Leibniz

 UniversitätHannover

Testing for Independence of Large Dimensional Vectors

Nestor Parolya
Institute of Statistics, Leibniz University Hannover
joint work with Holger Dette and Taras Bodnar, part of the DFG-project
"Structural inference for high-dimensional covariance matrices"

Outline

Testing for independence
New tests for independence
Linear spectral statistics of Fisher matrices under H_{0}
Linear spectral statistics of Fisher matrices under H_{1}
Power analysis - finite sample properties
Conclusions

The problem of testing independence I

- p-dimensional random vector \mathbf{y}_{1}
- Decomposition in two blocks

$$
\left.\left.\mathbf{y}_{1}=\left(\begin{array}{c}
y_{11} \\
\vdots \\
y_{1 p_{1}}
\end{array}\right\} p_{1} \begin{array}{c}
y_{1 p_{1}+1} \\
\vdots \\
y_{1 p_{1}+p_{2}}
\end{array}\right\} p_{2}\right)
$$

- Question: Are $y_{11}, \ldots, y_{1 p_{1}}$ independent of $y_{1 p_{1}+1}, \ldots, y_{1 p_{1}+p_{2}}$?

The problem of testing independence II

- Question: Are $y_{11}, \ldots, y_{1 p_{1}}$ independent of $y_{1 p_{1}+1}, \ldots, y_{1 p_{1}+p_{2}}$?
- Alternative formulation: if $\mathbf{y} \sim \mathcal{N}(\mu, \boldsymbol{\Sigma})$ and

$$
\boldsymbol{\Sigma}=\left(\begin{array}{ll}
\boldsymbol{\Sigma}_{11} & \begin{array}{l}
\boldsymbol{\Sigma}_{12} \\
\boldsymbol{\Sigma}_{21} \times p_{1}
\end{array} \\
p_{2 \times p_{2}} \\
\boldsymbol{\Sigma}_{22}
\end{array}\right)
$$

- Is the covariance matrix block diagonal?

$$
\mathbf{H}_{\mathbf{0}}: \boldsymbol{\Sigma}_{12}=\mathbf{0} \in \mathbb{R}^{p_{1} \times p_{2}} \text { versus } \mathbf{H}_{\mathbf{1}}: \boldsymbol{\Sigma}_{12}=\mathbf{0}
$$

Likelihood ratio test

- Sample covariance matrix of an i.i.d sample $\mathbf{y}_{1}, \ldots, \mathbf{y}_{n} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$

$$
\mathbf{S}_{n}=\left(\begin{array}{ll}
\mathbf{S}_{11} & \mathbf{S}_{12} \\
\mathbf{S}_{21} & \mathbf{S}_{22}
\end{array}\right)
$$

- Likelihood ratio test (Wilks, 1939) rejects the null hypothesis, if

$$
-2 \rho_{\rho_{1}, p_{2}} \log V_{n}>\chi_{1-\alpha, d f}^{2}
$$

where

$$
\begin{aligned}
V_{n} & =\frac{\left|\mathbf{S}_{n}\right|}{\left|\mathbf{S}_{11}\right|\left|\mathbf{S}_{22}\right|} \\
d f & =\frac{1}{2}\left(\left(p_{1}+p_{2}\right)\left(p_{1}+p_{2}+1\right)-p_{1}\left(p_{1}+1\right)-p_{2}\left(p_{2}+1\right)\right)=p_{1} p_{2}
\end{aligned}
$$

Testing for independence
χ^{2}-approximation ($n=100, p_{1}+p_{2}=60$)

Likelihood ratio (classical), p $=60, \mathrm{n}=100, \mathrm{p}$ _1 $1=50$

Likelihood ratio (classical), p $=60, n=100, p .1=20$

Likellhood ratio (classical), p $=60, \mathrm{n}=100, \mathrm{p}, 1=40$

Likelthood ratio (classical), p=60,n=100,p.1-15

Likelhood ratio (classical), $\mathrm{p}=60, \mathrm{n}=100, \mathrm{p}, 1=30$

Likellhood ratio (classical). p $=60, \mathrm{n}=100, \mathrm{p} \quad 1=10$

Simulated distribution of the $L R$-test statistic $-2 \rho_{p_{1}, p_{2}} \log V_{n}$ under the null hypd

Remarks:

- There is a systematic bias in the approximation
- The χ^{2} - approximation is based on "classical" theory:

$$
p_{1}, p_{2}, p \text { are fixed, and } n \rightarrow \infty
$$

- Can we get better approximations using a different point of view, that is:

$$
\lim _{n \rightarrow \infty} \frac{p_{i}}{n}=c_{i} \in(0,1)
$$

Alternative asymptotic distribution theory
Dimension increases with sample size n :

- $\mathbf{y}_{1}, \ldots, \mathbf{y}_{n} \sim \mathcal{N}\left(\boldsymbol{\mu}, \boldsymbol{\Sigma}_{n}\right)$

In general, we allow normal mixtures in form $\mathbf{y}_{\mathrm{i}} \sim R \mathbf{x}$ with $\mathbf{x} \sim \mathcal{N}\left(\boldsymbol{\mu}, \boldsymbol{\Sigma}_{n}\right)$
and R is a pos. def. random variable ind. of \mathbf{x} (so called generating variable)

- $\boldsymbol{\Sigma}_{n} \in \mathbb{R}^{p \times p}$ is the positive definite population covariance matrix with bounded spectrum

$$
0<\lambda_{1} \leq \lambda_{2} \leq \ldots \leq \lambda_{p}
$$

as $p \rightarrow \infty$.

