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1

Sparse Factor Analysis Revisited

Generic factor model for fixed number K of latent factors:

Y i | ωi ,B,Σ
ind∼ NG (Bωi ,Σ) , 1 ≤ i ≤ n, (1)

Y Ω

B' 

Ε

G

n =

K G

+

 E = [ε1, . . . , εn]′ with εi
ind∼ NG(0,Σ), Σ = diag{σ2

j }G
j=1

 Ω = [ω1, . . . ,ωn]′: latent factors

 B = (βjk )G,K
j,k=1 : factor loadings
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1

Sparse Factor Analysis Revisited
When ωi ∼ NK (0, IK ), marginally

f (y i | B,Σ) = NG(0,BB′ + Σ), 1 ≤ i ≤ n. (2)

Cov(Y) B
B'

Σ

G

G =

K G

G+

§ Because BB′ = (BP)(BP)′, for any orthogonal matrix P,
likelihood (3) is invariant under factor rotation.

§ Identifiability constraints render responses non-exchangeable.

§ Effective factor cardinality K unknown

Approach A prior on infinite-dimensional loading matrices, which
anchors interpretable factor orientations
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Sparsity Priors and Rotations: Motivation

Btrue
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1

Sparsity Priors and Rotations: Motivation

Btrue SPCA Varimax AFTER SPCA Best Recovered
G
~ = − 319755.9
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1

Our Hierarchical Approach

1. Elements of our prior distribution
Prior on the loading matrix BG×∞

(1a) Spike-and-Slab LASSO Prior

(1b) Indian Buffet Process Prior

Prior on the residual variances Σ = {σ2
j }G

j=1

Independent Inverse Gamma priors IG(η/2, ην/2)

2. Fast Bayesian computation
The EM algorithm

Rotations to sparsity with parameter expansion

6 / 65



1

Elements of the Hierarchical Prior

The matrix Γ = {γjk}G,∞
j,k=1 includes binary allocation indicators that

characterize which features are associated with each response.

π(B|Γ) π(Γ|θ)

... K → ∞ ... K → ∞
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The Spike-and-Slab LASSO Prior
A mixture refinement of the LASSO (Laplace) prior with a mixing

binary indicator γ ∈ {0,1}

π(β | γ) = γLaplace(β | λ1) + (1− γ)Laplace(β | λ0)

λ1 small: to avoid over-shrinkage of large effects

λ0 large: to shrink ignorable coefficients to zero

θ Controls the sparsity, where P(γ = 1 | θ) = θ
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δ− δSpike
λ0 = 3

Slab
λ1 = 0.5

Point-mass spike-and-slab is a limiting case as λ0 →∞
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1

The Penalized Likelihood Perspective

� Conditionally on θ, the prior is an independent product

� Define by β̂ the MAP estimator

β̂ = arg max
β∈Rn

[
−1

2

n∑
i=1

(yi − βi )
2 +

n∑
i=1

penθ(βi )

]
, (4)

with the separable Spike-and-Slab LASSO (SSL) penalty

penθ(βi ) = log [θ Laplace(βi | λ1) + (1− θ)Laplace(βi | λ0)]

 Denote by

p?θ(βi ) =
θLaplace(βi | λ1)

θLaplace(βi | λ1) + (1− θ)Laplace(βi | λ0)

a conditional inclusion probability P(γi = 1 | βi ).
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The Spike-and-Slab LASSO (SSL) Penalty
� The SSL penalty is a smooth mix of two LASSO penalties

−3 −2 −1 0 1 2 3
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−
ρ(

β,
 θ

)

δ− δ

θ = 0.5

λ0 = 5λ0 = 3 λ0 = 10
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The Spike-and-Slab LASSO Shrinkage

The derivative of the penalty determines the amount of shrinkage

∂penθ(βi )

∂|βi |
= −λ?θ(βi )

where
λ?θ(βi ) = p?θ(βi )λ1 + [1− p?θ(βi )]λ0

� The Spike-and-Slab LASSO mode satisfies

β̂i =
(
|yi | − λ?θ(β̂i )

