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Introduction

Setting for backtesting

A firm makes a one-step-ahead forecast of its loss distribution.
Notation used throughout:

Ft : Information available at t (filtration).
Lt : Loss realized at t on portfolio formed at t − 1.
Ft : Ft (y) = P(Lt ≤ y |Ft−1); the df of the day-ahead loss.
F̂t : The forecast distribution formed by firm’s risk-manager.

In banking regulation backtesting is based on VaR exceedances.
V̂aRα,t := F̂←t (α) is an estimate of α-VaR constructed at time t − 1.
Bank reports V̂aRα,t and realized Lt .
VaR exceedance is simply the indicator It = I{Lt>V̂aRα,t}

.
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Introduction

Probability integral transform

Increasingly, regulators observe more than just VaR exceedances.

Consider the PIT process given by Pt = F̂t (Lt ).
Reported PIT values contain information about VaR exceedances at
every level α.

Pt ≥ α ⇐⇒ Lt ≥ V̂aRα,t

The ideal forecaster. If the (F̂t ) coincide with the true (Ft ), then the
process (Pt ) is iid U[0,1] (Rosenblatt, 1952).
In the US, banks on the Internal Models Approach for the trading book
have been required to report PIT values to regulators since 2013.
Motivation: What is the best way to exploit this additional information?
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Introduction

Simulated example of a backtest dataset

Days VaR Loss Exceed? PIT
1 2.492 0.278 0 0.602
2 2.968 0.716 0 0.713
3 3.336 -0.759 0 0.298
4 3.018 -0.451 0 0.364
5 2.654 2.955 1 0.995
6 3.335 -1.697 0 0.118
7 3.137 0.184 0 0.554
8 2.641 1.091 0 0.832
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Introduction

Priorities for model performance

Diebold, Gunther, and Tay (1998) develop forecast density tests based on
testing PIT values for iid U[0,1]. See also Blum (2005).
In a risk-management context, some quantiles of the forecast distribution
are more important than others.
Accuracy in “good tail” of high profits (low Pt ) is generally much less
important than accuracy in the “bad tail” of large losses (high Pt ).
Models generally cannot be expected to perform well in the extreme tail
of once-per-generation shock events.
We study a class of backtests for forecast distributions in which the test
statistic weights exceedances by a function of the probability level α.
The kernel function makes explicit the priorities for model performance.
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Regulatory background

In banking FRTB replaces 99%-VaR with 97.5% expected shortfall (ES)
as determinant of capital requirements.
This has led to debate whether ES is amenable to direct backtesting.
The model approval process continues to be based on VaR exceedances.
In insurance the 99.5%-VaR of annual loss distribution is target risk
measure.
We devise tests of the forecast distribution from which risk measures are
estimated and not tests of the risk measure estimates.
For purposes of exposition we focus on testing forecast distributions
designed to yield estimates of 99%-VaR.
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Spectral backtests

Spectral transformations

Our tests are based on transformations of the indicator function for PIT
exceedances and are termed “spectral” in the integral transform sense.
The transformations take the form

Wt =

∫ 1

0
I{Pt≥u}dν(u) = ν([0,Pt ])

where ν is a Lebesgue-Stieltjes measure on [0,1].
Wt increases in Pt .
ν is chosen to apply weight to different levels in the unit interval, typically
in the region of the VaR level α = 0.99.
We refer to ν as the kernel measure for the transform.
The support of the measure describes subsets of [0,1] that are weighted.
Note that

E(Wt ) =

∫ 1

0
(1− u)dν(u) .
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Spectral backtests

Spectral backtests

Univariate spectral backtests are backtests based on W1, . . . ,Wn.
Multivariate tests based on W1, . . . ,Wn where Wt = (Wt,1, . . . ,Wt,J)′

and Wt,j = νj ([0,Pt ]) for distinct measures ν1, . . . , νJ .
Null hypothesis. Let F 0

W denote df of Wt when Pt is uniform.

H0 : Wt ∼ F 0
W and Wt ⊥⊥ Ft−1, ∀t . (1)

Within the class of spectral backtests, we have tests of unconditional and
conditional coverage.
Unconditional coverage: test for correct distribution F 0

W ;
Conditional coverage: correct distribution and independence from Ft−1.