- p_{i} dimension of block $i(i=1,2)$
- $p=p_{1}+p_{2}$ the total number of variables
- asymptotic regime:

$$
\lim _{n \rightarrow \infty} \frac{p_{i}}{n}=c_{i} \in(0,1)
$$

Asymptotic normality (Yao, Bai and Zheng, 2015)

Theorem
Under the null hypothesis

$$
\frac{\log V_{n}-p_{2} S_{L R, n}-\mu_{L R, n}}{\sigma_{L R, n}} \xrightarrow{\mathcal{D}} \mathcal{N}(0,1),
$$

where $s_{L R, n}, \mu_{L R, n}$ and $\sigma_{L R, n}$ depend only on p_{1}, p_{2} and n.

Testing for independence

Details on the constants

$$
\begin{aligned}
\mu_{L R} & =1 / 2 \log \left[\frac{\left(w_{n}^{* 2}-\gamma_{2, n}^{2}\right) w_{n}^{* 2}}{\left(w_{n}^{* 2}-\gamma_{2, n}^{3 / 2}\right)^{2}}\right], \\
s_{L R} & =\log \left(\frac{\gamma_{1, n}^{2}}{\gamma_{2, n}}\left(1-\gamma_{2, n}\right)^{2}\right)+\frac{1-\gamma_{2, n}}{\gamma_{2, n}} \log \left(w_{n}^{*}\right)-\frac{\gamma_{1, n}+\gamma_{2, n}}{\gamma_{1, n} \gamma_{2, n}} \log \left(w_{n}^{*}-\gamma_{2, n}^{2} / w_{n}^{*}\right) \\
& + \begin{cases}\frac{1-\gamma_{1, n}^{* 2}}{\gamma_{1, n}^{*}} \log \left(w_{n}^{*}-w_{n}^{*} \gamma_{2, n}\right), & \gamma_{1, n} \in(0,1) \\
0, & \gamma_{1, n}=1 \\
-\frac{1-\gamma_{1, n}}{\gamma_{1, n}} \log \left(w_{n}^{*}-\gamma_{2, n} / w_{n}^{*}\right), & \gamma_{1, n}>1\end{cases}
\end{aligned}
$$

where

$$
\begin{aligned}
\gamma_{1, n} & =\frac{p_{2}}{p_{1}} \in(0,+\infty), \quad \gamma_{2, n}=\frac{p_{2}}{n-p_{1}} \in(0,1) \\
w_{n}^{*} & =\sqrt{\frac{\gamma_{1, n}+\gamma_{2, n}-\gamma_{1, n} \gamma_{2, n}}{\gamma_{2, n}}}
\end{aligned}
$$

Testing for independence
Normal approximation ($n=100, p_{1}+p_{2}=60$)

Likelihood ratio, $p=60, n=100, p _1=40$

Likelihood ratio, $\mathrm{p}=60, \mathrm{n}=100, \mathrm{p} _1=30$

Normal approximation for the distribution of $\left(\log V_{n}-p_{2} s_{L R, n}-\mu_{L R, n}\right) / \sigma_{L R, n}$ under the null hunathecic

Testing for independence

Finite sample properties of the normal approximation

Likelihood ratio, $p=60, n=100, p _1=20$

Likelihood ratio, $p=60, n=100, p_{-} 1=40$

Likelihood ratio, $\mathrm{p}=60, \mathrm{n}=100, \mathrm{p} \mathrm{B}=15$

Likelihood ratio, $p=60, n=100, p _1=30$

Likelihood ratio, $\mathrm{p}=60, \mathrm{n}=100, \mathrm{p} _1=10$

Normal approximation for the distribution of $\left(\log V_{n}-p_{2} s_{L R, n}-\mu_{L R, n}\right) / \sigma_{L R, n}$ under the null humathocic

New tests for independence

- Recall:

$$
\boldsymbol{\Sigma}_{n}=\left(\begin{array}{ll}
\boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\
\boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22}
\end{array}\right)
$$

- Note: the hypothesis

$$
H_{0}: \boldsymbol{\Sigma}_{12}=\mathbf{O} \text { versus } H_{1}: \boldsymbol{\Sigma}_{12} \neq \mathbf{O}
$$

is equivalent to

$$
H_{0}: \boldsymbol{\Sigma}_{21} \boldsymbol{\Sigma}_{11}^{-1} \boldsymbol{\Sigma}_{12}=\mathbf{0} \quad \text { versus } H_{1}: \boldsymbol{\Sigma}_{21} \boldsymbol{\Sigma}_{11}^{-1} \boldsymbol{\Sigma}_{12} \neq \mathbf{O}
$$

