Assessing the dependence of high-dimensional time series via sample autocovariances and correlations

Johannes Heiny

Ruhr-University Bochum

Joint work with
Thomas Mikosch (Copenhagen), Richard Davis (Columbia), Alex Aue, Debashis Paul (UC Davis) and Jianfeng Yao (HKU).

Vienna, 23.11.2018

Motivation: S\&P 500 Index

Figure: Estimated tail indices of log-returns of 478 time series in the S\&P 500 index.

Setup

- Data matrix $\boldsymbol{X}=\boldsymbol{X}_{p}: p \times n$ matrix with iid centered columns.

$$
\boldsymbol{X}=\left(X_{i t}\right)_{i=1, \ldots, p ; t=1, \ldots, n}
$$

- Sample covariance matrix $S=\frac{1}{n} \boldsymbol{X} \boldsymbol{X}^{\prime}$
- Ordered eigenvalues of S

$$
\lambda_{1}(\boldsymbol{S}) \geq \lambda_{2}(\boldsymbol{S}) \geq \cdots \geq \lambda_{p}(\boldsymbol{S})
$$

- Applications:
- Principal Component Analysis
- Linear Regression, ...

Sample Correlation Matrix

- Sample correlation matrix \mathbf{R} with entries

$$
R_{i j}=\frac{S_{i j}}{\sqrt{S_{i i} S_{j j}}}, \quad i, j=1, \ldots, p
$$

and eigenvalues

$$
\lambda_{1}(\mathbf{R}) \geq \lambda_{2}(\mathbf{R}) \geq \cdots \geq \lambda_{p}(\mathbf{R})
$$

Data structure:

$$
\boldsymbol{X}_{p}=\mathbf{A}_{p} \mathbf{Z}_{p}
$$

where \mathbf{A}_{p} is a deterministic $p \times p$ matrix such that $\left(\left\|\mathbf{A}_{p}\right\|\right)$ is bounded and

$$
\mathbf{Z}_{p}=\left(Z_{i t}\right)_{i=1, \ldots, p ; t=1, \ldots, n}
$$

has iid, centered entries with unit variance (if finite).

Data structure:

$$
\boldsymbol{X}_{p}=\mathbf{A}_{p} \mathbf{Z}_{p}
$$

where \mathbf{A}_{p} is a deterministic $p \times p$ matrix such that $\left(\left\|\mathbf{A}_{p}\right\|\right)$ is bounded and

$$
\mathbf{Z}_{p}=\left(Z_{i t}\right)_{i=1, \ldots, p ; t=1, \ldots, n}
$$

has iid, centered entries with unit variance (if finite).

- Population covariance matrix $\boldsymbol{\Sigma}=\mathbf{A A}^{\prime}$.
- Population correlation matrix

$$
\boldsymbol{\Gamma}=(\operatorname{diag}(\boldsymbol{\Sigma}))^{-1 / 2} \boldsymbol{\Sigma}(\operatorname{diag}(\boldsymbol{\Sigma}))^{-1 / 2}
$$

- Note: $\mathbb{E}[\boldsymbol{S}]=\boldsymbol{\Sigma}$ but $\mathbb{E}\left[R_{i j}\right]=\Gamma_{i j}+O\left(n^{-1}\right)$.

	Sample	Population
Covariance matrix	\boldsymbol{S}	$\boldsymbol{\Sigma}$
Correlation matrix	\mathbf{R}	$\boldsymbol{\Gamma}$

	Sample	Population
Covariance matrix	\boldsymbol{S}	$\boldsymbol{\Sigma}$
Correlation matrix	\mathbf{R}	$\boldsymbol{\Gamma}$

Growth regime:

$$
n=n_{p} \rightarrow \infty \quad \text { and } \quad \frac{p}{n_{p}} \rightarrow \gamma \in[0, \infty), \quad \text { as } p \rightarrow \infty
$$

- High dimension: $\lim _{p \rightarrow \infty} \frac{p}{n} \in(0, \infty)$
- Moderate dimension: $\lim _{p \rightarrow \infty} \frac{p}{n}=0$

