Determination of Important Disease Spread Characteristics Using Markov Chain Models

Zeynep Gökçe Yıldız

Refik Güllü

Wolfgang Hörmann

Industrial Engineering Department Boğaziçi University

July 10, 2018

Zeynep Gökce Yıldız

Determination of Important Disease Spread Characteristics Using Markov Chain Models

э

Outline

Introduction

- Markov Stochastic SIS Disease Spread Models
- Markov Stochastic SIR Disease Spread Models
- Models with Erlang Disease Time
- Numerical Results
- Conclusion

Zeynep Gökce Yıldız

3

イロン イ団 と イヨン イヨン

Markov Stochastic Disease Spread Models

The important epidemiological quantities to be analyzed

- 1. Time to extinction
- 2. Quasi stationary distribution
- 3. Probability of an outbreak
- 4. Final outbreak size distribution
- 5. The distribution of maximum number of infected individuals during disease

Zeynep Gökce Yıldız

Determination of Important Disease Spread Characteristics Using Markov Chain Models

Model Definition

- The disease duration for an infected ~ Exponential distribution (µ)
- The number of contacts \sim Poisson distribution (λ)
- ► S + I = N
- State space $\rightarrow \Omega = I(t)$
- Continuous time Markov Chain having property

 $Prob(I(t_{n+1})|I(t_0), I(t_1)..., I(t_n)) = Prob(I(t_{n+1}|I(t_n)).$

Zeynep Gökce Yıldız

Determination of Important Disease Spread Characteristics Using Markov Chain Models

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シののや

Important epidemiological quantities

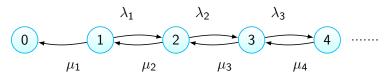


Figure: Markov chain diagram for SIS disease spread models

• Transition rates $\mu_i = i\mu$ and $\lambda_i = \lambda q_i$ where

$$q_i = ki(N-i).$$

► One absorbing state → (0)

Interested in expected time to extinction

Zeynep Gökce Yıldız

Determination of Important Disease Spread Characteristics Using Markov Chain Models

Expected time to extinction

- Possible to return to a state previously visited
- τ_k denoting the time to go from state k to state k-1
- Expected time to extinction starting with i infected

$$\mathsf{E}[\mathsf{T}_i] = \sum_{k=1}^i \mathsf{E}[\tau_k].$$

Zeynep Gökce Yıldız

Determination of Important Disease Spread Characteristics Using Markov Chain Models

3

Conditioning on next event

Define

$$I_k = \begin{cases} 1, & \text{if first state change is due to a recovery.} \\ 0, & \text{if first state change is due to an infection.} \end{cases}$$

• $E[\tau_k]$ conditioning on state change

$$E[\tau_k | I_k = 1] = \frac{1}{\lambda_k + \mu_k},$$
$$E[\tau_k | I_k = 0] = \frac{1}{\lambda_k + \mu_k} + E[\tau_{k+1}] + E[\tau_k]$$

where the probability

$$P[I_k = 1] = \frac{\mu_k}{\lambda_k + \mu_k} \quad \text{and} P[I_k = 0] = \frac{\lambda_k}{\lambda_k + \mu_k}.$$

Zeynep Gökce Yıldız

Determination of Important Disease Spread Characteristics Using Markov Chain Models

$E[T_i]$

•
$$E[\tau_k] = \frac{1}{\mu_k} + \frac{\lambda_k}{\mu_k} E[\tau_{k+1}].$$

• For $k = N$, exact value of $E[\tau_k]$
 $E[\tau_N] = \frac{1}{\mu_N}$

Exact value of $E[\tau_k]$

$$E[\tau_k] = \frac{1}{\mu_k} + \sum_{j=1}^{N-k} \frac{1}{\mu_{k+j}} \prod_{l=0}^{j-1} \frac{\lambda_{l+k}}{\mu_{l+k}}.$$
$$E[T_i] = \sum_{k=1}^{i} E[\tau_k].$$

