
The Elicitation Problem
The Quest of Meaningful Forecast Comparison

Dr. Tobias Fissler
Chapman Fellow at Imperial College London

9 November 2018

Dr. T. Fissler (Imperial College London) The Elicitation Problem 9 November 2018 1 / 34



Evaluating and Comparing Forecasts

Forecasts for uncertain future events are ubiquitous and at the heart
of strategic decision-making in different contexts:

§ business
§ government
§ risk-management
§ meteorology

Having m different sources of forecasts, one has the
prediction-observation-sequences(

X(i)
t ,Yt

)
t=1,...,N i = 1, . . . ,m.

§ X(i)
t P A (Action domain). For point forecasts, A = R or A = Rk. For

probabilisitic forecasts, A = F a space of probability distributions.
§ Yt P O (Observation domain). Usually O = Rd.
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Evaluating and Comparing Forecasts
Two main tasks:

§ forecast validation
§ forecast comparison/selection.

Commonly, one compares competing forecasts in terms of scoring
functions (loss functions)

S : A ˆ O Ñ R, (x, y) ÞÑ S(x, y).

Examples: S(x, y) = |x ´ y|, S(x, y) = (x ´ y)2.
Ranking of the forecasters in terms of realised scores:

S(1)
N =

1

N

N
ÿ

t=1

S
(
X(1)

t ,Yt
) ?

ž S(2)
N =

1

N

N
ÿ

t=1

S
(
X(2)

t ,Yt
)

Ranking depends on the choice of the scoring function!
One should disclose the specific choice of the scoring function to the
forecasters ex ante.
⇝ We need guidance in the choice of the scoring function.
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Consistency and Elicitability

Specification in terms of
(i) an intrinsically meaningful scoring function (reflecting the actual

economic costs); or
(ii) a property (mean, median, variance, a risk measure) of the underlying

distributions of the observation Yt.
That is a functional T : F Ñ A. Here, F is a class of potential
distributions of the observations.

Using a Law of Large Numbers (under ergodicity / mixing
assumptions), a forecaster wants to minimise their expected score

EF [S(x,Y)], where Y „ F.

The scoring function should be “unbiased”, incentivising truthful
forecasts.
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Elicitability

Definition 1 (Consistency)
A scoring function S : A ˆ O Ñ R is strictly F-consistent for some
functional T : F Ñ A if

EF[S(T(F),Y)] ă EF[S(x,Y)]

for any F P F and any x P A, x ‰ T(F).

Definition 2 (Elicitability)
A functional T : F Ñ A is elicitable if there is a strictly F-consistent
scoring function S : A ˆ O Ñ R for T. Then

T(F) = arg min
xPA

EF[S(x,Y)].
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Relevance and Applications

Mathematical / Statistical Applications:
§ Forecast evaluation, comparison and ranking; model selection
§ Regression
§ M-estimation

Mathematical Finance; banking; regulation:
§ Quantitative risk management;
§ Backtesting

Economics; econometrics; business
Meteorology
Machine Learning
Politics
Sociology (⇝ ‘Wisdom of the Crowds’)
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Regression
Classic situation: There is some parametric model m : Θ ˆ R Ñ R and we
assume that there is some true parameter θ˚ P Θ such that

Y = mθ˚(X) + ε, where E[ε|X] = 0. (1)

Equivalent form of (1):
E[Y|X] = mθ˚(X).

Find an estimator θ̂n for θ˚ by

θ̂n = arg min
θPΘ

1

n

n
ÿ

i=1

(mθ(Xi) ´ Yi)
2.

Relying in the fact that

θ˚ P arg min
θPΘ

E(mθ(X) ´ Y)2
␣

θ˚ P arg min
θPΘ

E
[
(mθ(X) ´ Y)2|X

](
However, instead of squared loss, we could use any strictly consistent
scoring function for the mean functional.
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Regression II

General situation: There is some parametric model m : Θ ˆ Rℓ Ñ Rk and
we assume that there is some true parameter θ˚ P Θ such that

T(L(Y | X)) = mθ˚(X).

Assume that S : Rk ˆRd Ñ R is a strictly consistent scoring function for T.
Find an estimator θ̂n for θ˚ by

θ̂n = arg min
θPΘ

1

n

n
ÿ

i=1

S(mθ(Xi),Yi).

Relying in the fact that

θ˚ P arg min
θPΘ

E
[
S(mθ(X),Y)

] ␣

θ˚ P arg min
θPΘ

E
[
S(mθ(X),Y)|X

](
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The Elicitation Problem
Fix some functional T : F Ñ A.