Main Result

Approximation Under Finite Fourth Moment

Assume $\boldsymbol{X}=\mathbf{A Z}$ and $\mathbb{E}\left[Z_{11}^{4}\right]<\infty$. Then we have as $p \rightarrow \infty$,

$$
\sqrt{n / p}\|\operatorname{diag}(\boldsymbol{S})-\operatorname{diag}(\boldsymbol{\Sigma})\| \xrightarrow{\text { a.s. }} 0 .
$$

Approximation Under Infinite Fourth Moment

Assume $\boldsymbol{X}=\mathbf{Z}$ and $\mathbb{E}\left[Z_{11}^{4}\right]=\infty$. Then we have as $p \rightarrow \infty$,

$$
\underbrace{c_{n p}}_{\rightarrow 0}\|\boldsymbol{S}-\operatorname{diag}(\boldsymbol{S})\| \xrightarrow{\text { a.s. }} 0 .
$$

Main result

Assume $\boldsymbol{X}=\mathbf{A Z}$ and $\mathbb{E}\left[Z_{11}^{4}\right]<\infty$. Then we have as $p \rightarrow \infty$,

$$
\sqrt{n / p}\|\operatorname{diag}(\boldsymbol{S})-\operatorname{diag}(\boldsymbol{\Sigma})\| \xrightarrow{\text { a.s. }} 0,
$$

and

$$
\sqrt{n / p}\left\|(\operatorname{diag}(\boldsymbol{S}))^{-1 / 2}-(\operatorname{diag}(\boldsymbol{\Sigma}))^{-1 / 2}\right\| \xrightarrow{\text { a.s. }} 0 .
$$

Main result

Assume $\boldsymbol{X}=\mathbf{A Z}$ and $\mathbb{E}\left[Z_{11}^{4}\right]<\infty$. Then we have as $p \rightarrow \infty$,

$$
\sqrt{n / p}\|\operatorname{diag}(\boldsymbol{S})-\operatorname{diag}(\boldsymbol{\Sigma})\| \xrightarrow{\text { a.s. }} 0,
$$

and

$$
\sqrt{n / p}\left\|(\operatorname{diag}(\boldsymbol{S}))^{-1 / 2}-(\operatorname{diag}(\boldsymbol{\Sigma}))^{-1 / 2}\right\| \xrightarrow{\text { a.s. }} 0 .
$$

Relevance: Note that

$$
\mathbf{R}=(\operatorname{diag}(\boldsymbol{S}))^{-1 / 2} \boldsymbol{S}(\operatorname{diag}(\boldsymbol{S}))^{-1 / 2}
$$

$\boldsymbol{S}=\frac{1}{n} \boldsymbol{X} \boldsymbol{X}^{\prime}$ and $\mathbf{R}=\boldsymbol{Y} \boldsymbol{Y}^{\prime}$, where

$$
\boldsymbol{Y}=\left(Y_{i j}\right)_{p \times n}=\left(\frac{X_{i j}}{\sqrt{\sum_{t=1}^{n} X_{i t}^{2}}}\right)_{p \times n}
$$

In general, any two entries of \mathbf{Y} are dependent.

A Comparison Under Finite Fourth Moment

Approximation of the sample correlation matrix

Assume $\boldsymbol{X}=\mathbf{A Z}$ and $\mathbb{E}\left[Z_{11}^{4}\right]<\infty$. Then we have

$$
\sqrt{\frac{n}{p}}\|\mathbf{R}-\underbrace{(\operatorname{diag}(\boldsymbol{\Sigma}))^{-1 / 2} \boldsymbol{S}(\operatorname{diag}(\boldsymbol{\Sigma}))^{-1 / 2}}_{\boldsymbol{S}^{\mathbf{Q}}}\| \xrightarrow{\text { a.s. }} 0
$$

