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The problem of testing independence I

I p-dimensional random vector y1

I Decomposition in two blocks

y1 =



y11

...
y1p1

 p1

y1p1+1

...
y1p1+p2

 p2



I Question: Are y11, . . . , y1p1 independent of y1p1+1, . . . , y1p1+p2 ?
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The problem of testing independence II

I Question: Are y11, . . . , y1p1 independent of y1p1+1, . . . , y1p1+p2 ?

I Alternative formulation: if y ∼ N (µ,Σ) and

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
︸︷︷︸
p2×p1

︸︷︷︸
p2×p2

I Is the covariance matrix block diagonal?

H0 : Σ12 = 0 ∈ Rp1×p2 versus H1 : Σ12 = 0
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Likelihood ratio test

I Sample covariance matrix of an i .i .d sample y1, . . . , yn ∼ N (µ,Σ)

Sn =

(
S11 S12

S21 S22

)
I Likelihood ratio test (Wilks, 1939) rejects the null hypothesis, if

−2ρp1,p2 logVn > χ2
1−α,df

where

Vn =
|Sn|

|S11||S22|

df =
1

2

(
(p1 + p2)(p1 + p2 + 1)− p1(p1 + 1)− p2(p2 + 1)

)
= p1p2
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χ2-approximation (n = 100, p1 + p2 = 60)
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Remarks:

I There is a systematic bias in the approximation

I The χ2- approximation is based on “classical” theory:

p1, p2, p are fixed, and n→∞

I Can we get better approximations using a different point
of view, that is:

lim
n→∞

pi
n

= ci ∈ (0, 1)
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Alternative asymptotic distribution theory

Dimension increases with sample size n:

I y1, . . . , yn ∼ N (µ,Σn)
In general, we allow normal mixtures in form yi ∼ Rx with x ∼ N (µ,Σn)

and R is a pos. def. random variable ind. of x (so called generating

variable)

I Σn ∈ Rp×p is the positive definite population covariance
matrix with bounded spectrum

0 < λ1 ≤ λ2 ≤ . . . ≤ λp
as p →∞.

I pi dimension of block i (i = 1, 2)
I p = p1 + p2 the total number of variables
I asymptotic regime:

lim
n→∞

pi
n

= ci ∈ (0, 1)
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Asymptotic normality (Yao, Bai and Zheng, 2015)

Theorem
Under the null hypothesis

logVn − p2sLR,n − µLR,n
σLR,n

D−→ N (0, 1) ,

where sLR,n, µLR,n and σLR,n depend only on p1, p2 and n.
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Details on the constants

µLR = 1/2 log

 (w∗ 2
n − γ2

2,n)w∗ 2
n

(w∗ 2
n − γ3/2

2,n )2

 , σ2
LR = 2 log

[
w∗ 2
n

w∗ 2
n − γ2,n

]
,

sLR = log

(
γ1,n

γ2,n
(1− γ2,n)2

)
+

1− γ2,n

γ2,n
log(w∗n )−

γ1,n + γ2,n

γ1,nγ2,n
log(w∗n − γ2

2,n/w
∗
n )

+


1−γ1,n

γ1,n
log(w∗n − w∗n γ2,n), γ1,n ∈ (0, 1)

0, γ1,n = 1

− 1−γ1,n

γ1,n
log(w∗n − γ2,n/w∗n ), γ1,n > 1 .

,

where

γ1,n =
p2

p1
∈ (0,+∞) , γ2,n =

p2

n − p1
∈ (0, 1),

w∗n =

√
γ1,n + γ2,n − γ1,nγ2,n

γ2,n
.
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Normal approximation (n = 100, p1 + p2 = 60)
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Finite sample properties of the normal approximation
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New tests for independence

I Recall:

Σn =

(
Σ11 Σ12

Σ21 Σ22

)
I Note: the hypothesis

H0 : Σ12 = O versus H1 : Σ12 6= O ,

is equivalent to

H0 : Σ21Σ−1
11 Σ12 = O versus H1 : Σ21Σ−1

11 Σ12 6= O
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Fisher matrix I

I Decompose the sample covariance matrix

S =

(
S11 S12

S21 S22

)
︸︷︷︸
p2×p1

︸︷︷︸
p2×p2

I Estimate the matrix Σ21Σ−1
11 Σ12 by

W = S21S−1
11 S12
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Fisher matrix II

I Central Wishart distribution under the null hypothesis, i.e.