(i) Is T elicitable?
(ii) What is the class of (strictly) consistent scoring functions for T ?
(iii) What is a particularly good choice of a scoring function?
(iv) What to do if T is not elicitable?

T S(x, y)
mean (x ´ y)2

median |x ´ y|

τ -expectile |1ty ď xu ´ τ |(x ´ y)2

α-quantile |1ty ď xu ´ α| |x ´ y|

variance ˆ

Expected Shortfall ˆ

(mean, variance) ✓
(Value at Risk, Expected Shortfall) ✓1

identity (probabilistic forecast) S(F, y) = ´ log(f (y))

1As shown in Fissler and Ziegel (2016, Annals of Statistics).Dr. T. Fissler (Imperial College London) The Elicitation Problem 9 November 2018 9 / 34
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Main Achievements
Main contributions to the Elicitation Problem for vector-valued and set-valued
functionals.

(i) Necessary characterization of strictly consistent scoring functions (Osband’s
Principle).
⇝ Multiple quantiles / expectiles. (Fissler and Ziegel, 2016; AoS)

(ii) Value at Risk and Expected Shortfall are jointly elicitable.
(Characterization of strictly consistent scoring functions also for spectral risk
measures with finite support.) (Fissler and Ziegel, 2016; AoS)

(iii) Clarification of the role of elicitability for backtesting.
(Fissler, Ziegel and Gneiting, 2016; Risk)

(iv) Order-sensitivity, convexity and equivariance of scoring functions.
(Fissler and Ziegel, 2017)

(v) Semiparametric efficiency bounds for M- and Z-estimators of multidimensional
functionals.
(Dimitriadis, Fissler and Ziegel, 2018+)

(vi) Dichotomy concerning the elicitability of set-valued functionals.
(Fissler, Hlavinová and Rudloff, 2018+)

(vii) Elicitability and identifiability results for systemic risk measures.
(Fissler, Hlavinová and Rudloff, 2018+)

Brief flavour of (i), (ii), (iii), and (vi).
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One-dimensional functionals

Theorem 3 (Convex level sets, Osband, 1985)
Let T : F Ñ A be an elicitable functional and F be convex. Then, for any
a P A, the level sets

T´1(tau) Ď F

are convex.

Remarks:

This shows that the variance or ES are generally not elicitable.

Var(δx) = Var(δy) = 0, Var
(
λδx + (1 ´ λ)δy

)
= λ(1 ´ λ)(x ´ y)2 .

Steinwart et al. (2014) showed that for k = 1 and under some
regularity assumptions on T, cls are also sufficient for elicitability.
This argument is independent of the dimension of T.
For k ą 1, it is an open question if cls are sufficient.
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Vector-valued functionals

Lemma 4
If T1, . . . ,Tk are elicitable, then the vector (T1, . . . ,Tk) is elicitable.

Theorem 5 (Revelation Principle, Osband, 1985)
If T : F Ñ A is elicitable then any bijection g ˝ T : F Ñ A1 is elicitable.
If S(x, y) is strictly consistent for T, then S(g´1(x1), y) is strictly consistent
for g ˝ T.

⇝ The pair (mean, variance) is elicitable even though variance alone is
not elicitable.
Question
Are there elicitable functionals that are not a bijection of functionals with
elicitable components only?
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Value at Risk vs. Expected Shortfall

Value at Risk (VaR) and Expected Shortfall (ES) are the most commonly
used risk measures in practice.

Definition 6
Let Y be an asset, Y „ F, α P (0, 1). Then

VaRα(F) := inftx P R : F(x) ě αu,

ESα(F) :=
1

α

ż α

0
VaRβ(F) dβ = EF [Y | Y ď VaRα(Y)].

Profits amount to positive values of Y.
We consider α close to zero (e.g. α = 0.01, or α = 0.025).
Risky positions yield large negative values of VaRα and ESα.
⇝ We work with utility functions instead of risk measures.
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Value at Risk vs. Expected Shortfall (II)

Ongoing debate about the choice of a risk measure for regulatory purposes.

Properties of VaRα as a risk measure:
(+) It is elicitable, if the distributions in F have unique α-quantiles.
(´) It is generally not superadditive (hence, not coherent).
(´) It fails to take the size of losses beyond the level α into account.