)
+

sign(yi ) (5)

© “Self-adaptive" property of the shrinkage term

� The LASSO mode satisfies

β̂i = (|yi | − λ)+ sign(yi )

§ Constant penalty regardless of the size of |yi |
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“Local/Global" Mode Considerations
� The SSL log-posterior can be multi-modal
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� The log-posterior will be concave and therefore uni-modal if

(λ0 − λ1)2 < 4

§ We are interested in priors that are en-route to the point-mass
mixture prior when λ0 →∞

The condition (5) not sufficient to characterize the global mode.
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Refined Characterization of the Global Mode

The SSL global mode is a thresholding rule and satisfies

β̂j =

{
0 when |yj | ≤ ∆

[|yj | − λ?θ(β̂j )]+sign(yj ) when |yj | > ∆.

where
∆ ∼

√
2 log[1/p?θ(0)] + λ1

The threshold ∆ depends on (λ0, λ1, θ) through

log[1/p?θ(0)] = log
[

1− θ
θ

λ0

λ1
+ 1
]

� β̂ is a blend of hard and soft thresholding

� The selection threshold ∆ drives the properties of the mode
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The Spike-and-Slab LASSO posterior keeps pace with
the global mode!
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The EM Approach to Sparse FA

Goal Find (B,Σ,θ) which is the most likely (a posteriori) to have
generated the data.

parameters of interest: B,Σ and θ

latent variables: Γ and Ω

Chicken If Γ and Ω were known, B,Σ and θ could be easily estimated.

Egg Γ and Ω cannot be inferred unless B,Σ and θ is known.

© Solution: EM algorithm of Dempster, Laird and Rubin (1977)

(E-step) Expectation of the latent data given the current parameters

(M-step) Finding the most likely parameters given the expected
missing data.
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The EM Algorithm for Factor Analysis

The EM algorithm locates posterior modes of

logπ(B,Σ,θ | Y )

iteratively by maximizing the expected augmented log posterior:

Q (B,θ,Σ) = EΓ,Ω|·

logπ

 B,Σ,θ︸ ︷︷ ︸
unknown parameters

,

missing data︷︸︸︷
Γ,Ω | Y︸︷︷︸

observed data




 EΓ,Ω|·(·) denotes the conditional expectation given the observed
data and current parameter estimates at the m-th iteration,

 Dimension of B,Γ,Ω determined by K ?, the order of the
truncated stick-breaking approximation.
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The E-Step
Using current parameters (B,Σ,θ) = (B(m),Σ(m),θ(m)) at m-th iteration

Ω Featurization step: rows of the new features are solutions to
ridge regression of YΣ−1/2 on the rows of Σ−1/2B:

EΩ|·[Ω
′] =

(
B′Σ−1B + IK?

)−1
B′Σ−1Y ′

Smoothness penalty matrix:

Cov Ω|·[ωi ] =
(

B′Σ−1B + IK?

)−1

Γ Variable selection indicators
Mixing proportions when fitting a Laplace mixture

P[γjk = 1|βjk ] =
Laplace(βjk | λ1)θk

Laplace(βjk | λ1)θk + Laplace(βjk | λ0)(1− θk )
,

Adaptive weights determining the amount of penalization

p?jk ≡ P[γjk = 1|βjk , θk ]
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The M-Step
β(m+1) “Adaptive" LASSO computation:

 Denote by y j? =

(
y j

0K?

)
, Ω? =

(
EΩ|·[Ω]

L′
)

, where Cov Ω|·[ωi ] = LL′.

 The j-th row of βj updated as follows:

β
(m+1)
j = arg max

β∈RK?

−||y?j −Ω?βj ||2

2σ(m)2
j

−
K?∑
j=1

λ?jk |βjk |

 ,

where λ?jk = p?jkλ1 + (1− p?jk )λ0

σ
(m+1)
j Easy update conditionally on B(m+1).