Zeynep Gökce Yıldız

Determination of Important Disease Spread Characteristics Using Markov Chain Models

2

Model Definition

- The disease duration for an infected ~ Exponential distribution (µ)
- The transition rate from infected to recovered $i\mu$
- The number of contacts for every infected individual~ Poisson distribution (λ)
- The total number of contacts ~ Poisson distribution (*is*λ/N)(Hernandez Suarez et al., 2010; Nasell, 2002)
- The transition rate from susceptible to infected $is\lambda/N$

Model Definition

- $\blacktriangleright N = S + I + R$
- $\blacktriangleright R = N I S$
- $\blacktriangleright \ \Omega = (I(t), S(t))$

Continuous time Markov Chain having property

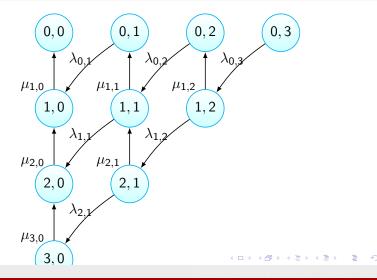
 $Prob((I(t_{n+1}), S(t_{n+1}))|(I(t_0), S(t_0)), ..., (I(t_n), S(t_n))) = Prob((I(t_{n+1}, S(t_{n+1}))|((I(t_n), S(t_n))).$

Zeynep Gökce Yıldız

Determination of Important Disease Spread Characteristics Using Markov Chain Models

3

Markov Chain Diagram for SIR



Zeynep Gökce Yıldız

Determination of Important Disease Spread Characteristics Using Markov Chain Models

Expected time to extinction

- Impossible to return a state previously visited
- Expected time to extinction starting with *i* infected and *s* susceptible, *E*[*T_{i,s}*] calculated directly
- Absorbing states => (0, s) for s = 0, 1, ... N
- Boundary Conditions

$$T_{0,s} = 0$$
 for s=1....N.

 $E[T_{i,s}]$ for states with zero susceptible

$$E[T_{i,0}] = \sum_{k=1}^{i} \frac{1}{\mu_k}.$$

Zeynep Gökce Yıldız

Determination of Important Disease Spread Characteristics Using Markov Chain Models

Implementation of First Step Analysis

Start with calculate E[T_{i,s}] for states with one susceptible and one infected

$$E[T_{1,1}] = \frac{1}{\lambda_{1,1} + \mu_i} + \frac{\lambda_{1,1}}{\lambda_{1,1} + \mu_i} E[T_{2,0}] + \frac{\mu_1}{\lambda_{1,1} + \mu_1} E[T_{0,1}].$$

By increasing the number of infected individuals one by one, calculate E[T_{i,1}] for all i values.

$$E[T_{i,1}] = \frac{1}{\lambda_{i,1} + \mu_i} + \frac{\lambda_{i,1}}{\lambda_{i,1} + \mu_i} E[T_{i+1,0}] + \frac{\mu_i}{\lambda_{i,1} + \mu_i} E[T_{i-1,1}].$$

Zeynep Gökce Yıldız

Determination of Important Disease Spread Characteristics Using Markov Chain Models

$E[T_{i,s}]$ for s susceptible cases

Calculate E[T_{i,s}] by increasing the number of susceptible cases one by one

$$E[T_{i,s}] = \frac{1}{\lambda_{i,s} + \mu_i} + \frac{\lambda_{i,s}}{\lambda_{i,s} + \mu_i} E[T_{i+1,s-1}] + \frac{\mu_i}{\lambda_{i,s} + \mu_i} E[T_{i-1,s}]$$

• Replace $\lambda_{i,s}$ by $is\lambda/N$ and μ_i by $i\mu$

$$E[T_{i,s}] = \frac{N}{is\lambda + Ni\mu} + \frac{s\lambda}{s\lambda + N\mu} E[T_{i+1,s-1}] + \frac{N\mu}{s\lambda + N\mu} E[T_{i-1,s}]$$