W = S21S−1
11 S12 ∼Wp2(p1,Σ22·1),

where Σ22·1 = Σ22 −Σ21Σ−1
11 Σ12 is the corresponding Schur

complement (Muirhead, 1982).

I Non-central Wishart distribution under the alternative
conditionally on S11, that is

W|S11 ∼Wp2(p1,Σ22·1,Ω1),

where
Ω1 = Σ−1

22·1Σ21Σ−1
11 S11Σ−1

11 Σ12.
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Fisher matrix III

I Estimate the Schur complement Σ22·1 by

T = S22·1 = S22 − S21S−1
11 S12 ∼Wp2(n − p1,Σ22·1)

I Note: under the null hypothesis and alternative

. T ∼Wp2 (n − p1,Σ22·1)

. The matrices W and T are independent.
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Fisher matrix V

I Note: Under the null hypothesis of independence

T ∼ Wp2(n − p1,Σ22)

W ∼ Wp2(p1,Σ22)

I In particular: Under the null hypothesis the distribution of
F = WT−1 does not depend on Σ (distribution free).

I The matrix F = WT−1 is called Fisher matrix (central under
the null hypothesis and non-central under the alternative)

I We will use linear combinations of the eigenvalues to test
the hypothesis of independence!
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Example: eigenvalues of Fisher matrix IV

I A ∈ Rp×p is a matrix with i.i.d. standard normal distributed variables
I Covariance matrix under H1

ΣH1
= AAT =

(
Σ11 Σ12

Σ21 Σ22

)
I Covariance matrix under H0

ΣH0
=

(
Σ11 0

0 Σ22

)
I Empirical eigenvalue distribution of F based on a sample of n = 1000 i.i.d.
N (0,ΣH0

) and N (0,ΣH1
) random variables (p1 = 300, p2 = 300, p = 600)
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Alternative test statistics (MANOVA)

(1) Wilks’ Λ statistics:

TW = − log(|T|/|T + W|) = log(|I + WT−1|) = log(|I + F|)

(2) Lawley-Hotelling’s trace criterion:

TLH = tr(WT−1) = tr(F)

(3) Bartlett-Nanda-Pillai’s trace criterion:

TBNP = tr(WT−1(I + WT−1)−1) = tr(F(I + F)−1)

Note: all statistics depend on the eigenvalues v1 ≥ v2 ≥ ... ≥ vp2

of the matrix F
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Representation as linear spectral statistics

Note: all statistics depend on the eigenvalues v1 ≥ v2 ≥ ... ≥ vp2 of the
matrix F

(1) Wilks’ Λ statistics:

TW = log(|I + F|) =

p2∑
i=1

log(1 + vi )

(2) Lawley-Hotelling’s trace criterion:

TLH = tr(WT−1) = tr(F) =

p2∑
i=1

vi

(3) Bartlett-Nanda-Pillai’s trace criterion:

TBNP = tr(F(I + F)−1)) =

p2∑
i=1

vi
1 + vi
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Linear spectral statistics

I Eigenvalues of the matrix F = WT−1;

v1 ≥ v2 ≥ ... ≥ vp2

I Empirical spectral distribution function:

Fn(x) =
1

p2

p2∑
i=1

1(−∞,vi ](x)

I Linear spectral statistic: let f : R→ R denote a “suitable” function

LSSn = p2

∫ ∞
0

f (x)dFn(x) =

p2∑
i=1

f (vi )
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Linear spectral statistics

I Question: Can we find the asymptotic distribution of the linear
spectral statistic

LSSn = p2

∫ ∞
0

f (x)dFn(x) =

p2∑
i=1

f (vi )

for many functions of f ?

I This is a very difficult problem in random matrix theory

I For this purpose we need to have knowledge about the asymptotic
properties of the eigenvalues v1, . . . vp2 as n, p1, p2 →∞.

I In this talk:
lim

n,pi→∞

pi
n

= ci ∈ (0, 1) , i = 1, 2.
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Asymptotic properties of the spectrum

Example: Empirical spectral distribution of the Fisher matrix and the limiting density
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q(x) =
1− γ2

2πx(γ1 + γ2x)

√
(b − x)(x − a), a =

(1− h)2

(1− γ2)2
, b =

(1 + h)2

(1− γ2)2

γ1 = lim
n→∞

γ1,n = lim
n→∞

p2

p1
, γ2 = lim

n→∞
γ2,n = lim

n→∞

p2

n − p1

h = lim
n→∞

hn =
√
γ1,n + γ2,n − γ1,nγ2,n



Linear spectral statistics of Fisher matrices under H0 24 | 47

Asymptotic properties of the spectrum

Take home message I:

I The empirical spectrum of a Fisher matrix converges almost surely
to a well defined density.