Fisher matrix I

- Decompose the sample covariance matrix

$$
\mathbf{S}=\left(\begin{array}{ll}
\underbrace{}_{p_{2} \times p_{1}} & \underbrace{\mathbf{S}_{11}}_{p_{2} \times p_{2}} \\
\mathbf{S}_{12} \\
\mathbf{S}_{21} & \mathbf{S}_{22}
\end{array}\right)
$$

- Estimate the matrix $\boldsymbol{\Sigma}_{21} \boldsymbol{\Sigma}_{11}^{-1} \boldsymbol{\Sigma}_{12}$ by

$$
\mathbf{W}=\mathbf{S}_{21} \mathbf{S}_{11}^{-1} \mathbf{S}_{12}
$$

Fisher matrix II

- Central Wishart distribution under the null hypothesis, i.e.

$$
\mathbf{W}=\mathbf{S}_{21} \mathbf{S}_{11}^{-1} \mathbf{S}_{12} \sim W_{p_{2}}\left(p_{1}, \boldsymbol{\Sigma}_{22 \cdot 1}\right)
$$

where $\boldsymbol{\Sigma}_{22 \cdot 1}=\boldsymbol{\Sigma}_{22}-\boldsymbol{\Sigma}_{21} \boldsymbol{\Sigma}_{11}^{-1} \boldsymbol{\Sigma}_{12}$ is the corresponding Schur complement (Muirhead, 1982).

- Non-central Wishart distribution under the alternative conditionally on S_{11}, that is

$$
\mathbf{W} \mid \mathbf{S}_{11} \sim W_{p_{2}}\left(p_{1}, \boldsymbol{\Sigma}_{22 \cdot 1}, \Omega_{1}\right)
$$

where

$$
\boldsymbol{\Omega}_{1}=\boldsymbol{\Sigma}_{22 \cdot 1}^{-1} \boldsymbol{\Sigma}_{21} \boldsymbol{\Sigma}_{11}^{-1} \mathbf{S}_{11} \boldsymbol{\Sigma}_{11}^{-1} \boldsymbol{\Sigma}_{12}
$$

Fisher matrix III

- Estimate the Schur complement $\boldsymbol{\Sigma}_{22 \cdot 1}$ by

$$
\mathbf{T}=\mathbf{S}_{22 \cdot 1}=\mathbf{S}_{22}-\mathbf{S}_{21} \mathbf{S}_{11}^{-1} \mathbf{S}_{12} \sim W_{p_{2}}\left(n-p_{1}, \boldsymbol{\Sigma}_{22 \cdot 1}\right)
$$

- Note: under the null hypothesis and alternative
$\triangleright \quad \mathbf{T} \sim W_{p_{2}}\left(n-p_{1}, \boldsymbol{\Sigma}_{22 \cdot 1}\right)$
\triangleright The matrices \mathbf{W} and \mathbf{T} are independent.

Fisher matrix V

- Note: Under the null hypothesis of independence

$$
\begin{aligned}
\mathbf{T} & \sim W_{p_{2}}\left(n-p_{1}, \boldsymbol{\Sigma}_{22}\right) \\
\mathbf{W} & \sim W_{p_{2}}\left(p_{1}, \boldsymbol{\Sigma}_{22}\right)
\end{aligned}
$$

- In particular: Under the null hypothesis the distribution of $\mathbf{F}=\mathbf{W} \mathbf{T}^{-1}$ does not depend on $\boldsymbol{\Sigma}$ (distribution free).
- The matrix $\mathbf{F}=\mathbf{W T}^{-1}$ is called Fisher matrix (central under the null hypothesis and non-central under the alternative)
- We will use linear combinations of the eigenvalues to test the hypothesis of independence!

New tests for independence

Example: eigenvalues of Fisher matrix IV

- $A \in \mathbb{R}^{p \times p}$ is a matrix with i.i.d. standard normal distributed variables
- Covariance matrix under H_{1}

$$
\boldsymbol{\Sigma}_{H_{1}}=A A^{T}=\left(\begin{array}{cc}
\boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\
\boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22}
\end{array}\right)
$$

- Covariance matrix under H_{0}

$$
\boldsymbol{\Sigma}_{H_{0}}=\left(\begin{array}{cc}
\boldsymbol{\Sigma}_{11} & \mathbf{0} \\
\mathbf{0} & \boldsymbol{\Sigma}_{22}
\end{array}\right)
$$

- Empirical eigenvalue distribution of \mathbf{F} based on a sample of $n=1000$ i.i.d. $\mathcal{N}\left(\mathbf{0}, \boldsymbol{\Sigma}_{H_{n}}\right)$ and $\mathcal{N}\left(\mathbf{0}, \boldsymbol{\Sigma}_{H_{1}}\right)$ random variables ($p_{1}=300, p_{2}=300, p=600$)

Alternative test statistics (MANOVA)

