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Zeynep Gökçe İşlier
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SIR (Susceptible-Infected-Recovered) Model

I 3 compartments:
S (susceptible) → I (infected) → R (recovered)

I N = R(t) + I (t) + S(t)

I The rate of transitions from susceptible (S) to infected (I) is
proportional to I · S .

I The transition from infected (I) to recovered (R) is
proportional to I.

I When I = 0 no more transaction can occur
⇒ absorbing state is I = 0.
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Continuous Time Markovian SIR Disease Spread Models

Parameters: µ . . . expected disease length; λ . . . infection rate
N . . . size of population

I disease duration for an infected ∼ Exponential(µ)

I transition rate from infected to recovered µis = µi = iµ

I number of contacts for every infected individual ∼ Poisson(λ)

I total number of contacts ∼ Poisson(I S λ/N)
(Hernandez Suarez et al., 2010; Nasell, 2002)

I transition rate from susceptible to infected λi ,s = i s λ/N

I N = S + I + R

I State space Ω = (I (t), S(t))
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Markovian SIR Disease Spread Models continued

Important quantities studied in the literature

1. Probability of an outbreak

2. Final outbreak size distribution (“Attack Rate”)

3. Time to extinction (“Length of Epidemic”)

4. Distribution of the maximum number of infected
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State Space Diagram for SIR with N = 4
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First Step Analysis for Expected time to extinction

I No return to a state previously visited ⇒
E [Ti ,s ] = expected time to extinction can be calculated.

I Absorbing states: (0, s) for s = 0, 1, ...N

I Boundary Conditions

for states with zero infected: E [T0,s ] = 0

for states with zero susceptible: E [Ti ,0] =
i∑

k=1

1

µk
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Implementation of First Step Analysis

I Start with one infected and one susceptible:

E [T1,1] =
1

λ1,1 + µ1
+

λ1,1
λ1,1 + µ1

E [T2,0] +
µ1

λ1,1 + µ1
E [T0,1].

I Recursion for E [Ti ,1]:

E [Ti ,1] =
1

λi ,1 + µi
+

λi ,1
λi ,1 + µi

E [Ti+1,0] +
µi

λi ,1 + µi
E [Ti−1,1].
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E [Ti ,s ] for s susceptible cases

I Recursion for E [Ti ,s ]:

E [Ti ,s ] =
1

λi ,s + µi
+

λi ,s
λi ,s + µi

E [Ti+1,s−1] +
µi

λi ,s + µi
E [Ti−1,s ]

I For the SIR model: Replace λi ,s by i sλ/N and µi by iµ

E [Ti ,s ] =
N

i sλ+ Niµ
+

sλ

sλ+ Nµ
E [Ti+1,s−1] +

Nµ

sλ+ Nµ
E [Ti−1,s ]
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Calculation of Final Size (= attack rate) Distribution

I end of epidemic

τ = inf{t > 0 : I (t) = 0}.

I m: total number of recovered individuals at τ

I To determine the final size distribution we need:

Pm(i , s) = Pr{R(τ) = m | (I (0), S(0)) = (i , s)}.

For example: PN(1,N − 1) is the probability that, from a single
infected, finally all individuals are infected.
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State Space Diagram for SIR with N = 4

0, 0 0, 1 0, 2 0, 3

1, 0

µ1,0

1, 1

µ1,1

1, 2

µ1,2

1, 3

µ1,3

2, 0

µ2,0

λ1,1

2, 1

µ2,1

λ1,2

2, 2

µ2,2

λ1,3

3, 0

µ3,0

λ2,1

3, 1

µ3,1

λ1,3

Wolfgang Hörmann
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First Step Analysis for Final Size, m fixed

Pm(i , s) =
λi ,s

λi ,s + µi
Pm(i + 1, s − 1) +

µi
λi ,s + µi

Pm(i − 1, s).

Pm(i , s) =
λs

λs + µN
Pm(i + 1, s − 1) +

µN

λs + µN
Pm(i − 1, s). (1)

I Absorbing states: (0, s) for s = 0, 1, ...N
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First Step Analysis for Final Size, continued

I Boundary Condition for 0 infected

Pm(0, s) = 1 for s = N −m

Pm(0, s) = 0 for s < N −m.