A Comparison Under Finite Fourth Moment

Approximation of the sample correlation matrix

Assume $\boldsymbol{X}=\mathbf{A Z}$ and $\mathbb{E}\left[Z_{11}^{4}\right]<\infty$. Then we have

$$
\sqrt{\frac{n}{p}}\|\mathbf{R}-\underbrace{(\operatorname{diag}(\boldsymbol{\Sigma}))^{-1 / 2} \boldsymbol{S}(\operatorname{diag}(\boldsymbol{\Sigma}))^{-1 / 2}}_{\boldsymbol{S}^{\mathbf{Q}}}\| \xrightarrow{\text { a.s. }} 0
$$

Spectrum comparison
An application of Weyl's inequality yields

$$
\sqrt{\frac{n}{p}} \max _{i=1, \ldots, p}\left|\lambda_{i}(\mathbf{R})-\lambda_{i}\left(\boldsymbol{S}^{\mathbf{Q}}\right)\right| \leq \sqrt{\frac{n}{p}}\left\|\mathbf{R}-\boldsymbol{S}^{\mathbf{Q}}\right\| \xrightarrow{\text { a.s. }} 0 .
$$

A Comparison Under Finite Fourth Moment

Approximation of the sample correlation matrix

Assume $\boldsymbol{X}=\mathbf{A Z}$ and $\mathbb{E}\left[Z_{11}^{4}\right]<\infty$. Then we have

$$
\sqrt{\frac{n}{p}}\|\mathbf{R}-\underbrace{(\operatorname{diag}(\boldsymbol{\Sigma}))^{-1 / 2} \boldsymbol{S}(\operatorname{diag}(\boldsymbol{\Sigma}))^{-1 / 2}}_{\boldsymbol{S}^{\mathbf{Q}}}\| \xrightarrow{\text { a.s. }} 0
$$

Spectrum comparison
An application of Weyl's inequality yields

$$
\sqrt{\frac{n}{p}} \max _{i=1, \ldots, p}\left|\lambda_{i}(\mathbf{R})-\lambda_{i}\left(\boldsymbol{S}^{\mathbf{Q}}\right)\right| \leq \sqrt{\frac{n}{p}}\left\|\mathbf{R}-\boldsymbol{S}^{\mathbf{Q}}\right\| \xrightarrow{\text { a.s. }} 0 .
$$

Operator norm consistent estimation

$$
\|\mathbf{R}-\mathbf{\Gamma}\|=O(\sqrt{p / n}) \quad \text { a.s. }
$$

- Empirical spectral distribution of $p \times p$ matrix \mathbf{C} with real eigenvalues $\lambda_{1}(\mathbf{C}), \ldots, \lambda_{p}(\mathbf{C})$:

$$
F_{\mathbf{C}}(x)=\frac{1}{p} \sum_{i=1}^{p} \mathbb{1}_{\left\{\lambda_{i}(\mathbf{C}) \leq x\right\}}, \quad x \in \mathbb{R}
$$

- Stieltjes transform:

$$
s_{\mathbf{C}}(z)=\int_{\mathbb{R}} \frac{1}{x-z} \mathrm{~d} F_{\mathbf{C}}(x)=\frac{1}{p} \operatorname{tr}(\mathbf{C}-z \mathbf{I})^{-1}, \quad z \in \mathbb{C}^{+}
$$

- Limiting spectral distribution:

Weak convergence of $\left(F_{\mathbf{C}_{p}}\right)$ to distribution function F a.s.

Limiting Spectral Distribution of \mathbf{R}

Assume $\boldsymbol{X}=\mathbf{A Z}, \mathbb{E}\left[Z_{11}^{4}\right]<\infty$ and that F_{Γ} converges to a probability distribution H.
(1) If $p / n \rightarrow \gamma \in(0, \infty)$, then $F_{\mathbf{R}}$ converges weakly to a distribution function $F_{\gamma, H}$, whose Stieltjes transform s satisfies

$$
s(z)=\int \frac{\mathrm{d} H(t)}{t(1-\gamma-\gamma s(z))-z}, \quad z \in \mathbb{C}^{+} .
$$

(2) If $p / n \rightarrow 0$, then $F_{\sqrt{n / p}(\mathbf{R}-\boldsymbol{\Gamma})}$ converges weakly to a distribution function F, whose Stieltjes transform s satisfies

$$
s(z)=-\int \frac{\mathrm{d} H(t)}{z+t \widetilde{s}(z)}, \quad z \in \mathbb{C}^{+}
$$

where \widetilde{s} is the unique solution to $\widetilde{s}(z)=-\int(z+t \widetilde{s}(z))^{-1} t \mathrm{~d} H(t)$ and $z \in \mathbb{C}^{+}$.