Zeynep Gökce Yıldız

Determination of Important Disease Spread Characteristics Using Markov Chain Models

Calculation of Final Outbreak Size

$$\tau = \inf\{t > 0 : I(t) = 0\}.$$

• m => total number of recovered individuals at au

To determine the final outbreak size distribution, calculate

$$P_m(i,s) = \Pr\{R(\tau) = m \mid (I(0), S(0)) = (i,s)\}.$$

Zeynep Gökce Yıldız

Determination of Important Disease Spread Characteristics Using Markov Chain Models

Implementation of First Step Analysis

$$P_m(i,s) = \frac{\lambda_{is}}{\lambda_{is} + \mu_i} P_m(i+1,s-1) + \frac{\mu_i}{\lambda_{is} + \mu_i} P_m(i-1,s).$$

$$P_m(i,s) = \frac{\lambda s}{\lambda s + \mu N} P_m(i+1,s-1) + \frac{\mu N}{\lambda s + \mu N} P_m(i-1,s).$$

$$P_m(0,s) = 1 \text{ for } s = N-m \text{ and } P_m(0,s) = 0 \text{ for } s < N-m.$$

Zeynep Gökce Yıldız

Determination of Important Disease Spread Characteristics Using Markov Chain Models

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の 0 0

Calculation of Final Outbreak Size

First calculate $P_m(i, s)$ for s = N - m

$$P_m(i, N - m) = \frac{\mu N}{\lambda(N - m) + \mu N} P_m(i - 1, N - m)$$
$$= \left\{ \frac{\mu N}{\lambda(N - m) + \mu N} \right\}^i$$

Then calculate P_m(i, s) recursively by increasing the number of susceptible

$$P_m(i,s) = \frac{s\lambda}{\lambda s + \mu N} P_m(i+1,s-1) + \frac{\mu N}{\lambda s + \mu N} P_m(i-1,s).$$

Zeynep Gökce Yıldız

Determination of Important Disease Spread Characteristics Using Markov Chain Models

イロト イボト イヨト イヨト 二日

Algorithm 1 Final Size Distribution for Exponential Disease Time

1: Set m=1
2: Set
$$P_m(i,s) = 0$$
 for $s < N - m$ and $i = 0, 1, ..., N - s$
3: Set $s = N - m$
4: Set $P_m(0,s) = 1$
5: for i=1,...N-s do
6: Compute $P_m(i,s)$ from Equation 1
7: end for
8: Set $s = s + 1$
9: Set $P_m(0,s) = 0$
10: for i=1,...N-s do
11: Compute $P_m(i,s)$ from Equation 1
12: end for
13: Set $s = s+1$. If $s \le N-1$ go to step 9. Otherwise, go to step 14.
14: Set $m = m + 1$. If $m \le N$ go to step 2. Otherwise, stop.

< 🗆 🕨

∃ >

Zeynep Gökce Yıldız

Distribution of maximum number of infected individuals

- m => maximum number of infected individuals until disease disappears
- Q_m(i, s) denotes the probability that the maximum number of infected individuals becomes m starting with i infected and s susceptible
- Absorbing states => (0, s) for s = 0, 1, ... N
- Boundary Conditions

$$Q_m i, s = 0$$
 for m=0,...i-1.

