Efficient Simulation and Other Numeric Methods for Stochastic Disease Spread Models

Zeynep Gökçe Yıldız

Assoc. Prof. Wolfgang Hörmann

Industrial Engineering Department Boğaziçi University

July 05, 2017

Zeynep Gökce Yıldız

Efficient Simulation and Other Numeric Methods for Stochastic Disease Spread Models

3

Outline

- Introduction
- Model Definition and Examples
- ► R₀ Calculation for Overlapping Mixing Groups
- ▶ Practical Applications of R₀

Zeynep Gökce Yıldız

3

Disease Spread Models

- Deterministic Disease Spread Models (S-I-R) Kermack-McKendrick Models
- Stochastic Disease Spread Models (S-I-R) Greenwood and Red Frost Models
 - 1. Graph Based Models
 - 2. Agent Based Models with Mixing Groups

Zeynep Gökce Yıldız

Efficient Simulation and Other Numeric Methods for Stochastic Disease Spread Models

3

Agent Based Models with Mixing Groups

Advantages

- 1. Allow to model complex systems
- 2. Incorporate census data in the models

Disdvantages

- 1. No closed form solution characterization of important epidemiological quantities
- 2. Require simulation for analysis

Zeynep Gökce Yıldız

Efficient Simulation and Other Numeric Methods for Stochastic Disease Spread Models

イロト イポト イヨト イヨト

Single Mixing Group

- Discrete Time Stochastic Model
- States: Susceptible(S) Infected(I) Recovered(R)
- Change in States: Newly Infected (NI)
- Discrete Time Duration: Random disease time with pmf
- Binomial Chain Assumption: The number of newly infected per day has binomial distribution

-

イロン 不同 とくほう イロン

Single Mixing Group

The number of newly infected generated on time interval t

$$NI_t \sim Bin(n = S_{t-1}, 1 - (1 - p_c)^{I_{t-1}})$$
 (1)

Zeynep Gökce Yıldız

Efficient Simulation and Other Numeric Methods for Stochastic Disease Spread Models

э

Basic reproduction Number R_0

- Basic Reproduction Number R₀: expected number of secondary cases that one case would produce in an entirely susceptible population
- ▶ $R_0 > 1$ → Positive probability of an outbreak
- $R_0 < \mathbf{1}$ \rightarrow An outbreak not possible

Zeynep Gökce Yıldız

Efficient Simulation and Other Numeric Methods for Stochastic Disease Spread Models

э

*R*⁰ for Single Mixing Group

- ► To calculate R₀ there is a single infected case and (n-1) susceptible
- The probability of being infected

$$p_{inf} = \sum_{d} (1 - (1 - p_c)^d) P_D[d]$$
 (2)

Basic Reproduction Number R₀ Formula

$$R_0 = \sum_{d} (1 - (1 - p_c)^d) P_D[d](n - 1).$$
(3)

Zeynep Gökce Yıldız

Efficient Simulation and Other Numeric Methods for Stochastic Disease Spread Models

Overlapping Mixing Groups

Possible Mixing Groups

- Community
- Neighborhood
- School
- Work
- Family

Zeynep Gökce Yıldız

ustrial Engineering Department Boğazici University

イロト イポト イヨト イヨト

Overlapping Mixing Groups

- The infection probabilities depend on the number of infected individuals in the respective mixing groups
- The probability of being infected of an individual with I_c, I_n, I_w, and I_f infected individuals in his community, neighbor, work and family

$$p_{inf} = 1 - (1 - p_c)^{I_c} (1 - p_n)^{I_n} (1 - p_w)^{I_w} (1 - p_f)^{I_f} \qquad (4)$$

 The total number of newly infected is sum of independent not identically distributed Bernoulli variates

Zeynep Gökce Yıldız

-

Population Graph for Small Population Model

Zeynep Gökce Yıldız

Efficient Simulation and Other Numeric Methods for Stochastic Disease Spread Models

Population Matrix for Small Population Model

Individual ID	Family Number	Work Number	Community	
1	1	11	100	
2	1	11	100	
3	1	-	100	
4	2	11	100	
5 2		-	100	
6 3		11	100	
7 3		12	100	
8 4		12	100	
9 4		-	100	
10 5		12	100	
11	6	12	100	
12	7	11	100	

◆□> ◆□> ◆目> ◆目> ◆目> ○○ のへで

Zeynep Gökce Yıldız

Efficient Simulation and Other Numeric Methods for Stochastic Disease Spread Models

Probabilities for Small Population Model

Probability	Probability	Probability	Disease
in Family in Work		in Community	Duration
0.2	0.1	0.05	1

$$p_{inf} = 1 - (1 - p_c)^{I_c} (1 - p_n)^{I_n} (1 - p_w)^{I_w} (1 - p_f)^{I_f}$$
 (5)

 Only Individual 1 is initially infected: probability that Individual 2 is infected

$$p_{inf} = 1 - (1 - 0.05)^1 (1 - 0.1)^1 (1 - 0.2)^1 = 0.316$$
 (6)