(1) Wilks' \wedge statistics:

$$
T_{W}=-\log (|\mathbf{T}| /|\mathbf{T}+\mathbf{W}|)=\log \left(\left|\mathbf{I}+\mathbf{W} \mathbf{T}^{-1}\right|\right)=\log (|\mathbf{I}+\mathbf{F}|)
$$

(2) Lawley-Hotelling's trace criterion:

$$
T_{L H}=\operatorname{tr}\left(\mathbf{W} \mathbf{T}^{-1}\right)=\operatorname{tr}(\mathbf{F})
$$

(3) Bartlett-Nanda-Pillai's trace criterion:

$$
T_{B N P}=\operatorname{tr}\left(\mathbf{W} \mathbf{T}^{-1}\left(\mathbf{I}+\mathbf{W} \mathbf{T}^{-1}\right)^{-1}\right)=\operatorname{tr}\left(\mathbf{F}(\mathbf{I}+\mathbf{F})^{-1}\right)
$$

Note: all statistics depend on the eigenvalues $v_{1} \geq v_{2} \geq \ldots \geq v_{p_{2}}$ of the matrix F

Representation as linear spectral statistics

Note: all statistics depend on the eigenvalues $v_{1} \geq v_{2} \geq \ldots \geq v_{p_{2}}$ of the matrix F
(1) Wilks' \wedge statistics:

$$
T_{W}=\log (|\mathbf{I}+\mathbf{F}|)=\sum_{i=1}^{p_{2}} \log \left(1+v_{i}\right)
$$

(2) Lawley-Hotelling's trace criterion:

$$
T_{L H}=\operatorname{tr}\left(\mathbf{W T}^{-1}\right)=\operatorname{tr}(\mathbf{F})=\sum_{i=1}^{p_{2}} v_{i}
$$

(3) Bartlett-Nanda-Pillai's trace criterion:

$$
\left.T_{B N P}=\operatorname{tr}\left(\mathbf{F}(\mathbf{I}+\mathbf{F})^{-1}\right)\right)=\sum_{i=1}^{p_{2}} \frac{v_{i}}{1+v_{i}}
$$

Linear spectral statistics

- Eigenvalues of the matrix $\mathbf{F}=\mathbf{W T}^{-1}$;

$$
v_{1} \geq v_{2} \geq \ldots \geq v_{p_{2}}
$$

- Empirical spectral distribution function:

$$
F_{n}(x)=\frac{1}{p_{2}} \sum_{i=1}^{p_{2}} \mathbb{1}_{\left(-\infty, v_{i}\right]}(x)
$$

- Linear spectral statistic: let $f: \mathbb{R} \rightarrow \mathbb{R}$ denote a "suitable" function

$$
L S S_{n}=p_{2} \int_{0}^{\infty} f(x) d F_{n}(x)=\sum_{i=1}^{p_{2}} f\left(v_{i}\right)
$$

Linear spectral statistics

- Question: Can we find the asymptotic distribution of the linear spectral statistic

$$
L S S_{n}=p_{2} \int_{0}^{\infty} f(x) d F_{n}(x)=\sum_{i=1}^{p_{2}} f\left(v_{i}\right)
$$

for many functions of f ?

- This is a very difficult problem in random matrix theory
- For this purpose we need to have knowledge about the asymptotic properties of the eigenvalues $v_{1}, \ldots v_{p_{2}}$ as $n, p_{1}, p_{2} \rightarrow \infty$.
- In this talk:

$$
\lim _{n, p_{i} \rightarrow \infty} \frac{p_{i}}{n}=c_{i} \in(0,1), i=1,2 .
$$

Linear spectral statistics of Fisher matrices under H_{0}
Asymptotic properties of the spectrum

Example: Empirical spectral distribution of the Fisher matrix and the limiting density
$p=600, n=1000, p _1=300$

$p=600, n=1000, p _1=450$

$$
q(x)=\frac{1-\gamma_{2}}{2 \pi x\left(\gamma_{1}+\gamma_{2} x\right)} \sqrt{(b-x)(x-a)}, \quad a=\frac{(1-h)^{2}}{\left(1-\gamma_{2}\right)^{2}}, \quad b=\frac{(1+h)^{2}}{\left(1-\gamma_{2}\right)^{2}}
$$

$$
\gamma_{1}=\lim _{n \rightarrow \infty} \gamma_{1, n}=\lim _{n \rightarrow \infty} \frac{p_{2}}{p_{1}}, \quad \gamma_{2}=\lim _{n \rightarrow \infty} \gamma_{2, n}=\lim _{n \rightarrow \infty} \frac{p_{2}}{n-p_{1}}
$$

$$
h=\lim _{n \rightarrow \infty} h_{n}=\sqrt{\gamma_{1, n}+\gamma_{2, n}-\gamma_{1, n} \gamma_{2, n}}
$$

Asymptotic properties of the spectrum

Take home message I:

- The empirical spectrum of a Fisher matrix converges almost surely to a well defined density.
- This distribution appears in the standardisation of the linear spectral statistic.