Zeynep Gökce Yıldız

Determination of Important Disease Spread Characteristics Using Markov Chain Models

Implementation of First Step Analysis

First calculate $Q_m(i, s)$ for m = N - s

$$Q_{N-s}(i,s) = \frac{\lambda s}{\lambda s + \mu N} Q_m(i+1,s) = \frac{\lambda s}{\lambda s + \mu N} \sum_{i=1}^{N-s-i} Q_m(i+1,s) = \frac{\lambda s}{\lambda s + \mu N} \sum_{i=1}^{N-s-i} Q_m(i+1,s) = \frac{\lambda s}{\lambda s + \mu N} \sum_{i=1}^{N-s-i} Q_m(i+1,s) = \frac{\lambda s}{\lambda s + \mu N} \sum_{i=1}^{N-s-i} Q_m(i+1,s) = \frac{\lambda s}{\lambda s + \mu N} \sum_{i=1}^{N-s-i} Q_m(i+1,s) = \frac{\lambda s}{\lambda s + \mu N} \sum_{i=1}^{N-s-i} Q_m(i+1,s) = \frac{\lambda s}{\lambda s + \mu N} \sum_{i=1}^{N-s-i} Q_m(i+1,s) = \frac{\lambda s}{\lambda s + \mu N} \sum_{i=1}^{N-s-i} Q_m(i+1,s) = \frac{\lambda s}{\lambda s + \mu N} \sum_{i=1}^{N-s-i} Q_m(i+1,s) = \frac{\lambda s}{\lambda s + \mu N} \sum_{i=1}^{N-s-i} Q_m(i+1,s) = \frac{\lambda s}{\lambda s + \mu N} \sum_{i=1}^{N-s-i} Q_m(i+1,s) = \frac{\lambda s}{\lambda s + \mu N} \sum_{i=1}^{N-s-i} Q_m(i+1,s) = \frac{\lambda s}{\lambda s + \mu N} \sum_{i=1}^{N-s-i} Q_m(i+1,s) = \frac{\lambda s}{\lambda s + \mu N} \sum_{i=1}^{N-s-i} Q_m(i+1,s) = \frac{\lambda s}{\lambda s + \mu N} \sum_{i=1}^{N-s-i} Q_m(i+1,s) = \frac{\lambda s}{\lambda s + \mu N} \sum_{i=1}^{N-s-i} Q_m(i+1,s) = \frac{\lambda s}{\lambda s + \mu N} \sum_{i=1}^{N-s-i} Q_m(i+1,s) = \frac{\lambda s}{\lambda s + \mu N} \sum_{i=1}^{N-s-i} Q_m(i+1,s) = \frac{\lambda s}{\lambda s + \mu N} \sum_{i=1}^{N-s-i} Q_m(i+1,s) = \frac{\lambda s}{\lambda s + \mu N} \sum_{i=1}^{N-s-i} Q_m(i+1,s) = \frac{\lambda s}{\lambda s + \mu N} \sum_{i=1}^{N-s-i} Q_m(i+1,s) = \frac{\lambda s}{\lambda s + \mu N} \sum_{i=1}^{N-s-i} Q_m(i+1,s) = \frac{\lambda s}{\lambda s + \mu N} \sum_{i=1}^{N-s-i} Q_m(i+1,s) = \frac{\lambda s}{\lambda s + \mu N} \sum_{i=1}^{N-s-i} Q_m(i+1,s) = \frac{\lambda s}{\lambda s + \mu N} \sum_{i=1}^{N-s-i} Q_m(i+1,s) = \frac{\lambda s}{\lambda s + \mu N} \sum_{i=1}^{N-s-i} Q_m(i+1,s) = \frac{\lambda s}{\lambda s + \mu N} \sum_{i=1}^{N-s-i} Q_m(i+1,s) = \frac{\lambda s}{\lambda s + \mu N} \sum_{i=1}^{N-s-i} Q_m(i+1,s) = \frac{\lambda s}{\lambda s + \mu N} \sum_{i=1}^{N-s-i} Q_m(i+1,s) = \frac{\lambda s}{\lambda s + \mu N} \sum_{i=1}^{N-s-i} Q_m(i+1,s) = \frac{\lambda s}{\lambda s + \mu N} \sum_{i=1}^{N-s-i} Q_m(i+1,s) = \frac{\lambda s}{\lambda s + \mu N} \sum_{i=1}^{N-s-i} Q_m(i+1,s) = \frac{\lambda s}{\lambda s + \mu N} \sum_{i=1}^{N-s-i} Q_m(i+1,s) = \frac{\lambda s}{\lambda s + \mu N} \sum_{i=1}^{N-s-i} Q_m(i+1,s) = \frac{\lambda s}{\lambda s + \mu N} \sum_{i=1}^{N-s-i} Q_m(i+1,s) = \frac{\lambda s}{\lambda s + \mu N} \sum_{i=1}^{N-s-i} Q_m(i+1,s) = \frac{\lambda s}{\lambda s + \mu N} \sum_{i=1}^{N-s-i} Q_m(i+1,s) = \frac{\lambda s}{\lambda s + \mu N} \sum_{i=1}^{N-s-i} Q_m(i+1,s) = \frac{\lambda s}{\lambda s + \mu N} \sum_{i=1}^{N-s-i} Q_m(i+1,s) = \frac{\lambda s}{\lambda s + \mu N} \sum_{i=1}^{N-s-i} Q_m(i+1,s) = \frac{\lambda s}{\lambda s + \mu N} \sum_{i=1}^{N-s-i} Q_m(i+1,s) = \frac{\lambda s}{\lambda s + \mu N} \sum_{i=1}^{N-s-i} Q_m(i+1,s) = \frac{\lambda s}{\lambda s + \mu N} \sum_{i=1$$