θ(m+1) Linear program

arg max
θ


G∑

j=1

K?∑
k=1

[
p?

jk log θk + (1− p?
jk ) log(1− θk )

]
+ (α− 1) log θK?

 ,

subject to θk − θk−1 ≤ 0, 0 ≤ θk ≤ 1.
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Rotational Ambiguity and Parameter Expansion

Local convergence issue exacerbated by strong coupling between Ω and B

Powerful accelerations obtained with parameter expansion

PXL-EM Parameter eXpansion of the Likelihood:

f (y i | ωi ,B,A,Σ)
ind∼ NG(BA−1

L ωi ,Σ), 1 ≤ i ≤ n, (6)

where AL is a lower Cholesky factor of A and

ωi ∼ NK (0,A). (7)

 For each A, we put the SSL prior on B∗ = BA−1
L !!!

 Original model recovered at A0 = IK .

 The prior serves to identify sparse orientations!
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1

The PXL-EM Algorithm
PXL-EM traverses the expanded parameter space, yielding

(Σ(1),θ,B?(1),A(1)︸ ︷︷ ︸
B(1)

) , (Σ(2),θ,B?(2),A(2)︸ ︷︷ ︸
B(2)

) , . . .

which maps onto a trajectory in the original space via

B(k) = B?(k)A(k)
L (8)

E-step Operates in the reduced space, conditional on (B(k),A0)

M-step Operates in the expanded space, yielding sparse B?(k+1) and

A(k+1) =
1
n
〈Ω′Ω〉 =

1
n
〈Ω〉′〈Ω〉+ M(k). (9)

 Upon convergence, 1
n 〈Ω

′Ω〉 = A = A0 = I

 Rotation to sparsity!

 PXL-EM converges at least as fast as EM!
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EM vs PXL-EM: Synthetic Data
 n = 100 observations generated from (1) with G = 2 000

responses and Ktrue = 5 factors.

 Btrue is block-diagonal with nonzero elements equal to 1

 Initialization: B(0) ∼MVN (0, IG, I?K ), Σ(0) = IG.

 We set λ1 = 0.001, λ0 = 5, α = 0.1 and K ? = 20.

True Factor Loadings Theoretical Covariance Matrix

Figure: True factor loadings (left), heat-map of absolute values of the
initialization B(0)

20 / 65



1

EM Trajectory

Initialization: B_0 Iteration 1 Iteration 10 Iteration 100

λ1 = 0.001, λ0 = 5
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1

PXL-EM Trajectory

Initialization Iteration 1 Iteration 10 Convergence

λ1 = 0.001, λ0 = 5
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1

Dynamic Posterior Exploration

 With large differences (λ0 − λ1), the posterior is very spiky

 We consider a sequence of mixture priors and compute a
solution path indexed by λ0 with warm starts
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Dynamic Posterior Exploration in Action

λ1 = 0.001, λ0 = 5
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Dynamic Posterior Exploration in Action

λ1 = 0.001, λ0 = 10
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Dynamic Posterior Exploration in Action

λ1 = 0.001, λ0 = 15
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Dynamic Posterior Exploration in Action

λ1 = 0.001, λ0 = 20
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Dynamic Factor Analysis

25 / 65



1

Dynamic Factor Analysis

High-dimensional multivariate time series Y = [Y 1, . . . ,Y T ] ∈ RP×T .
Evolving covariance patterns over time can be captured with the
following state space model:

Y t = Btωt + εt , εt
ind∼ NP(0,Σt ), (10)

ωt = Φωt−1 + et , et
ind∼ NK (0, σ2

ωIK ). (11)

Stochastic volatility: Σt = diag{σ2
jt}P

j=1

σjt = σjt−1δ/υjt ,

where δ ∈ (0,1] is a discount parameter and where
υjt ∼ B(δηt−1/2, (1− δ)ηt−1/2) with ηt = δηt−1 + 1.

Parameters Φ = φI and σ2
ω are treated as known.