Special Case A = I

Simplified assumptions:

(1) iid, symmetric entries $X_{i t} \stackrel{\text { d }}{=} X$
(2) Growth regime: $\lim _{p \rightarrow \infty} \frac{p}{n}=\gamma \in[0,1]$

Marčenko-Pastur and Semicircle Law

- Marčenko-Pastur law F_{γ} has density

$$
\begin{aligned}
& \qquad f_{\gamma}(x)= \begin{cases}\frac{1}{2 \pi x \gamma} \sqrt{(b-x)(x-a)}, & \text { if } x \in[a, b], \\
0, & \text { otherwise, }\end{cases} \\
& \text { where } a=(1-\sqrt{\gamma})^{2} \text { and } b=(1+\sqrt{\gamma})^{2} .
\end{aligned}
$$

Marčenko-Pastur and Semicircle Law

- Marčenko-Pastur law F_{γ} has density

$$
f_{\gamma}(x)= \begin{cases}\frac{1}{2 \pi x \gamma} \sqrt{(b-x)(x-a)}, & \text { if } x \in[a, b] \\ 0, & \text { otherwise }\end{cases}
$$

$$
\text { where } a=(1-\sqrt{\gamma})^{2} \text { and } b=(1+\sqrt{\gamma})^{2} \text {. }
$$

- Semicircle law $S C$

Extreme Eigenvalues

Largest and smallest eigenvalues of \mathbf{R}
If $p / n \rightarrow \gamma \in[0,1]$ and $\mathbb{E}\left[X^{4}\right]<\infty$, then

$$
\sqrt{n / p}\left(\lambda_{1}(\mathbf{R})-1\right) \xrightarrow{\text { a.s. }} 2+\sqrt{\gamma}
$$

and

$$
\sqrt{n / p}\left(\lambda_{p}(\mathbf{R})-1\right) \xrightarrow{\text { a.s. }}-2+\sqrt{\gamma} .
$$

Extreme Eigenvalues

Largest and smallest eigenvalues of \mathbf{R}

If $p / n \rightarrow \gamma \in[0,1]$ and $\mathbb{E}\left[X^{4}\right]<\infty$, then

$$
\sqrt{n / p}\left(\lambda_{1}(\mathbf{R})-1\right) \xrightarrow{\text { a.s. }} 2+\sqrt{\gamma}
$$

and

$$
\sqrt{n / p}\left(\lambda_{p}(\mathbf{R})-1\right) \xrightarrow{\text { a.s. }}-2+\sqrt{\gamma} .
$$

- Earlier: $\|\mathbf{R}-\mathbf{\Gamma}\|=O(\sqrt{p / n})$ a.s.
- In this case:

$$
\sqrt{n / p}\|\mathbf{R}-\mathbf{\Gamma}\| \xrightarrow{\text { a.s. }} 2+\sqrt{\gamma} .
$$

Limiting Spectral Distribution

Marčenko-Pastur Theorem

Assume $\mathbb{E}\left[X^{2}\right]=1$. Then $\left(F_{\boldsymbol{S}}\right)$ converges weakly to F_{γ}. If $\mathbb{E}\left[X^{4}\right]<\infty$ and $p / n \rightarrow 0$, then $\left(F_{\sqrt{n / p}(S-\mathbf{I})}\right)$ converges weakly to $S C$.

Limiting Spectral Distribution

Marčenko-Pastur Theorem

Assume $\mathbb{E}\left[X^{2}\right]=1$. Then $\left(F_{\boldsymbol{S}}\right)$ converges weakly to F_{γ}. If $\mathbb{E}\left[X^{4}\right]<\infty$ and $p / n \rightarrow 0$, then $\left(F_{\sqrt{n / p}(S-\mathbf{I})}\right)$ converges weakly to $S C$.

