Reducing Dimensions in a Large TVP-VAR

Eric Eisenstat, University of Queensland Joshua Chan, Purdue University Rodney Strachan, University of Queensland

WU 2018

Chan, Eisenstat, Strachan () Reducing Dimensions in a Large TVP-VAR

- Bayesian VARs have been getting larger
 - Improved forecasts (see, e.g., Pirschel and Wolters (2018))
 - Avoid (mitigate) problems with interpreting impulse responses
 - Avoid (mitigate) omitted variable bias
 - Banbura, Giannone and Reichlin (2010), Carriero, Clark and Marcellino (2011), Carriero, Kapetanios and Marcellino (2009), Giannone, Lenza, Momferatou and Onorante (2010), Koop (2011)
- VARs have become more flexible (TVP-VAR)
 - Capture evolution of the economy
 - Cogley and Sargent (2005), Cogley, Morozov and Sargent, (2005), Primiceri (2005), Koop, Leon-Gonzalez and Strachan (2009), Canova and Forero (2012).

.

- Large TVP-VARs seem a natural next step
 - A significant impediment to employing larger TVP-VARs is dimension
 - With more variables (N), VAR model dimensions grow at $O(N^2)$
 - Depending upon the correlation structure of the states, with more variables (N), TVP VAR model dimensions grow at between $O(N^2)$ and $O(N^4)$
 - Overparameterization leads to poor estimation and inference (e.g., wide error bands on impulse response functions)
 - Higher dimensions complicate (e.g., slow) computation

Large VARs and TVP-VARs

Chan, Eisenstat, Strachan ()

Reducing Dimensions in a Large TVP-VAR

WU 2018 4 / 42

- Strategies to reduce the dimensions but maintain the full structure are an active area of research ... but progress has been slow:
 - Koop and Korobilis (2013) use forgetting factors (N = 3, 7, 25)
 - Imposes a tight structure on the autocorrelations of filtered estimates
 - They use the Kalman filter subject to Sims' critique of Cogley and Sargent (2001)
 - Excellent forecasting performance
 - Does not provide a formal inferential framework
 - Koop and Korobilis (forthcoming) use compressed VARs (N = 7, 19, 129)

- Develop a TVP-VAR that uses a reduced number of states but preserves (potentially) the full TVP-VAR
- We impose rank reduction on the covariance matrix for the state equations, as suggested by the data
 - In doing so, we generalize the centering and parameter expansion approach of Frühwirth-Schnatter and Wagner (2010)
 - An interpretation of our model specification is that we use a factor structure for the states

• Demonstrate increased precision in estimating time varying parameters

For an N vector

$$y_t = (y_{1,t}, y_{2,t}, \dots, y_{N,t})' \quad (N \times 1)$$

the standard TVP-VAR has the form

$$y_{t} = \mu_{t} + \Pi_{1,t} y_{t-1} + \Pi_{2,t} y_{t-2} + \nu_{t}$$
$$E \left(\nu_{t} \nu_{t}' \right) = \left(A_{0,t} \right)^{-1} \Sigma_{t} \left(A_{0,t} \right)^{-1'}$$

• The structural form (the TVP-SVAR) measurement equation can be written as

$$\begin{aligned} \mathsf{A}_{0,t} \mathsf{y}_t &= \mu_t + \mathsf{A}_{1,t} \mathsf{y}_{t-1} + \mathsf{A}_{2,t} \mathsf{y}_{t-2} + \varepsilon_t \\ \varepsilon_t &= \mathsf{A}_{0,t} \nu_t \qquad \mathsf{E}\left(\varepsilon_t \varepsilon_t'\right) = \Sigma_t \end{aligned}$$

Why change from the VAR to SVAR?