Related procedures: Kaufmann and Schumacher (2013), Del Negro and Otrok
(2008), Nakajima and West (2016), Kastner et al. (2017)
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Dynamic Spike-and-Slab Processes

27 / 65



1

Dynamic Linear Model

A scalar response yt at time t is related to a vector of known
regressors x t = (xt1, . . . , xtp)′ through

yt = x ′tβ
0
t + εt , t = 1, . . . ,T , (12)

where

 β0
t = (β0

t1, . . . , β
0
tp)′ is a time-varying vector of regression

coefficients

 εt ∼ N (0, σ2) is an innovation term at time t

Motivation

By obscuring variable selection uncertainty over time, confining to a
single inferential model may lead to poorer predictive performance,
especially when the effective subset at each time is sparse.
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AR(1) does not capture intermittent zeroes...
Suppose that the true coefficients came from an AR(1) process

β0
tj = φ1β

0
t−1j + νtj , φ1 = 0.98, νtj

iid∼ N [0,10(1− φ2
1)]

and were thresholded to zero if |β0
tj | < 0.5.

Assume T = 100 and p = 6 and obtain yt from (12).
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Ingredients for Dynamic Variable Selection

We design dynamic priors π({βjt}) that are able to capture

(a) Vertical sparsity (in {βjt}p
j=1) : only a small portion of coefficients

at time t is nonzero

(b) Horizontal sparsity (in {βjt}T
t=1): some predictors may not be

important at all times

(c) Smoothness (in {βjt}T
t=1): the active coefficients evolve smoothly

over time

We explore various Dynamic Spike-and-Slab formulations for
this setup.

Related approaches: Bitto and Frühwirth-Schnatter (2018), Nakajima and West
(2016), Kallin and Griffin (2016), Frühwirth-Schnatter and Wagner (2009)
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Spike-and-Slab: Static Variable Selection

Mixtures of two densities for segregating small vs large effects

π(βtj | γtj ) = γtjψ1(βtj ) + (1− γtj )ψ0(βtj ), (13)

 ψ0(βtj ) is a spike centered at zero (small variance)

 ψ1(βtj ) is a slab centered at zero (large variance)

 P(γtj = 1 | θtj ) = θtj
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Why Continuous Spike-and-Slab Priors?

§ The continuous priors put zero mass on exactly sparse vectors

© However, posterior modes can be exactly sparse!

© Due to the continuity, we can implement fast optimization
techniques

I Coordinate-wise optimization (Rockova and George (2015))
I EM (Rockova and George (2014), Ormerod et al. (2015))
I IST, proximal methods...

© Continuous spike-and-slab priors achieve similar theoretical
guarantees as point-mass mixtures (Rockova (2017), Narisetty and He
(2015), Ishwaran and Rao (2005))

? How can we make continuous Spike-and-Slab priors
dynamic?

(a) Induce temporal dependencies in {βtj}
(b) Induce temporal dependencies in {θtj}
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Dynamic Spike-and-Slab Priors

Assume a conditional two-group prior

π(βtj | γtj , βt−1j ) = γtjψ1(βtj | βt−1j ) + (1− γtj )ψ0(βtj ), (14)

where

 ψ0(βtj ) is a spike centered at zero (does not depend on βt−1j )

 ψ1(βtj | βt−1j ) is a slab centered around βt−1j

 P(γtj = 1 | θtj ) = θtj

The prior (14) can be regarded as a “multiple shrinkage prior" with
two shrinkage targets

(1) zero (due to the gravitation of the spike)

(2) previous value βt−1j (due to the gravitation of the slab)
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Popular Spike-and-Slab Choices

 Laplace spike: ψ0(βtj ) = λ0
2 e−|βtj |λ0

© The posterior has spikes at zeros!
© Automatic thresholding of small coefficients through

posterior modes.
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Log Prior (conditionally on beta[t−1]=2)

theta=0.5
beta[t−1]=2
lambda0=5
v1(1−phi^2)=1

 Gaussian slab: defined through a stationary AR(1) process

βtj = φj βt−1j + νtj , νtj ∼ N (0, λ1(1− φ2
j )) (15)

with a stationary distribution N (0, λ1) (when |φj | < 1)