The York Management School Alexander J. McNeil Spectral Backtests 9 / 29



,

Spectral backtests

Useful product result

Theorem (Gordy-McNeil)

The set of spectrally transformed PIT values defined by Wt,i =
∫ 1

0 I{Pt≥u}dνi (u)
is closed under multiplication and

Wt,1Wt,2 =

∫ 1

0
I{Pt≥u}dν∗(u)

for a measure ν∗ which satisfies

dν∗(u) =
(
ν2([0,u])− 1

2
ν2({u})

)
dν1(u) +

(
ν1([0,u])− 1

2
ν1({u})

)
dν2(u) .

Integration by parts for Lebesgues-Stieltjes measures.
For measures we consider, explicit forms for ν∗ are available.
Hence can calculate E(Wt,1Wt,2) or E(W 2

t ).
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Spectral backtests

First test type: Z-test

Univariate Z-tests are based on the asymptotic normality
under H0 of W n = n−1∑n

t=1 Wt .
Solve for µW = E(Wt ) and σ2

W = var(Wt ) in the null model F 0
W .

Trivially follows from CLT that, under H0,

Zn =

√
n(W n − µW )

σW

d−−−→
n→∞

N(0,1).

Multivariate Z-tests are based on

Tn = n
(
W n − µW

)′
Σ−1

W

(
W n − µW

) d−−−→
n→∞

χ2
J .
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Spectral backtests

Second test type: likelihood ratio test

LR-tests employ continuous parametric family FP(p | θ) for Pt which nests
uniformity for θ = θ0.
Examples are the probitnormal and beta distributions.
Let FW (w | θ) denote implied distribution of Wt so that F 0

W = FW (· | θ0).
Test is based on the asymptotic chi-squared distribution of the statistic

LRW ,n =
LW (θ0 |W )

LW (θ̂ |W )

where θ̂ denotes the maximum likelihood estimate (MLE).
LR-test requires estimation of θ̂ under the alternative.
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The kernel measure

Dirac kernel

A Dirac kernal ν = δα (point mass) yields Wt = I{Pt≥α}, the α-VaR
exceedance indicator.
The (Wt ) are iid Bernoulli(1− α) under H0.
This case corresponds to standard VaR backtesting.
The Z-test is the classical binomial score test.
The LR-test in this context was proposed by Kupiec (1995) and
Christoffersen (1998) and is very widely applied in practice.
Kratz, Lok, and McNeil (2016) show that the score test has best
performance in typical regulatory context.
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The kernel measure

Discrete kernels

Univariate
A general discrete kernal ν =

∑m
i=1 kiδαi yields Wt =

∑m
i=1 ki I{Pt≥αi}.

Wt satisfies
P(Wt = qi) = αi+1 − αj = i, i = 0, . . . ,m (2)

where qi =
∑j

j=1 kj , q0 = 0, α0 = 1 and αm+1 = 1.
The Z-test is a new test which allows user to vary the weights ki .
The LR-test nests the distribution (2) in a general multinomial model:
P(Wt = qi) = θi ,

∑m
i=0 θi = 1. The cell counts Oi =

∑n
t=1 I{Wt =qi} are

sufficient statistics so actual values of ki play no role. Test proposed
by Pérignon and Smith (2010) and Colletaz, Hurlin, and Perignon (2013).

Multivariate
A set of m distinct Dirac kernels ν1 = δα1 , . . . , νm = δαm yields multivariate
tests based on Wt = (I{Pt≥α1}, . . . , I{Pt≥αm})

′.
The Z-test is identical to Pearson’s chi-squared test. This test has been
proposed by Campbell (2007).
The LR-test depends on count variables Oi =

∑n
t=1 I{1′Wt =i} and coincides

with LR-test in univariate case.
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The kernel measure

Continuous kernels

A continuous kernel measure has density dν(u) = g(u)du for some
non-negative function g on [0,1].
We study measures with support given by a window [α1, α2] ⊂ [0,1].
Univariate Z-tests considered by Costanzino and Curran (2015) and Du
and Escanciano (2017) (with focus on uniform kernel g(u) = I{α1≤u≤α2}).
We are particularly interested in bispectral Z-tests using two measures on
same support.
The LR-test requires a parametric family FP(p | θ) for Pt which nests
uniformity for θ = θ0.
By taking the probitnormal family Φ−1(Pt ) ∼ N(µ, σ2) with θ0 = (0,1) we
obtain generalization of an LR-test proposed by Berkowitz (2001).