• For the TVP-VAR, estimation using a Gibbs sampler follows

$$\begin{aligned} \Pi_{i,t} | A_{o,t}, \Sigma_t \\ A_{o,t} | \Pi_{i,t}, \Sigma_t \\ \Sigma_t | \Pi_{i,t}, A_{o,t}, \end{aligned}$$

- However, the relationship between $\Pi_{i,t}$ and $A_{o,t}$ implies they are highly correlated the Markov chain will be less efficient than it could be
- For the TVP-SVAR, estimation using a Gibbs sampler follows

$$\begin{array}{l} A_{j,t} | \Sigma_t \\ \Sigma_t | A_{j,t} \end{array}$$

• The *A_{j,t}* are all drawn in one single block leading to a more efficient Markov chain

In structural form the TVP-SVAR measurement equation can be written as

$$y_t = (y_{1,t}, y_{2,t}, \dots, y_{N,t})' \quad (N \times 1)$$

$$\begin{array}{rcl} A_{0,t}y_t &=& \mu_t + A_{1,t}y_{t-1} + A_{2,t}y_{t-2} + \varepsilon_t \\ A_{0,t} &=& I - A_{0,t}^* \end{array}$$

$$y_{t} = \mu_{t} + A_{0,t}^{*} y_{t} + A_{1,t} y_{t-1} + A_{2,t} y_{t-2} + \varepsilon_{t}$$
$$\varepsilon_{t} \sim \mathcal{N}(0, \Sigma_{t}) \qquad \Sigma_{t} = diag\left(e^{h_{1,t}}, e^{h_{2,t}}, \dots, e^{h_{\mathcal{N},t}}\right)$$

The TVP-SVAR can then be written in the more familiar regression form as

$$y_{t} = \mu_{t} + A_{0,t}^{*}y_{t} + A_{1,t}y_{t-1} + A_{2,t}y_{t-2} + \varepsilon_{t}$$

or
$$y_{t} = x_{t}\alpha_{t} + \varepsilon_{t} \quad \varepsilon_{t} \sim N(0, \Sigma_{t})$$

$$\alpha_{t} = \alpha_{t-1} + \eta_{t} \quad \eta_{t} \sim N(0, Q)$$

• The $(k \times 1)$ vector α_t has error covariance matrix Q

- The matrix Q is often specified as full or diagonal
- Bubbling away in the background in the literature have been discussions around the form of Q

$$y_{t} = x_{t}\alpha_{t} + \varepsilon_{t} \quad \varepsilon_{t} \sim N(0, \Sigma_{t})$$
$$\alpha_{t} = \alpha_{t-1} + \eta_{t} \quad \eta_{t} \sim N(0, Q)$$

- With one observation per state, the correlation structure implied by the state equation allows us to estimate α_t
- To see this, stack observations and rewrite the state space model as

$$y = X\alpha + \varepsilon$$
 and $R\alpha = \gamma + \eta$

such that

$$lpha \sim N\left(R^{-1}\gamma, V_{lpha}
ight) \quad V_{lpha} = R^{-1}\left(I_T \otimes Q
ight)\left(R^{-1}
ight)'$$

• If Q = I, then $V_{\alpha,ij} = \min{\{i,j\}}$.

$$\alpha \sim N\left(R^{-1}\gamma, V_{\alpha}\right) \quad V_{\alpha} = R^{-1}\left(I_{T} \otimes Q\right)\left(R^{-1}\right)'$$

- If all states were independent, i.e., $R = I_T$ and $Q = I_k$ so $V_{\alpha} = I$, then the states are independent and estimation would be very poor
- Through R and Q, states are allowed to be correlated as V_{α} is a full psd matrix (as in Cogley and Sargent).
 - Information in the data is shared among all states: the higher the correlation the better the transmission of information
- If V_{α} has reduced rank because Q has reduced rank, there is perfect correlation, such that information in the data is *perfectly* transmitted among states

$$y_t = x_t \alpha_t + \varepsilon_t \quad \varepsilon_t \sim N(0, \Sigma_t)$$

$$\alpha_t = \alpha_{t-1} + \eta_t \quad \varepsilon_t \sim N(0, Q)$$

• With N = 3 variables and 2 lags, α_t is $(k \times 1)$ where k = 21

- ullet Cogley and Sargent use a full PSD matrix for the 21 imes21 matrix Q
- The states α_t are very highly correlated such that Q looks to have reduced rank

An observation by Cogley and Sargent (cont.)