Zeynep Gökce Yıldız

э

Probabilities for Individual One is Initially Infected

	Family	Work		Mixing	Infection
ID	Number	Number	Community	Groups	Probability
2	1	11	100	F-W-C	0.316
3	1	-	100	F-C	0.240
4	2	11	100	W-C	0.145
5	2	-	100	C	0.05
6	3	11	100	W-C	0.145
7	3	12	100	С	0.05
8	4	12	100	C	0.05
9	4	-	100	С	0.05
10	5	12	100	С	0.05
11	6	12	100	C	0.05
12	7	11	100	W-C	0.145
					$\sum = 1.291$

Four different intersection four different probabilities

Zeynep Gökce Yıldız

Efficient Simulation and Other Numeric Methods for Stochastic Disease Spread Models

Individual R_0

	Family	Work		
ID	Number	Number	Community	R_0
1	1	11	100	1.291
2	1	11	100	1.291
3	1	-	100	0.93
4	2	11	100	1.12
5	2	-	100	0.74
6	3	11	100	1.12
7	3	12	100	1.025
8	4	12	100	1.025
9	4	-	100	0.74
10	5	12	100	0.835
11	6	12	100	0.835
12	7	11	100	0.93

Four different intersection four different probabilities

Zeynep Gökce Yıldız

Efficient Simulation and Other Numeric Methods for Stochastic Disease Spread Models

3. 3

Population R_0

- Randomly selected initially infected individual with equal probabilities
- Different individual R₀ values
- Not possible to observe probability of an outbreak
- The outbreak probability depends on individual R₀ of starting infected individual

э

R_0 for Intervention Strategies

- Evaluation of intervention strategies
- The maximum number of infectious cases, the total number of infectious cases, the average attack rates etc.
- ► R₀ gives more information than descriptive statistics
- ▶ Whether to decrease maximum individual *R*₀ below 1

Zeynep Gökce Yıldız

イロト イポト イヨト イヨト

Possible Intervention Strategies

The use of R_0 allows only to evaluate intervention methods implemented from the very beginning of the infection

- Vaccination
- Stay Home
- Use of Antiviral Drugs

Zeynep Gökce Yıldız

Efficient Simulation and Other Numeric Methods for Stochastic Disease Spread Models

э

イロト イポト イヨト イヨト

Model for Scenario Analysis

- Similar to the model of Longini et al. (2004)
- 100 single living
- 50 families with size two
- 34 families with size three
- 37 families with size four
- 5 families with size five
- 3 families with size six
- Single family with size seven
- Disease length2, 3, 4, 5, and 6 with probabilities 0.21, 0.19, 0.18, 0.22, and 0.2.

3

イロン 不同 とくほう イロン

Vaccination Strategies

Vaccination takes place before the infection starts & Individuals develop immunity

It is possible to generate vaccination strategy based on individual R_0

- ► *R*₀ without vaccination
- ► R₀ with 50% random vaccination
- ► R₀ with 50% optimal vaccination

Zeynep Gökce Yıldız

(日) (同) (三) (三)

Model Definition&Examples	R ₀ Calculation	Practical Applications of R_0

Figure: Individual R_0 histogram without vaccination.

Zeynep Gökce Yıldız

Efficient Simulation and Other Numeric Methods for Stochastic Disease Spread Models

3

・ロン ・回 と ・ ヨ と ・ ヨ と …

tr	n	a	c	t١	n	n	

Figure: Individual R_0 histogram with 50% random vaccination strategy.

Zeynep Gökce Yıldız

Efficient Simulation and Other Numeric Methods for Stochastic Disease Spread Models

3

イロト イポト イヨト イヨト

Figure: Individual R_0 histogram with 50% optimal vaccination strategy.

Zeynep Gökce Yıldız

Efficient Simulation and Other Numeric Methods for Stochastic Disease Spread Models

э

イロン 不同 とくほう イロン

Household Quarantine

- Infected individuals after some days of infection do not have contacts with other individuals outside of their households
- Not effective because disease spread before indicating symptoms

Zeynep Gökce Yıldız

Efficient Simulation and Other Numeric Methods for Stochastic Disease Spread Models

э

Figure: Base policy with household quarantine.

Zeynep Gökce Yıldız

Efficient Simulation and Other Numeric Methods for Stochastic Disease Spread Models

э

<ロ> <同> <同> < 回> < 回>

Figure: Best case with household quarantine.

Zeynep Gökce Yıldız

ustrial Engineering Department Boğazici University

<ロ> <同> <同> < 回> < 回>

Efficient Simulation and Other Numeric Methods for Stochastic Disease Spread Models

э

Use of Antiviral Drugs

- The use of antiviral drugs evaluated here prevents infection given exposure
- Reduce the probability of transmission to others given infection and the probability of being infected given exposure
- Not very effective due to shortage of supply and expensive

Zeynep Gökce Yıldız

イロト イポト イヨト イヨト

Figure: R_0 distribution with combined strategy.

Zeynep Gökce Yıldız

Efficient Simulation and Other Numeric Methods for Stochastic Disease Spread Models

э

<ロ> <同> <同> < 回> < 回>

THANK YOU ..

Zeynep Gökce Yıldız

dustrial Engineering Department Boğazici University

・ロト ・回ト ・ヨト ・ヨト

Efficient Simulation and Other Numeric Methods for Stochastic Disease Spread Models