© Induces smoothness of the active coefficients
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Dynamic Priors on Mixing Proportions

Denote by θtj = P(γtj = 1 | θtj ) the random mixing proportion

(1) Logistic-normal AR(1) process (Aitchison and Shen (1980))

Let π(θtj |θt−1j , φ̃j , σ̃) be distributed according to

log
[

θtj

1− θtj

]
= φ̃0j + φ̃1j log

[
θtj−1

1− θtj−1

]
+ ν̃tj

where ν̃tj ∼ N
(

0, (1− φ̃2
1j )σ̃

2
)

(2) Conditional Beta AR(1) process

Let π(θtj |θt−1j , φ̃j ) be a Beta distribution B
(
µ̃t φ̃2j , (1− µ̃t )φ̃2j

)
with expectation

E(θtj |·) = µ̃t ≡ φ̃0j + φ̃1jθt−1j

and variance

Var (θtj |·) = µ̃t (1− µ̃t )/(1 + φ̃2j )

Switching type behavior when µ̃t φ̃2j < 1 and (1− µ̃t )φ̃2j < 1
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Dynamic Priors on Mixing Proportions

Denote by θtj = P(γtj = 1 | θtj ) the random mixing proportion

(3) Marginal Beta AR(1) process (McKenzie 1985)

Conditional distribution:

θtj = 1− utj (1− wtjθt−1j )

where

utj
iid∼ B(bj ,aj − φj ) and wtj

iid∼ B(φj ,aj − φj ).

When θt−1j ∼ B(aj ,bj ) then θtj ∼ B(aj ,bj )

Autocorrelation function

ρ(k) =

[
φjbj

aj (aj + bj − φj )

]k

© Does imply Beta B(aj ,bj ) marginal distribution
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Mixture Autoregressive Priors

Can we construct a stationary time-series shrinkage prior whose
marginals are the benchmark spike-and-slab priors?

The weight

θtj = P(γtj = 1|θtj )

is the key!

 The slab process has a stationary distribution

ψST
1 (βtj ) ∼ N (0, λ1).

 The spike process has a stationary distribution

ψST
0 (βtj ) = ψ0(βtj ).
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How to specify the time-varying mixing weights θtj?

 Assume that 0 < Θj < 1 is a “global" mixing weight reflecting the
marginal prior inclusion probability for j th covariate

 Now let us set

θtj =
Θjψ

ST
1 (βt−1j )

Θjψ
ST
1 (βt−1j ) + (1−Θj )ψ

ST
0 (βt−1j )

(16)

 It can be seen that θtj are “posterior" inclusion probabilities

θtj = P(γtj = 1|βt−1j ,Θj , λ0, λ1, φj )

classifying βt−1j as coming either from the spike or the slab

 The state-switching probabilities θtj thus depend on the previous
value βt−1j rather than θt−1j

38 / 65



1

Spike-and-Slab Autoregressive Process

Definition
Equations (14), (15) and (16) define the

Dynamic Spike-and-Slab Process (DSS)

with parameters (Θj , λ0, λ1, φj ). We will write

{βtj} ∼ DSS(Θj , λ0, λ1, φj )

 DSS is an elaboration of mixture autoregressive (MAR)
processes using time-varying mixture weights (Wong and Li (2000))

 DSS is a variant of Gaussian mixture autoregressive processes
(GMAR) (Kalliovirta et al. (2012))
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DSS Stationarity Properties

The following result follows from Theorem 1 of Kalliovirta et al. (2012)

Theorem
Assume {βtj} ∼ DSS(Θj , λ0, λ1, φj ) with |φj | < 1. Then {βtj} is Markov
with a stationary distribution characterized by

π(β|Θj , φj ) = Θjψ
ST
1 (β) + (1−Θj )ψ

ST
0 (β)

© Univariate marginals of the DSS mixture process are
Θj -weighted mixtures of marginals.