JH (2018+)

Under the domain of attraction type-condition for the Gaussian law,

$$
\lim _{p \rightarrow \infty} \frac{n}{p} n \mathbb{E}\left[Y_{11}^{4}\right]=0
$$

the sequence $\left(F_{\mathbf{R}}\right)$ converges weakly to F_{γ}.
If in addition $p / n \rightarrow 0$, then $\left(F_{\sqrt{n / p}(\mathbf{R}-\mathbf{I})}\right)$ converges weakly to $S C$.

Here $Y_{i j}=\frac{X_{i j}}{\sqrt{\sum_{t=1}^{n} X_{i t}^{2}}}$.

Simulation Study

- Regular variation with index $\alpha>0$:

$$
\mathbb{P}(|X|>x)=x^{-\alpha} L(x),
$$

where L is a slowly varying function.

- This implies $\mathbb{E}\left[|X|^{\alpha+\varepsilon}\right]=\infty$ for any $\varepsilon>0$.

Simulation Study

- Regular variation with index $\alpha>0$:

$$
\mathbb{P}(|X|>x)=x^{-\alpha} L(x),
$$

where L is a slowly varying function.

- This implies $\mathbb{E}\left[|X|^{\alpha+\varepsilon}\right]=\infty$ for any $\varepsilon>0$.
- Procedure:
(1) Simulate X
(2) Plot histograms of $\left(\lambda_{i}(\mathbf{R})\right)$ and $\left(\lambda_{i}(\boldsymbol{S})\right)$
(3) Compare with Marčenko-Pastur density

(a) Sample correlation

(b) Sample covariance

$$
\alpha=6, n=2000, p=1000
$$

Infinite Fourth Moment

- Regular variation with index $\alpha \in(0,4)$
- Normalizing sequence $\left(a_{n p}^{2}\right)$ such that

$$
n p \mathbb{P}\left(X^{2}>a_{n p}^{2} x\right) \rightarrow x^{-\alpha / 2}, \quad \text { as } n \rightarrow \infty \text { for } x>0
$$

Then $a_{n p}=(n p)^{1 / \alpha} \ell(n p)$ for a slowly varying function ℓ.

Reduction to Diagonal

Diagonal

\boldsymbol{X} with iid regularly varying entries $\alpha \in(0,4)$ and $p=n^{\beta} \ell(n)$ with $\beta \in[0,1]$. We have

$$
a_{n p}^{-2}\left\|\boldsymbol{X} \boldsymbol{X}^{\prime}-\operatorname{diag}\left(\boldsymbol{X} \boldsymbol{X}^{\prime}\right)\right\| \xrightarrow{\mathbb{P}} 0
$$

where $\|\cdot\|$ denotes the spectral norm.

$$
\left(\boldsymbol{X} \boldsymbol{X}^{\prime}\right)_{i j}=\sum_{t=1}^{n} X_{i t} X_{j t}
$$

Eigenvalues

- Weyl's inequality

$$
\max _{i=1, \ldots, p}\left|\lambda_{i}(\mathbf{A}+\mathbf{B})-\lambda_{i}(\mathbf{A})\right| \leq\|\mathbf{B}\| .
$$

- Choose $\mathbf{A}+\mathbf{B}=\boldsymbol{X} \boldsymbol{X}^{\prime}$ and $\mathbf{A}=\operatorname{diag}\left(\boldsymbol{X} \boldsymbol{X}^{\prime}\right)$ to obtain

$$
a_{n p}^{-2} \max _{i=1, \ldots, p}\left|\lambda_{i}\left(\boldsymbol{X} \boldsymbol{X}^{\prime}\right)-\lambda_{i}\left(\operatorname{diag}\left(\boldsymbol{X} \boldsymbol{X}^{\prime}\right)\right)\right| \xrightarrow{\mathbb{P}} 0, \quad n \rightarrow \infty
$$

- Note: Limit theory for $\left(\lambda_{i}(\boldsymbol{S})\right)$ reduced to $\left(S_{i i}\right)$.