Chan, Eisenstat, Strachan () Reducing Dimensions in a Large TVP-VAR WU

Reduced rank Q

Take the singular value decomposition of Q:

$$Q = U\Lambda U' \qquad U' U = I_k \text{ and } \Lambda = diag(\lambda_1, \dots, \lambda_k)$$
$$U \in O(k) \equiv \{U : U' U = I_k\}$$
$$\lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_k \ge 0$$

If rank (Q) = r < k then λ_{r+1} = λ_{r+2} = ··· = λ_k = 0
Partition U and Λ conformably as U = [U₁ U₂] and

$$\Lambda = \left[\begin{array}{cc} \Lambda_1 & 0 \\ 0 & \Lambda_2 \end{array} \right] = \left[\begin{array}{cc} \Lambda_1 & 0 \\ 0 & 0 \end{array} \right]$$

then

$$Q = U\Lambda U' = \bigcup_{k \times rr \times r} \bigwedge_{r \times k} U'_1$$

Begin with

$$y_{t} = x_{t}\alpha_{t}^{*} + \varepsilon_{t} \quad \varepsilon_{t} \sim N(0, \Sigma_{t})$$
$$\alpha_{t}^{*} = \alpha_{t-1}^{*} + \eta_{t} \quad \eta_{t} \sim N(0, Q)$$

- We will assume perfectly correlated states and so Q has reduced rank $r_{\alpha} < k$
 - For the application in the paper, k = 570 and $r_{\alpha} = 4$
- We will use recentering and parameter expansions to obtain a readily computable form

Frühwirth-Schnatter and Wagner (2010) use a scalar state α_t^*

$$\begin{aligned} y_{t} &= x_{t}\alpha_{t}^{*} + \varepsilon_{t} \quad \varepsilon_{t} \sim \mathcal{N}\left(0, \Sigma_{t}\right) \\ \alpha_{t}^{*} &= \alpha_{t-1}^{*} + \eta_{t} \quad \eta_{t} \sim \mathcal{N}\left(0, \sigma\right) \end{aligned}$$

• Recenter by

$$\alpha_t^* = \alpha + \sqrt{\sigma} \widetilde{\alpha}_t$$

such that

$$y_{t} = x_{t}\alpha + x_{t}\sqrt{\sigma}\widetilde{\alpha}_{t} + \varepsilon_{t}$$

$$\widetilde{\alpha}_{t} = \widetilde{\alpha}_{t-1} + \widetilde{z}_{t} \quad \widetilde{z}_{t} \sim N(0, 1)$$

$$\widetilde{\alpha}_{0} = 0$$

Generalized Recentering

Begin with

$$y_{t} = x_{t}\alpha_{t}^{*} + \varepsilon_{t} \quad \varepsilon_{t} \sim N(0, \Sigma_{t})$$
$$\alpha_{t}^{*} = \alpha_{t-1}^{*} + \eta_{t} \quad \eta_{t} \sim N(0, Q)$$

• Recenter by (generalising Frühwirth-Schnatter and Wagner (2010))

 $\alpha_t^* = \alpha + Q^{1/2} \widetilde{\alpha}_t$

such that

$$y_t = x_t \alpha + x_t Q^{1/2} \widetilde{\alpha}_t + \varepsilon_t$$

$$\widetilde{\alpha}_t = \widetilde{\alpha}_{t-1} + \widetilde{z}_t \quad \widetilde{z}_t \sim N(0, I_k)$$

$$\widetilde{\alpha}_0 = 0$$

★ ∃ ▶ ★

- If $Q=U_1\Lambda_1U_1'$ then we can write $Q^{1/2}=U_1\Lambda_1^{1/2}U_1'$
- Using $Q^{1/2} = U_1 \Lambda_1^{1/2} U_1'$ rewrite the model as

$$y_t = x_t \alpha + x_t U_1 \Lambda_1^{1/2} U_1' \widetilde{\alpha}_t + \varepsilon_t$$
$$= x_t \alpha + x_t U_1 \Lambda_1^{1/2} \alpha_t + \varepsilon_t$$

$$U_{1}'\widetilde{\alpha}_{t} = U_{1}'\widetilde{\alpha}_{t-1} + U_{1}'\widetilde{z}_{t} \quad U_{1}'\widetilde{z}_{t} \sim N(0, I_{r_{\alpha}})$$
$$\alpha_{t} = U_{1}'\widetilde{\alpha}_{t} \text{ and } z_{t} = U_{1}'\widetilde{z}_{t}$$

Then we have

$$y_t = x_t \alpha + x_t U_1 \Lambda_1^{1/2} \alpha_t + \varepsilon_t$$
$$\alpha_t = \alpha_{t-1} + z_t \quad z_t \sim N(0, I_{r_\alpha})$$