The York Management School Alexander J. McNeil Spectral Backtests 15 / 29



,

The kernel measure

Mixed kernel

Suppose Φ−1(Pt ) ∼ N(µ, σ2) and let P∗t = α1 ∨ (Pt ∧ α2).
The likelihood function for P∗t has closed-form expression.
Denote the observed score vector for P∗t by

St (θ) =

(
∂

∂µ
ln L(θ | P∗t ),

∂

∂σ
ln L(θ | P∗t )

)′
This can be written as vector of spectrally-transformed PIT values.
The two measures ν1 and ν2 have continuous and discrete parts which
can be written explicitly.
Thus probitnormal score test of (µ, σ2) = (0,1) yields a bispectral Z-test.
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Results for unconditional tests

Description of study

Concentrate on continuous kernels which give more stable results.
Sample data Lt from 4 distributions F (all mean zero, variance 1):

F VaR0.975 VaR0.99 ∆1 ES0.975 ∆2

Normal 1.96 2.33 0.00 2.34 0.00
t5 1.99 2.61 12.04 2.73 16.68
t3 1.84 2.62 12.69 2.91 24.46

st3 (γ = 1.2) 2.04 2.99 28.68 3.35 43.11

Assume F̂t = Φ and apply tests to data Pt = Φ(Lt ).
When F is normal, the data Pt are uniform.
Otherwise Pt will show departures from uniformity typical for tail
underestimation.
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Results for unconditional tests

Choice of kernels

Kernel window is [0.985,0.995].
Kernel densities

B99: Dirac kernel at α = 0.99 (benchmark).
Ze: Exponential kernel, decreasing g(u) = exp

(
κ
(

u−α1
α2−α1

))
,

κ = −2.
ZE: Exponential kernel, increasing κ = 2.
ZV: Epanechnikov kernel - humped, symmetric around

α = 0.99.
ZU: Uniform kernel.
ZL: Linear kernel g(u) = u − α1

Continuous bispectral tests: ZeE, ZUE, ZLE.
Probitnormal (Berkowitz) LR-test (PNL) and Z-test (PNS).
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Results for unconditional tests

Normalized kernel measures
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Results for unconditional tests

Size and power of tests

F n | test B99 Ze ZV ZU ZE ZeE ZUE ZLE PNL PNS

Normal 250 4.0 3.7 3.8 4.0 4.1 5.0 5.0 5.1 7.0 5.0
500 3.7 4.6 4.3 4.7 4.7 4.6 4.7 4.7 5.6 4.5
1000 3.8 5.1 5.2 5.4 5.3 4.8 4.9 4.9 5.3 4.8

t5 250 17.7 15.9 18.2 19.2 22.4 21.1 21.3 17.4 17.8 22.8
500 22.4 22.7 25.8 26.9 31.5 30.5 31.1 25.6 27.1 33.5
1000 33.0 32.8 38.6 39.9 47.4 49.4 50.0 39.2 47.1 53.8

t3 250 13.5 11.0 13.7 14.5 19.6 21.2 21.5 13.2 23.0 23.3
500 16.2 14.4 18.9 20.1 26.5 32.3 33.0 20.2 35.8 37.2
1000 22.3 19.7 26.9 27.9 38.7 55.1 56.2 31.1 61.4 62.1

st3 250 31.2 27.8 31.9 33.3 39.5 39.9 40.1 30.7 35.8 42.7
500 44.2 41.6 48.4 50.3 58.0 59.6 60.3 49.9 57.3 64.0
1000 66.2 64.0 72.2 73.5 81.7 86.1 86.6 74.9 86.0 89.2