Properties of ESα as a risk measure:
(+) By definition, it considers the losses beyond the level α.
(+) It is superadditive (it is a coherent and comonotonically additive risk

measure).
(´) It fails to have convex level sets and is consequently not elicitable; see

Gneiting (2011).
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Theorem 7 ((VaR, ES) – Fissler and Ziegel, AoS, 2016)
Let α P (0, 1). Let F be a class of distribution functions on R with finite
first moments. Let A0 = t(x1, x2) P R2 : x1 ě x2u, then any scoring
function S : A0 ˆ R Ñ R of the form

S(x1, x2, y) =
(
1ty ď x1u ´ α

)
g(x1) ´ 1ty ď x1ug(y) + a(y) (2)

+ ϕ1(x2)
(

x2 +
(
1ty ď x1u ´ α

)x1
α

´ 1ty ď x1u
y
α

)
´ ϕ(x2),

is strictly F-consistent for T = (VaRα,ESα) if
g is increasing;
ϕ is strictly increasing and strictly convex.

Under mild regularity conditions, all strictly F-consistent scoring functions
for (VaRα,ESα) are of the form (2).

⇝ Comparative Backtests of Diebold-Mariano type are possible; see
Fissler, Ziegel and Gneiting (2016; Risk).
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Identification function (moment function) V : A ˆ O Ñ Rk

EF[V(x,Y)] = 0 ðñ x = T(F)

T V(x, y)
mean x ´ y

α-quantile 1ty ď xu ´ α

(VaRα,ESα)

(
1ty ď x1u ´ α

x2 +
(
1ty ď x1u ´ α

)
x1/α ´ 1ty ď x1uy/α

)

Theorem 8 (Osband’s Principle; Fissler and Ziegel, AoS; 2016))
Let T : F Ñ A Ď Rk be a surjective, elicitable and identifiable functional with a strict
F-identification function V : A ˆ O Ñ Rk.
Under some regularity assumptions, for any strictly F-consistent scoring function
S : A ˆ O Ñ R there exists a matrix-valued function h : int(A) Ñ Rkˆk such that

∇x EF[S(x,Y)] = h(x)EF[V(x,Y)]

for all x P int(A) and F P F .
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Second-order Osband’s Principle

Theorem 9 (Osband’s Principle; Fissler and Ziegel, AoS; 2016))
Let T : F Ñ A Ď Rk be a surjective, elicitable and identifiable functional with a strict
F-identification function V : A ˆ O Ñ Rk.
Under some regularity assumptions, for any strictly F-consistent scoring function
S : A ˆ O Ñ R there exists a matrix-valued function h : int(A) Ñ Rkˆk such that

∇x EF[S(x,Y)] = h(x)EF[V(x,Y)]

for all x P int(A) and F P F .

Second-order
Under some smoothness conditions, we can even exploit second order conditions: the
Hessian

∇2
x EF [S(x,Y)] P Rkˆk

must be symmetric for all x P A and for all F P F . Moreover, it must be positive
semi-definite at x = T(F).

⇝ This gives a lot of information about the matrix h(x).
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Osband’s Principle: Examples for k = 1

Proposition 10 (Gneiting, 2011)
(a) Under some regularity conditions, S : R ˆ R Ñ R is a strictly

consistent scoring function for the mean if and only if

S(x, y) = ϕ(y) ´ ϕ(x) + ϕ1(x)(x ´ y) + a(y)
Bx EF [S(x,Y)] = ϕ2(x)(x ´ EF [Y]),

where ϕ : R Ñ R is strictly convex.

(b) Under some regularity conditions, S : R ˆ R Ñ R is a strictly
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Relevance of Elicitability to Backtesting

Prediction-observation triples

(vt, et,Yt)t=1,...,N

vt: VaRα prediction for time point t
et: ESα prediction for time point t
Yt: Realization at time point t
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Traditional backtesting…

…aims at testing of the null hypothesis

HC
0 : “The risk measure estimates at hand are correct.”

Calculate some test statistic T1 based on observations
(vt, et,Yt)t=1,...,N such that we know the distribution of T1

(approximately) under HC
0 .

Backtesting decision: If we do not reject HC
0 , the risk measure

estimates at hand are adequate.

Elicitability is not relevant.
Does not respect increasing information sets.
Does not give guidance for decision between methods.
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Comparative backtesting

H´
0 :

“The risk measure estimates at hand are at least as good as
the ones from the standard procedure.”