© The marginal distribution for each βtj is the spike-and-slab prior.
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The effect of φ
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1

The effect of Θ
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1

The effects of (λ1, λ0)
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1

Dynamic Penalty

Definition
For a given set of parameters (Θ, λ0, λ1, φ1), we define a prospective
penalty function as

pen(β | βt−1) = log [(1− θt )ψ0(β) + θt ψ1(β | βt−1)] . (17)

Similarly, we define a retrospective penalty pen(βt+1 | β) as a function
of the second argument β in (17).

The Dynamic Spike-and-Slab (DSS) penalty is then defined as

Pen(β | βt−1, βt+1) = pen(β | βt−1) + pen(βt+1 | β) + C, (18)

where C ≡ −Pen(0 | βt−1, βt+1) is a norming constant such that
Pen(0 | βt−1, βt+1) = 0.
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1

Penalty Plots
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1

Shrinkage Properties for MAP Smoothing
Shrinkage determined by

∂ Pen(β | βt−1, βt+1)

∂|β|
≡ −Λ?(β | βt−1, βt+1).

We will separate the term into:

Λ?(β | βt−1, βt+1) = λ?(β | βt−1) + λ̃?(β | βt+1), (19)

 prospective shrinkage effect λ?(β | βt−1), driven by the past
value βt−1

 retrospective shrinkage effect λ̃?(β | βt+1), driven by the future
value βt+1

where

λ?(β |βt−1) = −∂ pen(β | βt−1)

∂|β|
and λ̃?(β |βt+1) = −∂ pen(βt+1|β)

∂|β|
.
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1

Shrinkage Properties

Prospective shrinkage

λ?(β | βt−1) = −p?t (β)
∂ logψ1(β | βt−1)

∂|β|
− [1− p?t (β)]

∂ logψ0(β)

∂|β|
,

= p?t (β)

(
β − µt

λ1

)
sign(β) + [1− p?t (β)]λ0

where
p?t (β) ≡ θtψ1(β | βt−1)

θtψ1(β | βt−1) + (1− θt )ψ0(β)
.

Retrospective shrinkage

We will write p?t+1 = p?t+1(βt+1).

λ̃?(β | βt+1) =

[
λ0 − sign(β)

(
β

λ1

)] [
(1− p?

t+1)θt+1 − p?
t+1(1− θt+1)

]
− p?

t+1φ1sign(β)

(
βt+1 − µt+1

λ1

)
.
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1

The Global Mode
Assume

yt = x ′tβ
0
t + εt , t = 1, . . . ,T , (20)

and
{βtj} ∼ DSS(Θj , λ0, λ1, φj )

Let B̂ = {β̂tj}T ,p
t,j=1 denote the global mode of π(B|Y ).

Lemma
Let B̂ tj denote all but the (t , j)th entry in B̂ and by ztj = yt −

∑
i 6=j xti β̂ti .

Then β̂tj satisfies the following necessary condition

β̂tj =

 1
x2

tj

[
xtjztj − Λ?(β̂tj | β̂t−1j , β̂t−1j )

]
+

sign(xtjztj ) if ∆−tj < xtj ztj < ∆+
tj

0 otherwise.

Global mode thresholds coefficients to zero.
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1

One-Step-Late EM for Obtaining the Mode
Initial condition: Assume that β0 (at time t = 0) came from the
stationary distribution.

The mode of the posterior π(β0,B | Y ) can be found iteratively by
maximizing

logπ(β0,B,γ0,Γ | Y )

treating γ0 and Γ as missing data.

E-step:
p?tj = P(γtj = 1|β(m)

tj , β
(m)
t−1j , θtj )

M-step:

β
(m+1)
tj =

1
Wtj + (1− φ2

1)/λ1Mtj
[Ztj − Λtj ]+ sign(Ztj ), for 1 < t < T ,

where Mtj = p?t+1j (1− θt+1j )− θt+1j (1− p?t+1j ), Λtj = λ0[(1− p?
tj )−Mtj ].