I This distribution appears in the standardisation of the linear spectral
statistic.
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Asymptotic distribution of linear spectral statistics I

I Take home message II:

. Under the null hypothesis standardised versions of linear
spectral statistics are asymptotically normal distributed.

. The constants in this standardisation are very complicated
(and depend on the limiting distribution of the the spectrum).

. For a more precise statement we need the definition of the
Stieltjes transform

mG (z) =

∫
G (dt)

t − z

of a distribution function G .
. The Stieltjes transform has similar properties as the

characteristic function, for example:
– G is determined by mG

– Convergence in distribution can be characterised in terms of
convergence of the Stieltjes transforms
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Asymptotic distribution of linear spectral statistics I

I A more precise statement of asymptotic normality of linear
spectral as n, p1, p2 →∞

p2∑
i=1

f (vi )− p2

∫ ∞
0

f (x)qn(x)dx

= p2

(∫ ∞
0

f (x)dFn(x)−
∫ ∞

0
f (x)qn(x)dx

)
D−→ N (µ, σ2)

where

qn(x) =
1− γ2,n

2πx(γ1,n + γ2,nx)

√
(bn − x)(x − an), an =

(1− hn)2

(1− γ2,n)2
, bn =

(1 + hn)2

(1− γ2,n)2

I Asymptotic mean µ and variance σ2 depend on the Stieltjes transform

mq(z) =

∫
q(t)dt

t − z

of the limiting density q of the spectrum in a complicated manner
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Asymptotic distribution of linear spectral statistics II

µ =
1

2πi

∮
f (z)d log

( 1−c
1−c1

m2
0(z) + 2m0(z) + 2− c/c1

1−c
1−c1

m2
0(z) + 2m0(z) + 1

)

+
1

2πi

∮
f (z)d log

(
1− c−c1

1−c1
m2

0(z)

(1 + m2
0(z))2

)

σ2 = −
1

2π2

∮ ∮
f (z1)f (z2)

(m0(z1)−m0(z2))2
dm0(z1)dm0(z2)

I The integrals are taken over arbitrary positively oriented contour
which contains the interval [a, b].

I For a given f (e.g. f (z) = log z) µ and σ2 can be calculated
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Asymptotic distribution under H0

Theorem
Let α ∈ {W , LH,BNP}, then under the null hypothesis H0

Tα − p2sα,n − µα,n
σα,n

D−→ N (0, 1)

where sα,n, µα,n and σ2
α,n depend on p1, p2 and n.

Example: Lawley-Hotelling’s trace criterion:

µLH =
γ2,n

(1− γ2,n)2
, σ2

LH =
2(γ1,n + γ2,n − γ1,nγ2,n)

(1− γ2,n)4
, sLH =

1

1− γ2,n

where

γ1,n =
p2

p1
∈ (0,+∞) , γ2,n =

p2

n − p1
∈ (0, 1)
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Simulation under H0: Wilks’ Λ
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No reliable approximation if p1 is small compared to p2!
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Simulation under H0: Lawley-Hotelling’s trace criterion
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Reliable approximation in all cases!
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Simulation under H0: Bartlett-Nanda-Pillai’s trace
criterion
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Analysis under the alternative

I Recall: Note that under the alternative the matrix WT−1|S11 has a
non-central Fisher matrix with non-centrality parameter

Ω1 = Σ−1
22·1Σ21Σ−1

11 S11Σ−1
11 Σ12

I Proceed in two steps:

(1) Determine the asymptotic distribution of the empirical spectral
distribution (this is needed for centering - at least)

(2) Determine the asymptotic distribution of the linear spectral
statistics (extremely difficult)

For the illustration of the type of result we recall the definition of the
Stieltjes transform

mG (z) =

∫
G (dt)

t − z

of a distribution function G
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Analysis under alternative hypothesis (take home)

Take home message III(a): The empirical spectral distribution of the matrix
F = WT−1 converges almost surely to a deterministic distribution function F ∗,
which depends on the eigenvalues of the matrix

R = Σ−1/2
22·1 Σ21Σ−1

11 Σ12Σ−1/2
22·1 = Σ1/2

22·1Ω1Σ−1/2
22·1
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Analysis under the alternative