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Removing the sign in recentering

Frühwirth-Schnatter and Wagner (2010) use a scalar state α_t^*

$$y_{t} = x_{t}\alpha_{t}^{*} + \varepsilon_{t} \quad \varepsilon_{t} \sim N(0, \Sigma_{t})$$
$$\alpha_{t}^{*} = \alpha_{t-1}^{*} + \eta_{t} \quad \eta_{t} \sim N(0, \sigma)$$

Recenter by

$$\alpha_t^* = \alpha + \sqrt{\sigma} \widetilde{\alpha}_t$$

• Let
$$\iota \in \{-1,1\}$$
, $lpha_t = \iota \widetilde{lpha}_t$ and $a = \iota \sqrt{\sigma}$

• The measurement and state equations become

$$y_{t} = x_{t}\alpha + x_{t}a\alpha_{t} + \varepsilon_{t}$$

$$\alpha_{t} = \alpha_{t-1} + z_{t} \quad z_{t} \sim N(0, 1)$$

$$\alpha_{0} = 0$$

Where Frühwirth-Schnatter and Wagner introduce ι , we introduce C

• Let $C \in O(r_{\alpha})$ such that $C'C = I_{r_{\alpha}}$ as

$$y_{t} = x_{t}\alpha + x_{t}U_{1}\Lambda_{1}^{1/2}\alpha_{t} + \varepsilon_{t}$$

$$= x_{t}\alpha + x_{t}U_{1}\Lambda_{1}^{1/2}C'C\alpha_{t} + \varepsilon_{t}$$

$$= x_{t}\alpha + x_{t}A\alpha_{t} + \varepsilon_{t}$$

$$C\alpha_{t} = C\alpha_{t-1} + Cz_{t} \quad Cz_{t} \sim N(0, I_{r_{\alpha}})$$

$$\alpha_{t} = \alpha_{t-1} + z_{t} \quad z_{t} \sim N(0, I_{r_{\alpha}})$$

where

$$A = U_1 \Lambda_1^{1/2} C'$$
 and $\alpha_t = C \alpha_t$

The final model has a dynamic factor structure

$$y_{t} = x_{t}\alpha + x_{t}A\alpha_{t} + \varepsilon_{t} \quad \varepsilon_{t} \sim N(0, \Sigma_{t})$$

$$\alpha_{t} = \alpha_{t-1} + z_{t} \quad z_{t} \sim N(0, I_{r_{\alpha}}) \quad \alpha_{0} = 0$$

$$\alpha_{t}^{*} = \alpha + A\alpha_{t}$$

- This model is fully identified up to orthogonal rotations of A and α_t
- The usual identifying restrictions are not imposed (or required) ensuring order invariance
- Computation is fast and efficient

A fuller specification with stochastic volatility

We allow for stochastic volatility in a standard way

$$y_t = x_t \alpha_t^* + \varepsilon_t \quad \varepsilon_t \sim N(0, \Sigma_t)$$

$$\Sigma_t = diag\left(e^{h_{1,t}^*}, e^{h_{2,t}^*}, \dots, e^{h_{N,t}^*}\right)$$

$$h_t^* = \left(h_{1,t}^*, h_{2,t}^*, \dots, h_{n,t}^*\right)'$$

• The state equations:

$$\begin{aligned} \alpha_t^* &= \alpha_{t-1}^* + \eta_t^* \quad \eta_t^* \sim N(0, Q) \\ h_t^* &= h_{t-1}^* + \nu_t \quad \nu_t \sim N(0, Q_h) \end{aligned}$$

We consider three specifications that reduce dimensions

Specification 1:

• We allow for a small range of correlation structures

$$y_{t} = x_{t}\alpha_{t}^{*} + \varepsilon_{t} \quad \varepsilon_{t} \sim N(0, \Sigma_{t})$$

$$\alpha_{t}^{*} = \alpha_{t-1}^{*} + \eta_{t} \quad \eta_{t} \sim N(0, Q)$$

$$h_{t}^{*} = h_{t-1}^{*} + \nu_{t} \quad \nu_{t} \sim N(0, Q_{h})$$

• Reduce errors only in the mean equation

$$y_{t} = x_{t}\alpha + x_{t}A\alpha_{t} + \varepsilon_{t} \quad \varepsilon_{t} \sim N(0, \Sigma_{t})$$