Green indicates good results (≤ 6% for the size; ≥ 70% for the power); pink
indicates poor results (≥ 9% for the size; ≤ 30% for the power).
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Tests of conditional coverage

Unmodelled volatility and PIT values
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ACF plots of PIT-values (Pt ) and transformed PIT-values (|2Pt − 1|). In left
pictures volatility of returns is not explicitly modelled.
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Tests of conditional coverage

Martingale difference tests

Let W̃t = Wt − µW for all t . Under H0 the martingale difference (MD)
property hold: E(W̃t | Ft−1) = 0.
For any Ft−1-measurable ht−1 vector this implies E(ht−1W̃t ) = 0.
We consider ht−1 = (1,h(Pt−1), . . . ,h(Pt−k ))′ for some choice of h.
Let Yt = ht−1W̃t for t = k + 1, . . . ,n. Let Y = (n − k)−1∑n

t=k+1 Yt and let
Σ̂Y denote a consistent estimator of ΣY := cov(Yt ).
Giacomini and White (2006) show that under very weak assumptions, for
large enough n and fixed k ,

(n − k) Y
′

Σ̂−1
Y Y ∼ χ2

k+1.
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Tests of conditional coverage

Martingale difference tests (II)

Generalizes the dynamic quantile test of Engle and Manganelli (2004)
which corresponds to ν = δα and h(p) = I{p ≥ α}.
Case k = 0 is ordinary spectral Z-test.
Case k = 1 is an analog of Markov chain LR-test of Christoffersen (1998).
Martingale-difference extensions of the bispectral Z-test (including
probitnormal score test) are also available.
We choose h(p) = (|2p − 1|)c for c > 0 to target unmodelled stochastic
volatility.
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Tests of conditional coverage

Design of experiment

Idea is to capture behaviour of PIT values when DGP Ft features
stochastic volatility, but this is ignored in the firm’s model F̂t .
Create sequence of uniform rvs (Ut ) such that (|2Ut − 1|) follows an
ARMA process.
Generate losses Lt = F−1(Ut ), where F is normal, t5, t3, or st3.
The bank reports PIT values from normal distribution:
Pt = F̂ (Lt ) = Φ(Lt ).
When F = Φ, PIT-values are dependent but uniform.
When F 6= Φ, PIT-values are dependent and non-uniform.
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Tests of conditional coverage

Power of tests

F n MD? | test B99 ZU ZE ZeE ZUE PNS

Normal 250 No 5.6 5.3 5.3 6.4 6.3 6.3
Yes 27.6 29.5 28.0 29.6 28.7 30.3

500 No 5.9 7.4 7.0 6.3 6.3 6.1
Yes 42.1 46.2 42.5 46.6 44.4 49.7

1000 No 5.8 7.7 7.5 6.8 6.8 6.8
Yes 70.3 77.5 71.5 78.2 74.5 82.0

t5 250 No 18.8 20.2 22.7 21.9 22.0 23.3
Yes 49.5 52.6 53.3 51.5 52.2 51.3

500 No 24.1 28.4 32.4 31.2 31.7 33.9
Yes 70.7 75.3 75.3 74.0 74.7 74.7

1000 No 33.6 40.0 46.8 48.3 49.1 53.0
Yes 92.8 95.1 94.5 95.3 95.2 95.8

Green indicates good results (≥ 70%); pink indicates poor results (≤ 30%);
red indicates terrible results (≤ 10%).

The York Management School Alexander J. McNeil Spectral Backtests 25 / 29



,

Summary

Summary

Tests based on spectral transformations of reported PIT-values can yield
more power than simple VaR exception tests.
The spectral class of backtests provides a unifying framework
encompassing many widely-used backtests.
Expressing tests in this form facilitates construction of new tests and
encourages thinking about the implied kernel.
The tests are available in unconditional and conditional variants.
The conditional tests are particularly powerful at revealing dependencies
in the PIT data caused by unmodelled stochastic volatility.
The tests have been applied to proprietary bank-reported data and
results are available in Gordy and McNeil (2018).
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