Theorem
If the empirical spectral distribution of the matrix

R = Σ−1/2
22·1 Σ21Σ−1

11 Σ12Σ−1/2
22·1 = Σ1/2

22·1Ω1Σ−1/2
22·1

converges weakly to some function G then the empirical spectral distribution of
F = WT−1 converges almost surely to a deterministic distribution function F ∗.
The Stieltjes transform

s(z) = mF∗(z) =

∫
F ∗(dt)

t − z

of F ∗ is the unique solution of the system of equations

s(z)
1+γ2zs(z)

= mH (z(1+γ2zs(z))),

mH (z)

1+γ1mH (z)
= m

H̃
((1+γ1mH (z))[(1+γ1mH (z))z−(1−γ1)]),

m
H̃

(z)(1−(c−c1)−(c−c1)zm
H̃

(z))c−1
1 = mG

(
c1z

1−(c−c1)−(c−c1)zm
H̃

(z)

)
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Linear spectral statistics under the alternative

I The distribution F∗ is required for the centering of the linear spectral statistic
and its Stieltjes transform

s(z) = mF∗ (z) =

∫
F∗(dt)

t − z

is the unique solution of the system of equations

s(z)
1+γ2zs(z)

= mH (z(1+γ2zs(z))),

mH (z)

1+γ1mH (z)
= m

H̃
((1+γ1mH (z))[(1+γ1mH (z))z−(1−γ1)]),

m
H̃

(z)(1−(c−c1)−(c−c1)zm
H̃

(z))c−1
1 = mG

(
c1z

1−(c−c1)−(c−c1)zm
H̃

(z)

)

This has to be solved recursively (H̃ → H → F∗ → F∗n )

I Empirical analogue F∗n : Replace
γ1, γ2, c1 and c2 by p2

p1
, p2

n−p1
, p1

n
and p2

n
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CLT for linear spectral of under the alternative

Theorem
If n, p1, p2 →∞, then

p2

(∫ ∞
0

f (x)Fn(dx)−
∫ ∞

0

f (x)F ∗n (x)
)
D−→ N (µ, σ2)

I Asymptotic mean and variance are very complicated

. a system of three equations for the Stieltjes transform has to
be solved recursively (H̃ → H → F ∗ → F ∗n )

. this system reduces to a quadratic equation under the null
hypothesis
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E[Xf ] =
1

4πi

∮
f (z)d log(q(z)) +

1

2πi

∮
f (z)B(zb(z))d(zb(z))

+
1

2πi

∮
f (z)θb,H (z)

θ
b̃,H̃

(zb(z))
c2

1

∫
m3

H̃
(zb(z))t2(c1 + tm

H̃
(zb(z)))−3dG(t)

(1− c1
∫
m2

H̃
(zb(z))t2(c1 + tm

H̃
(zb(z)))−2dG(t))2

 dz

Var[Xf ] = −
1

2π2

∮ ∮
f (z1)f (z2)

∂2 log(z1b(z1)− z2b(z2))

∂z1∂z2

dz1dz2

−
1

2π2

∮ ∮
f (z1)f (z2)

∂2 log(z1b(z1)η(z1b(z1))− z2b(z2)η(z2b(z2)))

∂z1∂z1

dz1dz2

−
1

2π2

∮ ∮
f (z1)f (z2)

θb̃,H̃ (z1b(z1))θ
b̃,H̃

(z2b(z2))

 ∂
2 log

[
m
H̃

(z2b(z2))−m
H̃

(z1b(z1))

(z2b(z2)−z1b(z1))

]
∂z1∂z2


 dz1dz2
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Take home message III(b):

I Linear spectral statistics (appropriately normalised) of the Fisher
matrix F are asymptotically normal distributed

I The standardisation and limiting distribution depend on the
eigenvalues the matrix

R = Σ
−1/2
22·1 Σ21Σ−1

11 Σ12Σ
−1/2
22·1

(more precisely on its asymptotic properties) in a complicated way.

I But the asymptotic properties do not depend on the eigenvectors of
the matrix R

I Under the null hypothesis: R = 0
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Why all these efforts?

I Interesting mathematics!

I A better understanding of the properties of the tests!

I Example: Finite rank alternatives:

. Finite rank alternatives R have no influence on the asymptotic
power of the tests.

. The asymptotic means and variances coincide under the null
hypothesis and alternative.

