos") $\%>\%$
tokens_select("/(NOUN|ADJ) $\$$ ", valuetype = "regex", padding = TRUE)
colls2 <- textstat_collocations(toks2, size = 2)
head(colls2, 15)
collocation count count_nested length lambda z

1	last/adj year/noun	606	0	2	5.065243	103.7828
2	last/adj session/noun	425	0	2	6.850330	96.5312
3	FISCAL/adj YEAR/noun	828	0	2	7.835043	94.4376
4	american/adj people/noun	437	0	2	4.749478	86.5269
5	HEALTH/noun CARE/noun	238	0	2	7.516710	84.2561
6	PUBLIC/adj DEBT/noun	284	0	2	6.084872	79.6998
7	ANNUAL/adj MESSAGE/noun	199	0	27.985613	79.1101	
8	past/adj year/noun	316	0	2	5.716268	78.4098
9	PUBLIC/adj LANDS/noun	235	0	2	5.912245	72.6576
10	fellow/adj citizens/noun	159	0	2	7.157765	62.4847
11	last/adj annual/adj	158	0	2	5.842831	61.0288
12	LOCAL/adj GOVERNMENTS/noun	123	0	2	6.314859	60.2746
13	INDIAN/adj TRIBES/noun	93	0	2	7.949873	58.7688
14	favorable/adj consideration/noun	106	0	2	6.914765	57.2924
15	ECONOMIC/adj GROWTH/noun	114	0	2	6.157860	57.0053

Next steps

- Massive mining of political corpora
- Human verification of scored and filtered MWEs
- Payoff: domain-specific MWE "dictionaries" for pre-processing texts; OR
- Verified method for detecting MWEs for specific (new) domains

Initial corpora we've mined

Corpus	Description	Documents	Total words
US Presidential	Inaugural addresses 1789-2013; State of the Union addresses since 1985- 2015	88	314,031
UK Manifestos	UK Manifestos 1945-2010		
Irish Manifestos	Irish Manifestos 1992-2004	115	$1,296,228$
US Manifestos	US Party Platforms 1844-2004	30	384,757
UK Parliament	Hansard, from Eggers and Spirling (2014)	$1,264,675$	$282,513,998$
Irish Parliament	Full text 1919-2013, from Herzog and Mikhaylov (2013)	$4,443,714$	$484,101,243$
Amicus briefs	Grutter/Gratz v. Bollinger, from Evans et al. (2007)	102	602,469
Supreme Court Briefs	All briefs 1948-2012; from Sim, Rout- ledge and Smith (2015)	40,672	$396,744,956$
Supreme Court opinions	Opinions 1948-2012 (Sim, Routledge and Smith, 2015)	8,486	$65,248,384$
Total		$5,757,970$	$1,231,949,784$

Table 5: Description of corpora analyzed for collocations.

POS and stopword filtering on US presidential corpus

POS Pattern	Examples
US Presidential Speeches	
middle class, economic growth, nuclear weapon(s), national security, natural gas, private	
NP-NP	sector, public transport, human rights
N-N	United States, Federal Government, Vice President, Al Qaida, Middle East health care, health insurance, tax credit, child care, climate change, minimum wage, trade union(s), arms control chief executive (A-A), clean energy (V-N), equal rights (V-N)*
Other	private health insurance, free trade agreement, political action committee(s)
A-N-N	Members of Congress, war on terror, rule of law, violence against women gross national product, Native American reservations, alternative minimum tax, rural A-A-N
N-N-N	health care system, social security benefits, capital gains tax, third world countries
NP-NP-NP	United States Congress, Strategic Defense Initiative, New York City
N-A-N	--
Other	research and development, step by step (V-P-N), weapons of mass (N-P-A), office of the

USING MWEs

PRACTICAL DELIVERY:

 MWEs for the masses
Deliverable: Domain-specific dictionaries

From mining, filtering, and verifying numerous domain-specific corpora, not just politics.

- Examples: Legal, business, economic, finance, medicine
- Generally no penalties for being inclusive: "stare decisis" will not occur in non-legal texts, for instance, and therefore will not adversely affect results.

Deliverable: Domain-specific dictionaries

From mining, filtering, and verifying numerous domain-specific corpora, not just politics.

- Examples: Legal, business, economic, finance, medicine
- Generally no penalties for being inclusive: "stare decisis" will not occur in non-legal texts, for instance, and therefore will not adversely affect results.
Very rarely do "false positive" collocations occur, such as:
- The first lady, was happy over the successful Mars landing.
- She was the first lady to make a successful Mars landing.
- And any "damage" from false positives likely to be less than the damage from ignoring MWEs

Tools (implementing the method)

R package quanteda:

- textstat_collocations()
- textstat_compound()
- dictionary and "lookup" methods optimized for MWEs
- all parallelized (in C++)
- integration with NLP tools such as spacy