I Boundary Condition for N −m susceptible

Pm(i ,N −m) =
µN

λ(N −m) + µN
Pm(i − 1,N −m)

=

(
µN

λ(N −m) + µN

)i

(2)
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Algorithm 1 Final Size Distribution for Exponential Disease Time

1: Set Pm(0, s) = 0 for s < N −m
2: Set Pm(0,N −m) = 1
3: for i=1,2,. . . ,m do
4: Compute Pm(i ,N −m) using(2)
5: end for
6: Set s = N −m + 1 # Start of outer for-loop
7: for i=1,..N-s do
8: Compute Pm(i , s) using(1)
9: end for

10: Set s = s + 1. If s ≤ N − 1 go to step 7. Otherwise, stop.
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Assumption that the infection process is memoryless: OK

recovery process memoryless ⇐⇒ disease length ∼ exponential
this assumption NOT OK !!

Better to use Erlang disease times with shape parameter k.

I Member of a versatile class of distributions

I Allows to select different coefficients of variation.

I Can be formulated as Markov process with k + 1-dimensional
state space.

I (similar approach available for mixture of two Erlangs)
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Model Definition

I instead of state space (I ,S) we need

I Ω = (Ĩ (t),S(t)), where Ĩ (t) is a vector holding k stages.

I Ĩ (t) := {(i1(t), i2(t), i3(t), ...ik(t)) :
∑

in ≤ N for n ≤ k}
I Define I (t) as

I (t) =
k∑

n=1

ik
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Computational Efficiency

I First step analysis again allows to find the final outbreak size
distribution. (Black, Ross 2015)

I Computational effort and memory requirements proportional
to k N(k+1)

I However, possible to use as state variable only the sum of all
infected stages.
⇒ Computational effort and memory requirements
proportional only to kN2 (İşilier, Güllü, H)
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Table: Time Required to Calculate Exact Final Outbreak Size Distribution

time to perform calculation with
population size N

k 100 500 1000

2 2.02 s 240.52 s 1886.14 s

5 5.10 s 614.49 s 4828.98 s

10 10.45 s 1271.74 s 10228.08 s
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Basic reproduction Number R0 for SIR

I Basic Reproduction Number R0: expected number of
secondary cases that one case would produce in an entirely
susceptible population

I R0>1 → Positive probability of an outbreak

I R0<1 → An outbreak not possible

For the above Markov model R0 = λ/µ
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Discrete time SIR model with homogeneous mixing

Called “Reed-Frost” or “Binomial chain” model in epidemiology.

I Number of newly infected on day t,
NIt ∼Binomial(n = St , θ = 1− (1− p)It ),
where p denotes the probability that a single infected
individual infects a single susceptible.

I Simplest model assumes deterministic disease time of one
time step. This allows the recursive calculation of the joint
distribution of (It , St).

I It is also possible to use a discrete disease length distribution.
This increases the dimension of the state space and makes
thus the use of recursions impracticable.
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R0 for homogeneous SIR model with random disease time

I R0 expected number of secondary cases in a population with a
single infected and N − 1 susceptible

I probability p of a single susceptible to be infected is

p =
∑

d
(1− (1− pday )d)fD(d) and R0 = p (N − 1) ,

where fD(d) denotes the pmf of the (discrete) disease length
and pday the infection probablity for a single day.
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Discrete time non-homogeneous model

For disease spread: SIR model for agent based simulation with
overlapping mixing groups.
Usually a discrete disease time distribution is used.

For information spread (eg. in social networks):
Independent cascade models.
Constant “active” time is assumed to be equal to one time-step.

model parameters: infection probabilities pij .
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Model: general infection structure; disease length = 1

parameters: infection probabilities pij .

I at t = 0: sets I0 (infected) and S0 (susceptible).

I Recursion:
in set St new infections occur according to independent
Bernoulli trials with infection probabilities

pj = 1−
∏
∀ i∈It

(1− pij) for j ∈ St

It+1 is the set of all these newly infected.
St+1 = St\It+1 (remove newly infected from susceptible set)

Rt+1 = Rt ∪It (add old infected to recovered)
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Agent based models with Overlapping Mixing Groups

I special case of the general model defined above

I assumes a structure of the matrix pij , that allows an easy
calibration to real data, especially to census data.