Asymptotic distribution of linear spectral statistics I

- Take home message II:
\triangleright Under the null hypothesis standardised versions of linear spectral statistics are asymptotically normal distributed.
\triangleright The constants in this standardisation are very complicated (and depend on the limiting distribution of the the spectrum).
\triangleright For a more precise statement we need the definition of the Stieltjes transform

$$
m_{G}(z)=\int \frac{G(d t)}{t-z}
$$

of a distribution function G.
\triangleright The Stieltjes transform has similar properties as the characteristic function, for example:

- G is determined by m_{G}
- Convergence in distribution can be characterised in terms of convergence of the Stieltjes transforms

Asymptotic distribution of linear spectral statistics I

- A more precise statement of asymptotic normality of linear spectral as $n, p_{1}, p_{2} \rightarrow \infty$

$$
\begin{aligned}
& \sum_{i=1}^{p_{2}} f\left(v_{i}\right)-p_{2} \int_{0}^{\infty} f(x) q_{n}(x) d x \\
& =p_{2}\left(\int_{0}^{\infty} f(x) d F_{n}(x)-\int_{0}^{\infty} f(x) q_{n}(x) d x\right) \xrightarrow{\mathcal{D}} \mathcal{N}\left(\boldsymbol{\mu}, \sigma^{2}\right)
\end{aligned}
$$

where

$$
q_{n}(x)=\frac{1-\gamma_{2, n}}{2 \pi x\left(\gamma_{1, n}+\gamma_{2, n} x\right)} \sqrt{\left(b_{n}-x\right)\left(x-a_{n}\right)}, \quad a_{n}=\frac{\left(1-h_{n}\right)^{2}}{\left(1-\gamma_{2, n}\right)^{2}}, \quad b_{n}=\frac{\left(1+h_{n}\right)^{2}}{\left(1-\gamma_{2, n}\right)^{2}}
$$

- Asymptotic mean μ and variance σ^{2} depend on the Stieltjes transform

$$
m_{q}(z)=\int \frac{q(t) d t}{t-z}
$$

of the limiting density q of the spectrum in a complicated manner

Asymptotic distribution of linear spectral statistics II

$$
\begin{aligned}
\mu & =\frac{1}{2 \pi i} \oint f(z) d \log \left(\frac{\frac{1-c}{1-c_{1}} m_{0}^{2}(z)+2 m_{0}(z)+2-c / c_{1}}{\frac{1-c}{1-c_{1}} m_{0}^{2}(z)+2 m_{0}(z)+1}\right) \\
& +\frac{1}{2 \pi i} \oint f(z) d \log \left(\frac{1-\frac{c-c_{1}}{1-c_{1}} m_{0}^{2}(z)}{\left(1+m_{0}^{2}(z)\right)^{2}}\right) \\
\sigma^{2} & =-\frac{1}{2 \pi^{2}} \oint \oint \frac{f\left(z_{1}\right) f\left(z_{2}\right)}{\left(m_{0}\left(z_{1}\right)-m_{0}\left(z_{2}\right)\right)^{2}} d m_{0}\left(z_{1}\right) d m_{0}\left(z_{2}\right)
\end{aligned}
$$

- The integrals are taken over arbitrary positively oriented contour which contains the interval $[a, b]$.
- For a given $f($ e.g. $f(z)=\log z) \mu$ and σ^{2} can be calculated

Asymptotic distribution under H_{0}

Theorem
Let $\alpha \in\{W, L H, B N P\}$, then under the null hypothesis H_{0}

$$
\frac{T_{\alpha}-p_{2} s_{\alpha, n}-\mu_{\alpha, n}}{\sigma_{\alpha, n}} \xrightarrow{\mathcal{D}} \mathcal{N}(0,1)
$$

where $s_{\alpha, n}, \mu_{\alpha, n}$ and $\sigma_{\alpha, n}^{2}$ depend on p_{1}, p_{2} and n.
Example: Lawley-Hotelling's trace criterion:

$$
\mu_{L H}=\frac{\gamma_{2, n}}{\left(1-\gamma_{2, n}\right)^{2}}, \quad \sigma_{L H}^{2}=\frac{2\left(\gamma_{1, n}+\gamma_{2, n}-\gamma_{1, n} \gamma_{2, n}\right)}{\left(1-\gamma_{2, n}\right)^{4}}, \quad s_{L H}=\frac{1}{1-\gamma_{2, n}}
$$

where

$$
\gamma_{1, n}=\frac{p_{2}}{p_{1}} \in(0,+\infty), \quad \gamma_{2, n}=\frac{p_{2}}{n-p_{1}} \in(0,1)
$$

Simulation under H_{0} : Wilks' Λ

Wilk, $p=60, n=100, p _1=50$

Wilk, $p=60, n=100, p _1=30$

Wilk, $p=60, n=100, p _1=10$

No reliable approximation if p_{1} is small compared to p_{2} !

Simulation under H_{0} : Lawley-Hotelling's trace criterion

LH, $p=60, n=100, p _1=50$

LH, $p=60, n=100, p _1=30$

LH, $p=60, n=100, p_{1} 1=10$

Reliable approximation in all cases!