$$\alpha_{t} = \alpha_{t-1} + z_{t} \quad z_{t} \sim N(0, I_{r_{\alpha}}) \quad \alpha_{0} = 0$$

$$h_{t}^{*} = h_{t-1}^{*} + \nu_{t} \quad \nu_{t} \sim N(0, Q_{h})$$

• A is $(k \times r_{\alpha})$

• Reduce errors only in the mean and log variance equation

$$y_{t} = x_{t}\alpha + x_{t}A_{\alpha}\alpha_{t} + \varepsilon_{t} \quad \varepsilon_{t} \sim N(0, \Sigma_{t})$$

$$\alpha_{t} = \alpha_{t-1} + z_{t} \quad z_{t} \sim N(0, I_{r_{\alpha}}) \quad \alpha_{0} = 0$$

$$h_{t}^{*} = h + Q_{h}^{1/2}\tilde{h}_{t} = h + A_{h}h_{t}$$

$$h_{t} = h_{t-1} + z_{t}^{h} \quad z_{t}^{h} \sim N(0, I_{r_{h}})$$

•
$$A_{\alpha}$$
 is $(k \times r_{\alpha})$ and A_h is $(N \times r_h)$

Specification 3:

• Let
$$\theta_t^* = (\alpha_t^*, h_t^*)'$$
 have a full covariance matrix
 $y_t = x_t \alpha_t^* + \varepsilon_t \quad \varepsilon_t \sim N(0, \Sigma_t)$
 $\theta_t^* = \theta_{t-1}^* + \eta_{\theta,t} \quad \eta_{\theta,t} \sim N(0, Q_\theta)$

• Recentering and reducing the rank of Q_{θ}

$$y_{t} = x_{t}\alpha + x_{t}A_{\alpha}\alpha_{t} + \varepsilon_{t} \quad \varepsilon_{t} \sim N(0, \Sigma_{t})$$

$$\theta_{t}^{*} = \theta + Q_{\theta}^{1/2}\widetilde{\theta}_{t} = \theta + A_{\theta}\theta_{t}$$

$$\theta_{t} = \theta_{t-1} + z_{t}^{\theta} \quad z_{t}^{\theta} \sim N(0, I_{r_{\theta}})$$

$$A_{\theta} = \begin{bmatrix} A_{\alpha} \\ A_{h} \end{bmatrix}$$

• A_{θ} is $(k + N) \times r_{\theta}$

 In specification one, the mean equation coefficients [α A] require priors

$$y_t = x_t \alpha + x_t A \alpha_t + \varepsilon_t \quad \varepsilon_t \sim N(0, \Sigma_t)$$

$$\alpha_t = \alpha_{t-1} + z_t \quad z_t \sim N(0, I_{r_\alpha}) \quad \alpha_0 = 0$$

- $a = vec(A) \sim N(0, cI_{(n+k)r})$ which equates to using a Wishart prior for Q for the full rank (r = k) case (generalizing Frühwirth-Schnatter and Wagner (2010))
- For elements of *α* = {*α_j*} we combine SSVS with Minnesota priors as suggested in Korobilis (2013)

- Draws of α , $a_{\alpha} = vec(A_{\alpha})$, h, $a_{h} = vec(A_{h})$, α_{t} and h_{t} (with states for the mixture approximation) are drawn in the established approach for Specifications 1 and 2. All are (conditionally) Gaussian
- For Specification 3, an accept-reject Metrolpolis-Hastings (ARMH) algorithm (Chan and Strachan (2012)) is used for θ_t

Some simple accounting shows the extent of dimension reduction The figures below are all states and all mean parameters in Specification 1

Ν	0	1	2	4	TVP - VAR
3	27	460	587	841	2730
5	70	755	925	1265	8725
10	265	1685	2050	2780	58450
15	585	2890	3575	4945	220425
20	1030	4370	5500	7760	612775

Based upon a $V\!AR\left(2\right)$ with an intercept and T=100

Ν	0	1	2	4	TVP - VAR
3	99.0%	83.2%	78.5%	69.2%	0%
5	99.2%	91.3%	89.4%	85.5%	0%
10	99.5%	97.1%	96.5%	95.2%	0%
15	99.7%	98.7%	98.4%	97.8%	0%
20	99.8%	99.3%	99.1%	98.7%	0%