. Heuristically: tests based on a linear spectral statistics of the
Fisher matrix cannot detect the alternative if the matrix R has
no large eigenvalues.
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Finite sample properties I

Σ =



1 0 . . . 0 0 ρ ρ . . . ρ ρ
0 1 . . . 0 0 ρ ρ . . . ρ ρ
...

...
. . .

...
...

...
. . .

...
...

0 0 . . . 1 0 ρ ρ . . . ρ ρ
0 0 . . . 0 1 ρ ρ . . . ρ ρ
ρ ρ . . . ρ ρ 1 0 . . . 0 0
ρ ρ . . . ρ ρ 0 1 . . . 0 0
...

...
. . .

...
...

...
...

. . .
...

...
ρ ρ . . . ρ ρ 0 0 . . . 0 1


︸ ︷︷ ︸

p2×p1

︸ ︷︷ ︸
p2×p2

Note:

I The correlation coefficient ρ will change in the interval [0, 0.0325]

I We set some elements of Σ12 (randomly) equal to zero (sparse Σ12).
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Comparison of new tests (power) I

0.000 0.005 0.010 0.015 0.020 0.025 0.030

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p = 60, n = 100, p_1 = 10

Wilks
Lawley−Hotelling
BNP
Confidence level alpha=0.05

0.000 0.005 0.010 0.015 0.020 0.025 0.030

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p = 60, n = 100, p_1 = 30

Wilks
Lawley−Hotelling
BNP
Confidence level alpha=0.05

0.000 0.005 0.010 0.015 0.020 0.025 0.030

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p = 60, n = 100, p_1 = 50

Wilks
Lawley−Hotelling
BNP
Confidence level alpha=0.05

Note:

I All tests have problems to detect the alternative for small values of ρ (as
predicted by our theory)

I The best power is obtained for p1 = p2 = 30

I The Lawley-Hotelling’s trace criterion shows the best performance
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Comparison of new tests (power) II - increasing sparsity

0.000 0.005 0.010 0.015 0.020 0.025 0.030

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p = 60, n = 100, p_1 = 30

Wilks
Lawley−Hotelling
BNP
Confidence level alpha=0.05

0.000 0.005 0.010 0.015 0.020 0.025 0.030

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p = 60, n = 100, p_1 = 30

Wilks
Lawley−Hotelling
BNP
Confidence level alpha=0.05

0.000 0.005 0.010 0.015 0.020 0.025 0.030

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p = 60, n = 100, p_1 = 30

Wilks
Lawley−Hotelling
BNP
Confidence level alpha=0.05

Sparsity 0% Sparsity 20% Sparsity 50%

Note: n = 100, p = 60, p1 = 30

I The power decreases with increasing sparsity

I The Lawley-Hotelling’s trace criterion shows the best performance
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Other benchmarks

(1) Trace criterion introduced by Jiang-Bai-Zheng(2013):

TJBZ = tr

[
WT−1

(
WT−1 +

γ1,n

γ2,n
Ip−p1

)−1
]

(2) Minimum distance test of Yamada-Hyodo-Nishiyama (2017):

TYHN = (n − 2)(n − 1)tr(S2) + (tr(S))2

(3) Likelihood ratio test

TLR = log
( |S|
|S11||S22|

)
Note: Standardised versions of the test statistics are asymptotically normal

distributed (linear spectral statistics)
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Comparison with alternative tests (power) I
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Note: n = 100, p = 60, p1 = 30

I The best power is obtained for p1 = p2 = 30

I The Lawley-Hotelling’s trace criterion shows the best performance
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Comparison with alternative tests (power) II -
increasing sparsity
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Note: n = 100, p = 60, p1 = 30

I The power decreases with increasing sparsity

I The Lawley-Hotelling’s trace criterion shows the best performance (except for
50% sparsity)
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Conclusions

I We have studied the problem of testing independence in a large
dimensional vector.

I The “classical” likelihood ratio test for independence does not keep its
nominal level if p1 is small compared to p2.

I We have introduced alternative tests which yield a more reliable
approximation.

I We determined asymptotic properties under the null hypothesis and
alternative.

I For this purpose we investigated asymptotic properties of linear spectral
statistics of central and non-central Fisher matrices. WT−1, where W
and T are independent Wishart matrices (W is conditionally Wishart).

I The theoretical results can be used for a better understanding of the
finite sample properties of tests based on linear spectral statistics of the
Fisher matrix.
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