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Introduction

Let X be the single-period return of some financial asset.

I A risk measure ρ assigns a real number ρ(X ) to X
(interpreted as the risk of the asset).

Risk measures are used for

I external regulatory capital calculation

I management, optimization and decision making

I performance analysis

I capital allocation
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Risk measures

We assume that the risk ρ(X ) only depends on the distribution of
X , that is,

ρ : P → R,

where P is a suitable class of probability measures on R.
(We write both: ρ(X ) = ρ(P) for X ∼ P.)

I Impose theoretical requirements on ρ motivated by economic
principles: monetary risk measures, coherent risk
measures,. . . .

I Consider statistical aspects of the resulting functionals.

Sign convention

I Losses are positive, profits are negative.

I Risky positions yield positive values of ρ.
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Examples

Example (Value-at-Risk (VaR))

For α ∈ (0, 1) and a random variable X with distribution function
F , we define

VaRα(X ) = inf{x ∈ R : F (x) ≥ α} = F−1(α).

VaR is a co-monotonic additive, monetary risk measure.

Example (Expected shortfall (ES))

If X has finite mean, we define

ESα(X ) =
1

1− α

∫ 1

α
VaRu(X ) du

(
= E[X |X ≥ VaRα(X )]

)
.

ES is a co-monotonic additive, coherent risk measure.
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Statistical aspects

Returns {Xt}t∈N (covariates {Zt}t∈N) adapted to filtration
{Ft}t∈N
Historical data: returns x1, . . . , xn, (covariates z1, . . . , zn)

Estimation
Approximate ρ(Xn+1|Fn) by rn+1 = ρ̂(x1, . . . , xn, z1, . . . , zn). (→
elicitability/identifiability)

Forecast evaluation

I Given r1, . . . , rn, evaluate the quality of the predictions
(traditional backtesting). (→ identifiability)

I Given r1, . . . , rn, r∗1 , . . . , r
∗
n , say which method has better

predictive power (comparative backtesting). (→ elicitability)
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Elicitability and identifiability

Let A ⊂ R be such that

ρ : P → A, P 7→ ρ(P)

Definition
A loss function L : A×R→ R is consistent for ρ (relative to P), if

E[L(ρ(P),X )] ≤ E[L(r ,X )], P ∈ P, X ∼ P, r ∈ A.

It is strictly consistent (relative to P) if “=” implies r = ρ(P).

The risk measure ρ is called elicitable (relative to P) if there exists
a loss function L that is strictly consistent for it.

In other words
ρ(P) = arg min

r∈A
EL(r ,X ).
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Elicitability and identifiability

Let A ⊂ R be such that

ρ : P → A, P 7→ ρ(P)

Definition
ρ is identifiable (relative to P), if there is a function
V : A× R→ R such that

E(V (r ,X )) = 0 ⇐⇒ r = ρ(X ),

for all P ∈ P, X ∼ P, r ∈ A.
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Some examples

I Mean

L(r , x) = (x − r)2 V (r , x) = x − r
I Least squares regression
I Comparison of models/forecast performance in terms of MSE

I α-Quantiles/VaRα (Median)

L(r , x) = (1{x ≤ r} − α)(r − x) V (r , x) = 1{x ≤ r} − α
I Quantile/Median regression

I α-Expectiles (Newey and Powell, 1987)

L(r , x) = |1{x ≤ r} − α|(r − x)2

V (r , x) = |1{x ≤ r} − α|(r − x)
I Expectile regression
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Elicitable and non-elicitable functionals

Elicitable

I Mean, moments

I Median, quantiles/Value-at-Risk

I Expectiles (Newey and Powell, 1987)

Not elicitable

I Variance

I Expected shortfall (Weber, 2006, Gneiting, 2011)

I Spectral risk measures (Weber, 2006, Z, 2014)
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k-Elicitability and k-identifiability

Let A ⊂ Rk be such that

ρ : P → A, P 7→ ρ(P)

Definition
A loss function L : A×R→ R is consistent for ρ (relative to P), if

E[L(ρ(P),X )] ≤ E[L(r ,X )], P ∈ P, X ∼ P, r = (r1, . . . , rk) ∈ A.