Internal model: (vt, et,Yt)t=1,...,N ⇝ SN = 1
N
řN

t=1 S(vt, et,Yt)

Standard model: (v˚
t , e˚

t ,Yt)t=1,...,N ⇝ S˚
N = 1

N
řN

t=1 S(v˚
t , e˚

t ,Yt)

(Asymptotically normal) test statistic:

T2 =
SN ´ S˚

N
σN

,

where σN is a suitable estimate of the standard deviation.
Under H´

0 : Expectation of T2 is ď 0.
Backtesting decision: If we do not reject H´

0 , the risk measure
estimates at hand are acceptable (compared to the standard).

(Diebold and Mariano, 1995, Giacomini and White, 2006)
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Some comments

Elicitability is crucial.
Allows for sensible comparison between methods.
Respects increasing information sets (Holzmann and Eulert, 2014).

HC
0 and H´

0 are anti-conservative: Passing the backtest does not
imply the validity of the respective null hypothesis.
“[...] the null hypothesis is never proved or established, but it is
possibly disproved, in the course of experimentation.” (Fisher, 1949)
We suggest a reversed onus of proof:
Banks are obliged to demonstrate the superiority of the internal
model.
(Similar to regulatory practice in the health sector)
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Conservative comparative backtesting

H+
0 :

“The risk measure estimates at hand are at most as good as
the ones from the standard procedure.”

Internal model: SN = 1
N
řN

t=1 S(vt, et,Yt)

Standard model: S˚
N = 1

N
řN

t=1 S(v˚
t , e˚

t ,Yt)

(Asymptotically normal) test statistic:

T2 =
SN ´ S˚

N
σN

,

where σN is a suitable estimate of the standard deviation.
Under H+

0 : Expectation of T2 is ě 0.
Backtesting decision: If we reject H+

0 , the risk measure estimates at
hand are acceptable (compared to the standard).

(Diebold and Mariano, 1995, Giacomini and White, 2006)
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Three zone approaches
BIS three zone approach for VaRα

Traditional backtest: One-sided binomial test.
Backtesting decision:

Red Yellow Green
p-value very small moderately small sufficiently big

Generalisation of three zone approach for ESα by Costanzino and
Curran (2015).

Three zone approach for comparative backtesting

S̄∗
V,E

1.64 σN 1.64 σN S̄V,E

H−
0 pass fail

H+
0 pass fail
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A numerical illustration
(µt)t=1,...,N iid standard normal,

Yt „ N (µt, 1), conditional on µt.

Scenario A
(vt, et) = (VaRα(N (µt, 1)),ESα(N (µt, 1)))
(v˚

t , e˚
t ) = (VaRα(N (0, 2)),ESα(N (0, 2)))

The internal model is more informative,
hence superior to the standard model.

Scenario B
(vt, et) = (VaRα(N (0, 2)),ESα(N (0, 2)))
(v˚

t , e˚
t ) = (VaRα(N (µt, 1)),ESα(N (µt, 1)))

The standard model is more informative,
hence superior to the internal model.
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A numerical illustration – cont’d

N = 250; 10’000 simulations

Scenario A Green Yellow Red
Traditional VaR0.01 89.35 10.65 0.00
Traditional ES0.025 93.62 6.36 0.02
Comparative VaR0.01 88.23 11.77 0.00
Comparative (VaR0.025,ES0.025) 87.22 12.78 0.00

Scenario B Green Yellow Red
Traditional VaR0.01 89.33 10.67 0.00
Traditional ES0.025 93.80 6.18 0.02
Comparative VaR0.01 0.00 11.77 88.23
Comparative (VaR0.025,ES0.025) 0.00 12.78 87.22
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Summary

Elicitability is not relevant for traditional backtesting.
Elicitability is useful for model selection, estimation, forecast
comparison and ranking.
Comparative backtesting relies on elicitability, using H+

0 it is
conservative in nature and gives (more) incentive to improve
predictions.
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Set-valued functionals
Quantiles

qα(F) = tx P R | lim
tÒx

F(t) ď α ď F(x)u Ă R.

Class of confidence intervals

Iα(F) = t(a, b) P R2 | F(b) ´ F(a) = αu.

Systemic risk measures (Feinstein, Rudloff, Weber, 2017)

R(Y) = tk P Rn
| ρ(Λ(Y + k)) ď 0u.

Further spatial examples: Area of flood, disease, landfall of a
hurricane etc.
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Two modes of elicitability
Example of the α-quantile

qα(F) = tx P R | lim
tÒx

F(t) ď α ď F(x)u Ă R.