Example: Eigenvalues

Figure: Smoothed histogram based on 20000 simulations of the approximation error for the normalized eigenvalue $a_{n p}^{-2} \lambda_{1}(\boldsymbol{S})$ for entries $X_{i t}$ with $\alpha=1.6, \beta=1, n=1000$ and $p=200$.

Eigenvectors

- \mathbf{v}_{k} unit eigenvector of \boldsymbol{S} associated to $\lambda_{k}(\boldsymbol{S})$
- Unit eigenvectors of $\operatorname{diag}(\boldsymbol{S})$ are canonical basisvectors \mathbf{e}_{j}.

Eigenvectors

\boldsymbol{X} with iid regularly varying entries with index $\alpha \in(0,4)$ and $p_{n}=n^{\beta} \ell(n)$ with $\beta \in[0,1]$. Then for any fixed $k \geq 1$,

$$
\left\|\mathbf{v}_{k}-\mathbf{e}_{L_{k}}\right\|_{\ell_{2}} \xrightarrow{\mathbb{P}} 0, \quad n \rightarrow \infty .
$$

Localization vs. Delocalization

Figure: $X \sim$ Pareto(0.8)

Figure: $X \sim N(0,1)$

Components of eigenvector $\mathbf{v}_{1} . p=200, n=1000$.

Point Process of Normalized Eigenvalues

Point process convergence

$$
N_{n}=\sum_{i=1}^{p} \delta_{a_{n p}^{-2} \lambda_{i}\left(\boldsymbol{X} \boldsymbol{X}^{\prime}\right)} \xrightarrow{\mathrm{d}} \sum_{i=1}^{\infty} \delta_{\Gamma_{i}^{-2 / \alpha}}=N
$$

The limit is a PRM on $(0, \infty)$ with mean measure $\mu(x, \infty)=x^{-\alpha / 2}, x>0$, and

$$
\Gamma_{i}=E_{1}+\cdots+E_{i}, \quad\left(E_{i}\right) \text { iid standard exponential. }
$$

Point Process of Normalized Eigenvalues

- Limiting distribution: For $k \geq 1$,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \mathbb{P}\left(a_{n p}^{-2} \lambda_{k} \leq x\right) & =\lim _{n \rightarrow \infty} \mathbb{P}\left(N_{n}(x, \infty)<k\right)=\mathbb{P}(N(x, \infty)<k) \\
& =\sum_{s=0}^{k-1} \frac{\left(x^{-\alpha / 2}\right)^{s}}{s!} \mathrm{e}^{-x^{-\alpha / 2}}, \quad x>0
\end{aligned}
$$

Point Process of Normalized Eigenvalues

- Limiting distribution: For $k \geq 1$,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \mathbb{P}\left(a_{n p}^{-2} \lambda_{k} \leq x\right) & =\lim _{n \rightarrow \infty} \mathbb{P}\left(N_{n}(x, \infty)<k\right)=\mathbb{P}(N(x, \infty)<k) \\
& =\sum_{s=0}^{k-1} \frac{\left(x^{-\alpha / 2}\right)^{s}}{s!} \mathrm{e}^{-x^{-\alpha / 2}}, \quad x>0
\end{aligned}
$$

- Largest eigenvalue

$$
\frac{n}{a_{n p}^{2}} \lambda_{1}(\boldsymbol{S}) \xrightarrow{\mathrm{d}} \Gamma_{1}^{-\alpha / 2}
$$

where the limit has a Fréchet distribution with parameter $\alpha / 2$. Soshnikov (2006), Auffinger et al. (2009), Auffinger and Tang (2016), Davis et al. (2014, 2016 ${ }^{2}$), JH and Mikosch (2016)

$\alpha=3.99$

(b) Sample covariance

$$
\alpha=3.99, n=2000, p=1000
$$

$\alpha=3$

(a) Sample correlation

(b) Sample covariance

$$
\alpha=3, n=2000, p=1000
$$

$\alpha=2.1$

(a) Sample correlation

(b) Sample covariance

$$
\alpha=2.1, n=10000, p=1000
$$

Heavy Tails and Dependence

$\left(Z_{i t}\right)$: iid field of regularly varying random variables.