Ztj = xtjztj +
p?

tj φ1

λ1
β

(m+1)
t−1j +

p?
t+1jφ1

λ1
β

(m+1)
t+1j and Wtj =

(
x2

tj +
p?

tj
λ1

+
p?

t+1jφ
2
1

λ1

)
.
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1

DSS prior captures intermittent zeros
Assume that the true coefficients came from an AR(1) process

β0
tj = φ1β

0
t−1j + νtj , φ1 = 0.98, νtj

iid∼ N [0,10(1− φ2
1)]

and were thresholded to zero if |β0
tj | < 0.5. We apply the DSS prior

with Θ = 0.9, λ1 = 10(1− φ1)2, φ1 = 0.98, λ0 = 1.

Assume T = 100 and p = 6 and obtain yt from (12).
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1

The impact is more pronounced in higher dimensions
Assume that the true nonzero coefficients came from AR(1)

β0
tj = φ1β

0
t−1j + νtj , φ1 = 0.98, νtj

iid∼ N [0,10(1− φ2
1)]

and were thresholded to zero if |β0
tj | < 0.5.

Assume T = 100 and p = 50 and obtain yt from (12).
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1

Folding DSS within DFA

High-dimensional multivariate time series Y = [Y 1, . . . ,Y T ] ∈ RP×T .
Evolving covariance patterns over time can be captured with the
following state space model:

Y t = Btωt + εt , εt
ind∼ NP(0,Σt ), (21)

ωt = Φωt−1 + et , et
ind∼ NK (0, σ2

ωIK ). (22)

 Bt = {βjk}P,K
j,t=1 is assigned a DSS prior

independently for each (j , k)

 Factors may enter and leave the model as time passes

Related procedures: Kaufmann and Schumacher (2013), Del Negro and Otrok
(2008)
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1

Expanded Model

We work with the expanded model

Y t = BtA−1
tL ωt + εt , εt

ind∼ NP(0,Σt ), (23)

ωt = Φωt−1 + et , et
ind∼ NK (0,At ), (24)

where AtL is the lower Cholesky factor of a positive semi-definite
matrix At and At

i.i.d∼ π(A) ∝ 1.

We assume the initial condition ω0 ∼ NK (0, σ2
ω/(1− φ2)IK ) and

impose the DSS prior on the individual entries of the rotated matrix
B?

t = BtA−1
tL .

The idea is to rotate towards sparse orientations throughout the
iterations of the EM algorithm.
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Computation: Parameter Expanded EM
The E-step operates in the reduced space (keeping At = σ2

ωIK )

 Kalman filter:

I E[ωt | Y ,B1:T ,Σ1:T ],
I var[ωt | Y ,B1:T ,Σ1:T ]
I cov[ωt ,ωt−1 | Y ,B1:T ,Σ1:T

 Compute P(γjk = 1 | βjk )

The M-step operates in the expanded space (allowing for general At ).

 Compute Σ1:T from Forward Filtering Backward Smoothing

 Compute B?
1:T by solving P independent penalized dynamic

regressions

 Compute rotation matrix At

Rotation step:
Bt = B?

t AtL
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Simulated Example
Assume P = 100, K = 10 and T = 400 time series observations
The true nonzero loadings are smooth: β0t

jk = φβ0t−1
jk + v t

jk with

v t
jk

iid∼ N (0,0.0025) for φ = 0.99.

When loadings β0t
jk become inactive, they are thresholded to zero.

tertert T = 1 T = 101 T = 201 T = 301
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Simulated Example: t = 100,200

Truth Adaptive PCA (K=10) Sparse PCA (K=10) Factor Rotate DFA
(Bai and Ng (2002)) (Witten et al. (2009)) (Rockova and George (2016))
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Simulated Example: t = 300,400

Truth Adaptive PCA (K=10) Sparse PCA (K=10) Factor Rotate DFA
(Bai and Ng (2002)) (Witten et al. (2009)) (Rockova and George (2016))
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Macro Study

The empirical application concerns a large-scale monthly U.S.
macroeconomic database.