Based upon a VAR (2) with an intercept and T = 100

- Estimate a TVP VAR with two lags for N = 2 variables
 - k = 11 states in α_t and N = 2 states in h_t
 - $r_{\alpha} = 0, ..., 11, r_{h} = 1, 2 \text{ and } r_{\theta} = 1, ..., 13$
- We estimate the standard TVP VAR and compare to the model with $r_{\alpha} = 11$ (should be the same) and $r_{\alpha} = 3$
 - This implies a (mild) reduction in dimension from 2,937 to 1,144 (61% reduction)

Figure 1: Test example: bivariate (inflation and interest rates) with stationary and demeaned series TVP-VAR (p = 2, so k = 11).

Application: News and non-news shocks

- Estimate the time-varying effects of surprise productivity and news shocks
- TVP SVAR with two lags for N = 15 variables
 - k = 570 parameters in α_t and N = 15 parameters in h_t
 - states: $r_{\alpha} = 0, ..., 570, r_h = 0, ..., 15$ and $r_{\theta} = 0, ..., 585$
- We use Deviance Information Criteria (DIC) to select among the specifications
 - DIC have been shown to perform well for latent variable models, e.g., state space models
- The identification strategy is the same as in Barsky and Sims (2011), with minor modifications for the time-varying parameter context

DICs for models specified with n = 15 and various combinations of r_{α} and r_{h} . All values are relative to the DIC of the constant coefficient model (i.e.

3 states		5 states		7 states			10 states				
r _α	r _h	DIC	r_{α}	<i>r_h</i>	DIC	r_{α}	r _h	DIC	r_{α}	r _h	DIC
3	0	-764	5	0	-766	7	0	-742	10	0	-366
2	1	-771	4	1	-816	6	1	-688	8	2	-486
1	2	-711	3	2	-887	4	3	-892	6	4	-697
0	3	-562	2	3	-851	3	4	-888	5	5	-854
			1	4	-756	1	6	-698	4	6	-876
			0	5	-583	0	7	-565	2	8	-800
									0	10	-545
shared		-770	sha	red	-835	sha	red	-719	sha	red	-418

$$r_{\alpha}=r_{h}=0$$
).

- The preferred model with N = 15 is Specification 2 has DIC = -892 with
 - $r_{\alpha} = 4$ states driving the mean equation coefficients and
 - $r_h = 3$ states driving the volatilities
 - this implies a dimension reduction from 309, 690 to 4, 660 (98.5%)
- The best Specification 3 (shared states) has DIC = -835 with $r_{ heta} = 5$
 - a dimension reduction of 98.5%.
- Specification 1 is not competitive

Figure: Impulse-response functions to news shocks in 1963Q4, 1972Q3, 1981Q2, 1990Q1 and 1998Q4 (mean, and 16-84 percentiles of the posterior distribution) for the n = 15 variables model.

WU 2018 35 / 42

(日) (同) (三) (三)

Figure: Impulse-response functions to non-news shocks in 1963Q4, 1972Q3, 1981Q2, 1990Q1 and 1998Q4 (mean, and 16-84 percentiles of the posterior distribution) for the n = 15 variables model.

Figure: Time-varying responses to non-news and news shocks on impact (mean, and 16-84 percentiles of the posterior distribution) for the n = 15 variables model.

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Figure: Time-varying responses to non-news and news shocks at 40 quarters after impact (mean, and 16-84 percentiles of the posterior distribution) for the n = 15 variables model.

Image: A math and A math and

Figure: Time-varying fractions of forecast error variance explained by non-news and news shocks on impact (mean, and 16-84 percentiles of the posterior distribution) for the n = 15 variables model.

WU 2018 39 / 42

Figure: Time-varying fractions of forecast error variance explained by non-news and news shocks at 40 quarters after impact (mean, and 16-84 percentiles of the posterior distribution) for the n = 15 variables model.

WU 2018 40 / 42

- We find evidence of time variation to both news and non-news shocks
- The long-run impact of news shocks upon real variables (Y, C, I) is declining over time
- The change in the response of the variables to news shocks is less evident than the variation in the level of uncertainty around the response to news shocks

- We have provided a means for estimating large TVP VAR models
- We achieve this by imposing a restriction suggested by the data
- Implementation uses recentering and parameter expansion
- The result is an efficiently computable form