- Stochastic volatility model:

$$
\boldsymbol{X}=\left(Z_{i t} \sigma_{i t}^{(n)}\right)_{p \times n}
$$

Heavy Tails and Dependence

$\left(Z_{i t}\right)$: iid field of regularly varying random variables.

- Stochastic volatility model:

$$
\boldsymbol{X}=\left(Z_{i t} \sigma_{i t}^{(n)}\right)_{p \times n}
$$

- Generate deterministic covariance structure A:

$$
\boldsymbol{X}=\mathbf{A}^{1 / 2} \mathbf{Z}
$$

Davis et al. (2014)

Heavy Tails and Dependence

$\left(Z_{i t}\right)$: iid field of regularly varying random variables.

- Dependence among rows and columns:

$$
X_{i t}=\sum_{l=0}^{\infty} \sum_{k=0}^{\infty} h_{k l} Z_{i-k, t-l}
$$

with some constants $h_{k l}$. Davis et al. (2016)

Heavy Tails and Dependence

$\left(Z_{i t}\right)$: iid field of regularly varying random variables.

- Dependence among rows and columns:

$$
X_{i t}=\sum_{l=0}^{\infty} \sum_{k=0}^{\infty} h_{k l} Z_{i-k, t-l}
$$

with some constants $h_{k l}$. Davis et al. (2016)

- Relation to iid case:

$$
\boldsymbol{X} \boldsymbol{X}^{\prime}=\sum_{l_{1}, l_{2}=0}^{\infty} \sum_{k_{1}, k_{2}=0}^{\infty} h_{k_{1} l_{1}} h_{k_{2} l_{2}} \mathbf{Z}\left(k_{1}, l_{1}\right) \mathbf{Z}^{\prime}\left(k_{2}, l_{2}\right)
$$

where

$$
\mathbf{Z}(k, l)=\left(Z_{i-k, t-l}\right)_{i=1, \ldots, p ; t=1, \ldots, n}, \quad l, k \in \mathbb{Z}
$$

Heavy Tails and Dependence

($Z_{i t}$): iid field of regularly varying random variables.

- Dependence among rows and columns:

$$
X_{i t}=\sum_{l=0}^{\infty} \sum_{k=0}^{\infty} h_{k l} Z_{i-k, t-l}
$$

with some constants $h_{k l}$. Davis et al. (2016)

- Relation to iid case:

$$
\boldsymbol{X} \boldsymbol{X}^{\prime}=\sum_{l_{1}, l_{2}=0}^{\infty} \sum_{k_{1}, k_{2}=0}^{\infty} h_{k_{1} l_{1}} h_{k_{2} l_{2}} \mathbf{Z}\left(k_{1}, l_{1}\right) \mathbf{Z}^{\prime}\left(k_{2}, l_{2}\right)
$$

where

$$
\mathbf{Z}(k, l)=\left(Z_{i-k, t-l}\right)_{i=1, \ldots, p ; t=1, \ldots, n}, \quad l, k \in \mathbb{Z}
$$

- Location of squares:

$$
\boldsymbol{M}_{i j}=\sum_{l \in \mathbb{Z}} h_{i l} h_{j l}, \quad i, j \in \mathbb{Z}
$$

Autocovariance Matrices

- For $s \geq 0$,

$$
\boldsymbol{X}_{n}(s)=\left(X_{i, t+s}\right)_{i=1, \ldots, p ; t=1, \ldots, n}, \quad n \geq 1
$$

Then $\boldsymbol{X}_{n}=\boldsymbol{X}_{n}(0)$.

- Autocovariance matrix for lag s

$$
\boldsymbol{X}_{n}(0) \boldsymbol{X}_{n}(s)^{\prime}
$$

- Limit theory for singular values of such matrices.

Autocovariance eigenvectors

Autocovariance eigenvectors

Thank you!