Simulation under H_{0} : Bartlett-Nanda-Pillai's trace criterion

$L H, p=60, n=100, p_{-} 1=10$

Reliable approximation in all cases!

Analysis under the alternative

- Recall: Note that under the alternative the matrix $\mathbf{W T}^{-1} \mid \mathbf{S}_{11}$ has a non-central Fisher matrix with non-centrality parameter

$$
\boldsymbol{\Omega}_{1}=\boldsymbol{\Sigma}_{22 \cdot 1}^{-1} \boldsymbol{\Sigma}_{21} \boldsymbol{\Sigma}_{11}^{-1} \mathbf{S}_{11} \boldsymbol{\Sigma}_{11}^{-1} \boldsymbol{\Sigma}_{12}
$$

- Proceed in two steps:
(1) Determine the asymptotic distribution of the empirical spectral distribution (this is needed for centering - at least)
(2) Determine the asymptotic distribution of the linear spectral statistics (extremely difficult)

For the illustration of the type of result we recall the definition of the Stieltjes transform

$$
m_{G}(z)=\int \frac{G(d t)}{t-z}
$$

of a distribution function G

Analysis under alternative hypothesis (take home)

Take home message III(a): The empirical spectral distribution of the matrix $\mathbf{F}=\mathbf{W T}^{-1}$ converges almost surely to a deterministic distribution function F^{*}, which depends on the eigenvalues of the matrix

$$
\mathbf{R}=\boldsymbol{\Sigma}_{22 \cdot 1}^{-1 / 2} \boldsymbol{\Sigma}_{21} \boldsymbol{\Sigma}_{11}^{-1} \boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22 \cdot 1}^{-1 / 2}=\boldsymbol{\Sigma}_{22 \cdot 1}^{1 / 2} \boldsymbol{\Omega}_{1} \boldsymbol{\Sigma}_{22 \cdot 1}^{-1 / 2}
$$

Linear spectral statistics of Fisher matrices under H_{1}

Analysis under the alternative
Theorem
If the empirical spectral distribution of the matrix

$$
\mathbf{R}=\boldsymbol{\Sigma}_{22 \cdot 1}^{-1 / 2} \boldsymbol{\Sigma}_{21} \boldsymbol{\Sigma}_{11}^{-1} \boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22 \cdot 1}^{-1 / 2}=\boldsymbol{\Sigma}_{22 \cdot 1}^{1 / 2} \boldsymbol{\Omega}_{1} \boldsymbol{\Sigma}_{22 \cdot 1}^{-1 / 2}
$$

converges weakly to some function G then the empirical spectral distribution of $\mathbf{F}=\mathbf{W T}^{-1}$ converges almost surely to a deterministic distribution function F^{*}.
The Stieltjes transform

$$
s(z)=m_{F^{*}}(z)=\int \frac{F^{*}(d t)}{t-z}
$$

of F^{*} is the unique solution of the system of equations

$$
\begin{aligned}
\frac{s(z)}{1+\gamma_{2} z s(z)} & =m_{H}\left(z\left(1+\gamma_{2} z s(z)\right)\right), \\
\frac{m_{H}(z)}{1+\gamma_{1} m_{H}(z)} & =m_{\tilde{H}}\left(\left(1+\gamma_{1} m_{H}(z)\right)\left[\left(1+\gamma_{1} m_{H}(z)\right) z-\left(1-\gamma_{1}\right)\right]\right), \\
m_{\tilde{H}}(z)\left(1-\left(c-c_{1}\right)-\left(c-c_{1}\right) z m_{\tilde{H}}(z)\right) c_{1}^{-1} & =m_{G}\left(\frac{c_{1} z}{1-\left(c-c_{1}\right)-\left(c-c_{1}\right) z m_{\tilde{H}}}{ }^{(z)}\right)
\end{aligned}
$$

Linear spectral statistics under the alternative

- The distribution F^{*} is required for the centering of the linear spectral statistic and its Stieltjes transform

$$
s(z)=m_{F^{*}}(z)=\int \frac{F^{*}(d t)}{t-z}
$$

is the unique solution of the system of equations

$$
\left.\begin{array}{rl}
\frac{s(z)}{1+\gamma_{2} z s(z)} & =m_{H}\left(z\left(1+\gamma_{2} z s(z)\right)\right), \\
\frac{m_{H}(z)}{1+\gamma_{1} m_{H}(z)} & =m_{\tilde{H}}\left(\left(1+\gamma_{1} m_{H}(z)\right)\left[\left(1+\gamma_{1} m_{H}(z)\right) z-\left(1-\gamma_{1}\right)\right]\right), \\
m_{\tilde{H}}(z)\left(1-\left(c-c_{1}\right)-\left(c-c_{1}\right) z m_{\tilde{H}}(z)\right) c_{1}^{-1} & =m_{G}\left(\frac{c_{1} z}{1-\left(c-c_{1}\right)-\left(c-c_{1}\right) z m_{\tilde{H}}}(z)\right.
\end{array}\right)
$$