Then calculate Q_m(i, s) recursively by decreasing m one by one until it becomes i+1

$$Q_m(i,s) = rac{s\lambda}{\lambda s + \mu N} Q_m(i+1,s-1) + rac{\mu N}{\lambda s + \mu N} Q_m(i-1,s).$$

Finally, calculate $Q_m(i, s)$ for m = i

$$Q_i(i,s) = 1 - \sum_{n=i+1}^{N-s} Q_n(i,s)$$

Zeynep Gökce Yıldız

Determination of Important Disease Spread Characteristics Using Markov Chain Models

э

Problems with exponential disease time

- Lack of versatility with single parameter value
- Memoryless property
- To overestimate variance

Zeynep Gökce Yıldız

Determination of Important Disease Spread Characteristics Using Markov Chain Models

3

Why Erlang disease time?

- Member of a versatile class of distribution
- Approximate to normal distribution
- Different coefficient of variation
- To allow Markov chains model

Zeynep Gökce Yıldız

3

Model Definition

- \triangleright N = S + I + R
- Not possible to use a single I for the number of infected individuals
- Representation for Erlang distribution

Zeynep Gökce Yıldız

.

Determination of Important Disease Spread Characteristics Using Markov Chain Models

= nar

イロト イヨト イヨト イヨト

Model Definition

•
$$\Omega = (\tilde{I}(t), S(t))$$

• $\tilde{I}(t) => \{(i_1(t), i_2(t), i_3(t), ..., i_k(t)) : \sum i_n \le N \text{ for } n \le k\}$

• The number of states required to define model => (N + k + 1)!/(k + 1)!N!

Define I(t) as

$$I(t) = \sum_{n=1}^{k} i_k$$

Zeynep Gökce Yıldız

Determination of Important Disease Spread Characteristics Using Markov Chain Models

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

Calculation of Final Outbreak Size

To determine the final outbreak size distribution, calculate

$$P_m(\tilde{i},s) = P_m(\{i_1, i_2, i_3, \dots i_k\}, s) = \prod_m(v, s).$$

Zeynep Gökce Yıldız

Determination of Important Disease Spread Characteristics Using Markov Chain Models

= nar

ヘロト ヘロト ヘヨト ヘヨト

Implementation of First Step Analysis

▶
$$1_n = 0, 0, ..1, ...0$$

$$P_m(\tilde{i},s) = \frac{\lambda_{is}}{\lambda_{is} + \mu_i} P_m(\tilde{i}+1_k,s-1) + \sum_{n=1}^k \frac{\mu_{i_n}}{\lambda_{is} + \mu_i} P_m(\tilde{i}-1_n,s).$$

• Absorbing states => (0, s) for s = 0, 1..N

Boundary Conditions

 $P_m(0,s) = 1$ for s=N-m and $P_m(0,s) = 0$ for s<N-m.