Choice of the action domain A:

A = R: The forecasts are points in R. There are multiple best
actions, namely every x P qα(F).
⇝ The functional T is set-valued, that is

T : F Ñ 2A.

A Ď 2R: The forecasts are subsets of R. These are points in the
power set A Ď 2R. There is a unique best action namely
x = qα(F).
⇝ The functional T is point-valued in some space
A Ď 2R, that is,

T : F Ñ A.
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Two modes of elicitability
Definition 11
(a) A functional T : F Ñ 2A is selectively elicitable if there is a scoring

function S : A ˆ O Ñ R such that

EF[S(t,Y)] ă EF[S(x,Y)]

for all F P F and for all t P T(F) and for all x P AzT(F).

(b) A functional T : F Ñ A is exhaustively elicitable if there is a scoring
function S : A ˆ O Ñ R such that

EF[S(T(F),Y)] ă EF[S(x,Y)]

for all F P F and for all x P A, x ‰ T(F).

For single-valued functionals such as the mean, the notions of selective and
exhaustive elicitability are equivalent.
Forecasting / regression in the exhaustive sense is more ambitious than in the
selective sense!
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Mutual exclusivity
Theorem 12 (Fissler, Hlavinová, Rudloff (2018+))
Under weak regularity conditions, a set-valued functional is

either selectively elicitable
or exhaustively elicitable
or not elicitable at all.

Novel structural insight of its own!
Results and implications:

Quantiles are selectively elicitable, but not exhaustively elicitable!
Sα(x, y) =

(
1ty ď xu ´ α

)(
g(x) ´ g(y)

)
.

Many systemic risk measures are exhaustively elicitable, but not
selectively elicitable.

SR(K, y) = ´

ż

K
Vρ

(
0,Λ(y + k)

)
π(dk) .

Confidence intervals.
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Confidence Intervals

Reminder:
Iα(F) = t(a, b) P R2 | F(b) ´ F(a) = αu.

Iα is selectively identifiable with V(a, b, y) = 1ty P (a, b]u ´ α.

It is presumably exhaustively elicitable.
It is not selectively elicitable!
One needs to have additional properties for selective elicitability:

§ Specify the endpoints as quantiles.
§ Take a ‘symmetric’ interval.
§ Shortest confidence interval does not work.
§ Centring around the median or mean also fails.

Dr. T. Fissler (Imperial College London) The Elicitation Problem 9 November 2018 32 / 34



Confidence Intervals

Reminder:
Iα(F) = t(a, b) P R2 | F(b) ´ F(a) = αu.

Iα is selectively identifiable with V(a, b, y) = 1ty P (a, b]u ´ α.
It is presumably exhaustively elicitable.

It is not selectively elicitable!
One needs to have additional properties for selective elicitability:

§ Specify the endpoints as quantiles.
§ Take a ‘symmetric’ interval.
§ Shortest confidence interval does not work.
§ Centring around the median or mean also fails.
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Further Reading

Good introduction to elicitability:
T. Gneiting. Making and evaluating point forecasts.
Journal of the American Statistical Association, 106:746–762, 2011
Elicitability of vector-valued functionals and elicitability of (VaR, ES):
T. Fissler and J. F. Ziegel. Higher order elicitability and Osband’s principle.
Annals of Statistics, 44:1680–1707, 2016

Backtesting and elicitability: T. Fissler, J. F. Ziegel, and T. Gneiting. Expected
shortfall is jointly elicitable with value-at-risk: implications for backtesting.
Risk Magazine, pages 58–61, January 2016
N. Nolde and J. F. Ziegel. Elicitability and backtesting: Perspectives for banking
regulation.
Annals of Applied Statistics, 11(4):1833–1874, 12 2017
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Further Reading II

Secondary quality criteria:
T. Fissler and J. F. Ziegel. Order-sensitivity and equivariance of scoring functions.
Preprint, 2017
T. Fissler and J. F. Ziegel. Convex and quasi-convex scoring functions.
In preparation, 2018
Measures of Systemic Risk:
Z. Feinstein, B. Rudloff, and S. Weber. Measures of Systemic Risk.
SIAMJ. Financial Math., 8:672–708, 2017
T. Fissler, J. Hlavinová, and B. Rudloff. Elicitability and identifiability of systemic
risk measures.
In preparation, 2018
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Thank you for your attention!

Looking forward to our discussion!
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