This has to be solved recursively ($\tilde{H} \rightarrow H \rightarrow F^{*} \rightarrow F_{n}^{*}$)

- Empirical analogue F_{n}^{*} : Replace $\gamma_{1}, \gamma_{2}, c_{1}$ and c_{2} by $\frac{p_{2}}{p_{1}}, \frac{p_{2}}{n-p_{1}}, \frac{p_{1}}{n}$ and $\frac{p_{2}}{n}$

CLT for linear spectral of under the alternative

Theorem
If $n, p_{1}, p_{2} \rightarrow \infty$, then

$$
p_{2}\left(\int_{0}^{\infty} f(x) F_{n}(d x)-\int_{0}^{\infty} f(x) F_{n}^{*}(x)\right) \xrightarrow{\mathcal{D}} \mathcal{N}\left(\mu, \sigma^{2}\right)
$$

- Asymptotic mean and variance are very complicated
\triangleright a system of three equations for the Stieltjes transform has to be solved recursively $\left(\tilde{H} \rightarrow H \rightarrow F^{*} \rightarrow F_{n}^{*}\right)$
\triangleright this system reduces to a quadratic equation under the null hypothesis

$$
\begin{aligned}
\mathbb{E}\left[X_{f}\right] & =\frac{1}{4 \pi i} \oint f(z) d \log (q(z))+\frac{1}{2 \pi i} \oint f(z) B(z b(z)) d(z b(z)) \\
& +\frac{1}{2 \pi i} \oint f(z) \theta_{b, H}(z)\left(\theta_{\tilde{b}, \tilde{H}}(z b(z)) \frac{c_{1}^{2} \int \underline{m}_{\tilde{H}}^{3}(z b(z)) t^{2}\left(c_{1}+t \underline{m}_{\tilde{H}}(z b(z))\right)^{-3} d G(t)}{\left(1-c_{1} \int \underline{m}_{\tilde{H}}^{2}(z b(z)) t^{2}\left(c_{1}+t \underline{m}_{\tilde{H}}(z b(z))\right)^{-2} d G(t)\right)^{2}}\right) d z \\
\operatorname{Var}\left[X_{f}\right] & =-\frac{1}{2 \pi^{2}} \oint \oint f\left(z_{1}\right) f\left(z_{2}\right) \frac{\partial^{2} \log \left(z_{1} b\left(z_{1}\right)-z_{2} b\left(z_{2}\right)\right)}{\partial z_{1} \partial z_{2}} d z_{1} d z_{2} \\
& -\frac{1}{2 \pi^{2}} \oint \oint f\left(z_{1}\right) f\left(z_{2}\right) \frac{\partial^{2} \log \left(z_{1} b\left(z_{1}\right) \eta\left(z_{1} b\left(z_{1}\right)\right)-z_{2} b\left(z_{2}\right) \eta\left(z_{2} b\left(z_{2}\right)\right)\right)}{\partial z_{1} \partial z_{1}} d z_{1} d z_{2} \\
& -\frac{1}{2 \pi^{2}} \oint \oint f\left(z_{1}\right) f\left(z_{2}\right)\left[\theta_{\tilde{b}, \tilde{H}}\left(z_{1} b\left(z_{1}\right)\right) \theta_{\tilde{b}, \tilde{H}}\left(z_{2} b\left(z_{2}\right)\right)\left(\frac{\partial^{2} \log \left[\frac{\left.\underline{m}_{\tilde{H}}\left(z_{2} b\left(z_{2}\right)\right)-\underline{m}_{\tilde{H}}\left(z_{1} b b z_{1}\right)\right)}{\left(z_{2} b\left(z_{2}\right)-z_{1} b\left(z_{1}\right)\right)}\right]}{\partial z_{1} \partial z_{2}}\right)\right] d z_{1} d z_{2}
\end{aligned}
$$

Take home message III(b):

- Linear spectral statistics (appropriately normalised) of the Fisher matrix \mathbf{F} are asymptotically normal distributed
- The standardisation and limiting distribution depend on the eigenvalues the matrix

$$
\mathbf{R}=\boldsymbol{\Sigma}_{22 \cdot 1}^{-1 / 2} \boldsymbol{\Sigma}_{21} \boldsymbol{\Sigma}_{11}^{-1} \boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22 \cdot 1}^{-1 / 2}
$$

(more precisely on its asymptotic properties) in a complicated way.

- But the asymptotic properties do not depend on the eigenvectors of the matrix \mathbf{R}
- Under the null hypothesis: $\mathbf{R}=\mathbf{0}$

Why all these efforts?

- Interesting mathematics!
- A better understanding of the properties of the tests!
- Example: Finite rank alternatives:
\triangleright Finite rank alternatives \mathbf{R} have no influence on the asymptotic power of the tests.
\triangleright The asymptotic means and variances coincide under the null hypothesis and alternative.
\triangleright Heuristically: tests based on a linear spectral statistics of the Fisher matrix cannot detect the alternative if the matrix \mathbf{R} has no large eigenvalues.