It is strictly consistent (relative to P) if “=” implies r = ρ(P).

The vector of risk measures ρ is called k-elicitable (relative to P) if
there exists a loss function L that is strictly consistent for it.

In other words
ρ(P) = arg min

r∈A
EL(r ,X ).
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Elicitable and identifiable functionals

1-Elicitable and 1-identifiable

I Mean, moments

I Median, quantiles/VaR

I Expectiles (Newey and Powell, 1987)

2-Elicitable and 2-identifiable

I Mean and variance

I Second moment and variance

I VaR and ES (Acerbi and Szekely, 2014, Fissler and Z, 2016)

k-Elicitable and k-identifiable

I Some spectral risk measures together with several VaRs at
certain levels
(Fissler and Z, 2016)
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ρ = (VaRα,ESα)

Theorem (Fissler and Z, 2016)

Let α ∈ (0, 1), and A0 := {r = (q, e) ∈ R2 : q ≤ e}. Let P be a
class of probability measures on R with finite first moments and
unique α-quantiles. Any loss function L : A0 × R→ R of the form

L(q, e, x) =
(
1− α− 1{x > q}

)
g(q) + 1{x > q}g(x)

+ φ′(e)

(
(1− α− 1{x > q}) q

1− α
+ 1{x > q} x

1− α
− e

)
+ φ(e)

is consistent for ρ = (VaRα,ESα) if 1[q,∞)g is P-integrable and

I g is increasing and φ is increasing and concave.

It is strictly consistent if, additionally,

I φ is strictly increasing and strictly concave.
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Evaluating forecasts of expected shortfall

Filtration F = {Ft}t∈N

Prediction-observation triples

(Qt ,Et ,Xt)t∈N

Qt : VaRα prediction for time point t, Ft−1-measurable
Et : ESα prediction for time point t, Ft−1-measurable
Xt : Realization at time point t, Ft-measurable
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Absolute evaluation

Let V be an identification function for (VaRα,ESα), i.e.

V (q, e, x) = A(q, e)

(
1− α− 1{x > q}

q − e − 1
1−α1{x > q}(q − x)

)
,

where A(q, e) ∈ R2×2 with det(A(q, e)) 6= 0. (We take A = I2.)

Definition (Calibration)

The sequence of predictions {(Qt ,Et)}t∈N is conditionally
calibrated for (VaRα,ESα) if

E (V (Qt ,Et ,Xt)|Ft−1) = 0 for all t ∈ N.

Compare Davis (2016).
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Calibration and optimal prediction

I Given information Ft−1 at time point t − 1, the best
prediction for (VaRα,ESα) of Xt is(

VaRα
(
L(Xt |Ft−1)

)
,ESα

(
L(Xt |Ft−1)

))
.

This is the only Ft−1-measurable prediction which is
conditionally calibrated.

I If F∗t−1 ⊃ Ft−1, then(
VaRα

(
L(Xt |F∗t−1)

)
,ESα

(
L(Xt |F∗t−1)

))
.

is also conditionally calibrated (with respect to Ft−1).
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Traditional backtesting

HC
0 : The sequence of predictions {(Qt ,Et)}t∈N is conditionally

calibrated.

I Backtesting decision: If we do not reject HC
0 , the risk measure

estimates are adequate.

I Many existing backtests can be described as a test for
conditional calibration (with different choices for the
identification function, different model assumptions).
(McNeil and Frey, 2000, Acerbi and Szekely 2014)

I Does not give guidance for decision between methods.

I Does not respect increasing information sets.
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Constructing conditional calibration tests
I E(V (Qt ,Et ,Xt)|Ft−1) = 0 is equivalent to

E(h>t V (Qt ,Et ,Xt)) = 0 for all Ft−1-measurable R2-valued
functions ht .