Zeynep Gökce Yıldız

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の 0 0

Computational Efficiency

- Time to find final outbreak size distribution increases like kN^(k+1)
- However, use of different modeling approach increases time to find final outbreak size like kN^2

Table: Time Required to Calculate Exact Final Outbreak Size Distribution

	time to perform calculation with				
	population size N				
k	100	500	1000		
2	2.02 s	240.52 s	1886.14 s		
5	5.10 s	614.49 s	4828.98 s		
10	10.45 s	1271.74 s	10228.08 s		

Zeynep Gökce Yıldız

Determination of Important Disease Spread Characteristics Using Markov Chain Models

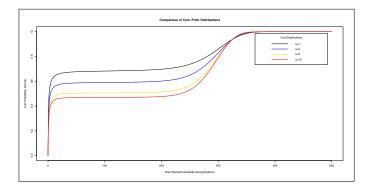


Figure: The cumulative probability function of total number of infected individuals during an epidemic for $R_0 = 1.5$.

Zeynep Gökce Yıldız

Determination of Important Disease Spread Characteristics Using Markov Chain Models

э

イロト イポト イヨト イヨト

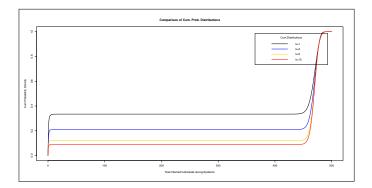


Figure: The cumulative probability function of total number of infected individuals during an epidemic for $R_0 = 3$.

Zeynep Gökce Yıldız

Determination of Important Disease Spread Characteristics Using Markov Chain Models

э

イロト イポト イヨト イヨト

Table: Probability that Less Than Fifty Individuals Recovered for Different R_0 and k Values

	k				
R_0	1	2	5	10	
1	0.9353716	0.9278719	0.921807	0.9194013	
1.5	0.6765616	0.5862919	0.5033751	0.4681467	
2	0.5042293	0.3856372	0.2868653	0.2479226	
2.5	0.4022905	0.2771721	0.1806280	0.1450215	
3	0.3348617	0.2104195	0.1209246	0.0900515	

Zeynep Gökce Yıldız

Determination of Important Disease Spread Characteristics Using Markov Chain Models

= nar

・ロト ・ 同ト ・ ヨト ・ ヨト

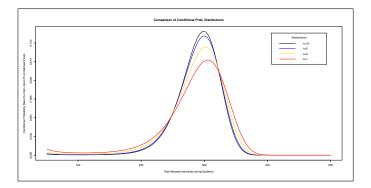


Figure: The Conditional probability function of total number of infected individuals during an epidemic given that total number of infected individuals greater than fifty for $R_0 = 1.5$.

Zeynep Gökce Yıldız

э

イロト イポト イヨト イヨト

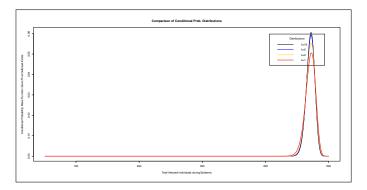


Figure: The Conditional probability function of total number of infected individuals during an epidemic given that total number of infected individuals greater than fifty for $R_0 = 3$.

Zeynep Gökce Yıldız

э

イロト イポト イヨト イヨト

THANK YOU ..

Zeynep Gökce Yıldız

Determination of Important Disease Spread Characteristics Using Markov Chain Models

э

・ロト ・ 同ト ・ ヨト ・ ヨト