It consists of a balanced panel of P = 127 variables tracked over the
period of 2001/01 to 2015/12 (T = 180).

These variables are classified into eight main categories:
Output and Income Labor Market Consumption and Orders

Orders and Inventories Money and Credit Interest Rate and Exchange Rates
Prices Stock Market

We are interested in assessing the evolution of the economy: degree
of connectivity and permanence of structural changes

We examine the output of our procedure at three time points:
2003/12, 2008/10, and 2015/12.

These represent three distinct states of the economy: relative stability
(2003), sharp economic crisis (2008), and recovery (2015).
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Estimated Snapshots

Figure: Estimated factor loadingsat t = 2003/12 (left), t = 2008/10
(center), t = 2015/12 (right), with the original series on the y-axis and
the factors in the x-axis.
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Suggested Interpretation: t = 2003/12

There are 24 active factors in total with only 5 factors that cluster
eight or more series (Factors 2, 10, 22, 23, and 25).
Factor 2 can be interpreted as durable goods: includes CMRMTSPLx
(real manufacturing and trade industry sales), CUMFNS (capacity
utilization), DMANEMP (durable goods employment), and ISRATIOx
(manufacturing and trade inventories to sales ratio).
Factor 10 includes employment data (except for mining and logging,
manufacturing, durable goods, nondurable goods, and government),
Factor 22 includes interests rates (fed funds rate, treasury bills, and
bond yields)
Factor 23 includes the spread between interest rates minus fed funds
rate
Factor 25 includes consumer price indices, medical care, durables,
and services, as well as personal consumptions expenditures on
nondurable goods.
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Suggested Interpretation: t = 2008/10

Factor 2: the dependence structure expands, now spanning over
nondurables and fuels, as well as HWI (the help wanted index),
UNEMP15OV (unemployment for 15 weeks and over), CLAIMSx
(unemployment insurance claims), and PAYEMS (employment, total
non-farm, goods-producing, manufacturing, and durable goods).
Another interesting observation is the emergence of new factors.
Factor 11, which includes housing starts and new housing permits in
different regions in the U.S., was not present pre-crisis
Factor 28 emerges as a non-sparse link between many different
sectors of the economy, including retail sales, industrial production,
employment, real M2 money stock, loans, BAA bond yields (but not
AAA), exchange rates, consumer sentiment, investment and, most
importantly, the stock market indices, including the S&P 500 and the
VIX (i.e. the fear index).
Factor 25, on the other hand, is driven mainly by prices (e.g. CPI).
Both of these factors could be potentially interpreted as crisis factors.
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Suggested Interpretation: t = 2015/12

Although most of the factor overlap has dissipated.
Factor 5 (employment) and Factor 11 (housing) persevere from the
crisis.
Moreover, the “crisis factors" Factor 25 and 28, representing the
prices and the stock market, are no longer strongly tied to other parts
of the economy (labor, output, interest and exchange rates, etc.).
Factor 2 is one of the few factors that have returned back to its
original structure, except for CMRMTSPLx and industrial production
of nondurable consumer goods. Its dependence with the labor market
(e.g. unemployment) has disappeared, suggesting that industry
production is no longer in co-movement with the labor market.
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Degree of Connectivity
To understand the degree of connectivity/overlap between factors, we
plot the average number of active factors per series over time.
More overlap indicates a more intertwined economy.

Figure: The average number of estimated active factors (with absolute
loadings above 0.1) per series over the period 2001/1:2015/12.
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Idiosyncratic Variances
HOUST (total housing starts) and its regional variants (North East,
Mid-West, South, and West)
Seasonally adjusted number of new residential construction projects
that have begun during any particular month.
Increased uncertainty in housing starts is a global phenomenon but
that there is heterogeneity across regions as to the magnitude and
timing.
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Thank you! ©
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