I Typical Mixing Groups:
Community, Neighborhood, Family, School/Work

I popular in the literature

I Disadvantage
Literature claims: Even for R0 no closed form formula
available
I simulation is necessary for all epidemiological quantities
I flu spread models for huge populations (eg. for whole USA)
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Stochastic Disease Spread Models 27 / 45



Markovian SIR Model Erlang Numerical Results Discrete Time non-homogeneous individual R0 Interventions

Overlapping Mixing Groups

I The infection probabilities pj depend on the number of
infected individuals in the respective mixing groups

I The probability that individual j with Ic , In, Iw , and If infected
individuals in his community, neighborhood, work and family
is infected:

pj = 1− (1− pc)Ic (1− pn)In(1− pw )Iw (1− pf )If

I The total number of newly infected is the sum of independent
not identically distributed Bernoulli variates
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Example A: a Small Population
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Probabilities for Example A:

Probability
in Family

Probability
in Work

Probability
in Community

Disease
Duration

0.2 0.1 0.05 1

pj = 1− (1− pc)Ic (1− pn)In(1− pw )Iw (1− pf )If (3)

I Case: Only Individual 1 is initially infected.

p12 = 1− (1− 0.05)1(1− 0.1)1(1− 0.2)1 = 0.316 (4)
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p1j for i = 1 is the only initially infected

j
Family
Number

Work
Number Community

Mixing
Groups p1j

2 1 11 100 F-W-C 0.316

3 1 - 100 F-C 0.240

4 2 11 100 W-C 0.145

5 2 - 100 C 0.05

6 3 11 100 W-C 0.145

7 3 12 100 C 0.05

8 4 12 100 C 0.05

9 4 - 100 C 0.05

10 5 12 100 C 0.05

11 6 12 100 C 0.05

12 7 11 100 W-C 0.145∑
=1.291

⇒ expected number of people infected by i = 1 is R0(1) = 1.291
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For non-homogeneous case: ”Individual R0(i)”

R0(i) =
∑

j 6=i pij

ID
Family
Number

Work
Number Community R0(i)

1 1 11 100 1.291

2 1 11 100 1.291

3 1 - 100 0.93

4 2 11 100 1.12

5 2 - 100 0.74

6 3 11 100 1.12

7 3 12 100 1.025

8 4 12 100 1.025

9 4 - 100 0.74

10 5 12 100 0.835

11 6 12 100 0.835

12 7 11 100 0.93
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How to define population-R0?

Agent based simulation literature suggests to use as
“population-R0”
the average of all individual R0-values.
Not sensible !!! can lead to outbreaks for R0 < 1.

I necessary to interpret all individual R0 values

I outbreak impossible only for maxi R0(i) < 1.
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Intervention Strategies

I Vaccination

I Quarantine

I Antiviral Drugs

Literature: Assesses intervention strategies using simulation.

I The calculation of individual R0-values allows to assess many
intervention strategies by comparing the change the
intervention implies for the individual R0 values.

I Check if maxi R0(i) < 1 to identify interventions that
guarantee that outbreaks are impossible.
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Example B: Population for Intervention Analysis

Example of Longini et al. (2004)
four neighborhoods of 500 people; each neighborhood with:

I 100 singles

I 50 families of size two

I 34 families of size three

I 37 families of size four

I 5 families of size five

I 3 families of size six

I Single family of size seven

I Disease length 2, 3, 4, 5, and 6 with probabilities 0.21, 0.19,
0.18, 0.22, and 0.2.

Wolfgang Hörmann
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Assessing Vaccination Strategies

I Vaccination before the start of the infection

I assumption: All individuals develop immunity

Sequential optimal vaccination strategy:
vaccinate person with maximal individual R0-value.

We compare the distribution of the individual R0 for

I no vaccination

I random vaccination of 50% of the population

I optimal vaccination of 50% of the population
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Figure: Individual R0; case without vaccination.
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Figure: Individual R0; case random vaccination of 50%.
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Figure: Individual R0; case optimal vaccination of 50%.

Wolfgang Hörmann
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Assessing Household Quarantine

I Infected individuals stay home after the first day; they have no
contacts outside of their family.

I Not very effective because disease spread on the first day of
infection is possible.
In addition in the spread of influenza the disease is also spread
by people who are infected but have no symptoms of flu.
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Figure: Household quarantine of 30% of all infected
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Figure: Household quarantine of 60% of all infected
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Assessing the Use of Antiviral Drugs

I The use of antiviral prevents infection given exposure

I Reduces
1) probability of transmission to others given infection
2) probability of being infected given exposure

I Not very effective as they are not assumed to make infection
impossible
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Figure: R0 distribution for combining antiviral drugs and quarantine
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Stochastic Disease Spread Models 44 / 45



Markovian SIR Model Erlang Numerical Results Discrete Time non-homogeneous individual R0 Interventions

THANK YOU..
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