Power analysis - finite sample properties
Finite sample properties I

$$
\boldsymbol{\Sigma}=\underbrace{\left(\begin{array}{cccccccccc}
1 & 0 & \ldots & 0 & 0 & \rho & \rho & \ldots & \rho & \rho \\
0 & 1 & \ldots & 0 & 0 & \rho & \rho & \ldots & \rho & \rho \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \\
0 & 0 & \ldots & 1 & 0 & \rho & \rho & \ldots & \rho & \rho \\
0 & 0 & \ldots & 0 & 1 & \rho & \rho & \ldots & \rho & \rho \\
\rho & \rho & \ldots & \rho & \rho & 1 & 0 & \ldots & 0 & 0 \\
\rho & \rho & \ldots & \rho & \rho & 0 & 1 & \ldots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
\rho & \rho & \ldots & \rho & \rho & \underbrace{0}_{p_{2} \times p_{2}} & 0 & \ldots & 0 & 1
\end{array}\right)}_{p_{2} \times p_{1}}
$$

Note:

- The correlation coefficient ρ will change in the interval $[0,0.0325]$
- We set some elements of $\boldsymbol{\Sigma}_{12}$ (randomly) equal to zero (sparse $\boldsymbol{\Sigma}_{12}$).

Power analysis - finite sample properties

Comparison of new tests (power) I

$p=60, n=100, p _1=10$

$p=60, n=100, p _1=30$

$p=60, n=100, p _1=50$

Note:

- All tests have problems to detect the alternative for small values of ρ (as predicted by our theory)
- The best power is obtained for $p_{1}=p_{2}=30$
- The Lawley-Hotelling's trace criterion shows the best performance

Comparison of new tests (power) II - increasing sparsity

Note: $n=100, p=60, p_{1}=30$

- The power decreases with increasing sparsity
- The Lawley-Hotelling's trace criterion shows the best performance

Other benchmarks

(1) Trace criterion introduced by Jiang-Bai-Zheng(2013):

$$
T_{J B Z}=\operatorname{tr}\left[\mathbf{W T}^{-1}\left(\mathbf{W T}^{-1}+\frac{\gamma_{1, n}}{\gamma_{2, n}} \mathbf{I}_{p-p_{1}}\right)^{-1}\right]
$$

(2) Minimum distance test of Yamada-Hyodo-Nishiyama (2017):

$$
T_{Y H N}=(n-2)(n-1) \operatorname{tr}\left(\mathbf{S}^{2}\right)+(\operatorname{tr}(\mathbf{S}))^{2}
$$

(3) Likelihood ratio test

$$
T_{L R}=\log \left(\frac{|\mathbf{S}|}{\left|\mathbf{S}_{11}\right|\left|\mathbf{S}_{22}\right|}\right)
$$

Note: Standardised versions of the test statistics are asymptotically normal distributed (linear spectral statistics)

Comparison with alternative tests (power) I

$p=60, n=100, p _1=50$

Note: $n=100, p=60, p_{1}=30$

- The best power is obtained for $p_{1}=p_{2}=30$
- The Lawley-Hotelling's trace criterion shows the best performance

Power analysis - finite sample properties

Comparison with alternative tests (power) II increasing sparsity

Note: $n=100, p=60, p_{1}=30$

- The power decreases with increasing sparsity
- The Lawley-Hotelling's trace criterion shows the best performance (except for 50\% sparsity)

Conclusions

- We have studied the problem of testing independence in a large dimensional vector.
- The "classical" likelihood ratio test for independence does not keep its nominal level if p_{1} is small compared to p_{2}.
- We have introduced alternative tests which yield a more reliable approximation.
- We determined asymptotic properties under the null hypothesis and alternative.
- For this purpose we investigated asymptotic properties of linear spectral statistics of central and non-central Fisher matrices. $\mathbf{W T}^{-1}$, where \mathbf{W} and \mathbf{T} are independent Wishart matrices (\mathbf{W} is conditionally Wishart).
- The theoretical results can be used for a better understanding of the finite sample properties of tests based on linear spectral statistics of the Fisher matrix.

References:

Bai Z.D., and J. W. Silverstein (2010) Spectral Analysis of Large Dimensional Random Matrices, Springer: New York; Dordrecht; Heidelberg; London.

Bai, Z., Jiang, D., Yao, J.-F., and Zheng, S. (2009). Corrections to LRT on large-dimensional covariance matrix by RMT. Annals of Statistics, 37:3822-3840.

Bodnar, T., Dette, H., and Parolya N. (2018). Testing for independence of large dimensional vectors. Appears in Annals of Statistics.

Marčenko, V. A. and Pastur, L. A. (1967). Distribution of eigenvalues for some sets of random matrices. Sbornik: Mathematics 1, 457-483.

圊
Yao, J., Zheng, Z. and Z. Bai, (2015), Large Sample Covariance Matrices and High-Dimensional Data Analysis, Cambridge University press: New York.

Zheng, Z. (2012), Central limit theorems for linear spectral statistics of large dimensional F-matrices. Annales de I'Institut Henri Poincaré, Probabilités et Statistiques, 48(2):444-476.