I Choose F-predictable sequence {ht}t∈N of q × 2-matrices ht

of test functions: Ideally, the rows of ht generate Ft−1.
I Construct test statistic: For example,

T1 = n
(1

n

n∑
t=1

htV (Qt ,Et ,Xt)
)>

Ω̂−1n

(1

n

n∑
t=1

htV (Qt ,Et ,Xt)
)
,

where

Ω̂n =
1

n

n∑
t=1

(htV (Qt ,Et ,Xt))(htV (Qt ,Et ,Xt))>.

Giacomini and White (2006) give general conditions under
which T1 is asymptotically χ2

q.
I For these traditional ESα backtests, VaRα is also needed but

they are robust with respect to model misspecification.
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Examples of a traditional ESα backtests

I Mean of exceedance residuals (McNeil and Frey, 2000):

ht =
1

σ̂t

(
Et − Vt

1− α
, 1

)
,

where σ̂t is an Ft−1-measurable estimator of the volatility of
Xt .
They assume a model of the form

Xt = µt + σtZt

to calculate the distribution of (1/n)
∑n

t=1 htV (Qt ,Et ,Xt)
under HC

0 .

I ht = (0, 1).

I Other options: Acerbi and Szekely (2014)
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A simulation study

AR(1)-GARCH(1,1)-model:

Xt = µt + εt , µt = −0.05 + 0.3Xt−1,

εt = σtZt , σ2t = 0.01 + 0.1ε2t−1 + 0.85σ2t−1,

(Zt) iid with skewed t distribution with shape = 5 and skewness
= 1.5.

Estimation procedures:

I Fully parametric (n-FP, t-FP, st-FP)

I Filtered historical simulation (n-FHS, t-FHS, st-FHS)

I EVT based semi-parametric estimation (n-EVT, t-EVT,
st-EVT)

Moving window of size 500 for estimation
5000 out-of-sample verifying observations
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P-values of traditional backtests for (VaRα,ESα)

α = 0.754

simple general

n-FP 0.000 0.000
n-FHS 0.881 0.184
n-EVT 0.754 0.672
t-FP 0.086 0.006
t-FHS 0.936 0.512
t-EVT 0.880 0.475
st-FP 0.569 0.824
st-FHS 0.909 0.796
st-EVT 0.935 0.706
opt 0.401 0.337

α = 0.975

simple general

0.000 0.000
0.653 0.231
0.886 0.226
0.000 0.000
0.697 0.717
0.995 0.498
0.695 0.419
0.843 0.758
0.962 0.564
0.131 0.571
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Comparative evaluation

Filtrations F = {Ft}t∈N and F∗ = {F∗t }t∈N

Qt , Q
∗
t : VaRα predictions for time point t

Et , E
∗
t : ESα predictions for time point t

Qt , Et : internal model, Ft−1-measurable
Q∗t , E ∗t : standard model, F∗t−1-measurable

Xt : Realization at time point t, Ft-measurable and F∗t -measurable
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Forecast dominance
Let L be a consistent loss function for (VaRα,ESα).

Definition (S-Dominance)

The sequence of predictions {(Qt ,Et)}t∈N (L-)dominates
{(Q∗t ,E ∗t )}t∈N if

E(L(Qt ,Et ,Xt)− L(Q∗t ,E
∗
t ,Xt)) ≤ 0, for all t ∈ N.

I Diebold-Mariano tests for difference in predictive performance
(Diebold and Mariano, 1995).

I Test statistic:

√
n

Σ̂n

1

n

n∑
t=1

(L(Qt ,Et ,Xt)− L(Q∗t ,E
∗
t ,Xt)).

Asymptotically normal under suitable conditions (Giacomini
and White, 2006).
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Comparative backtesting

H−0 : Internal model dominates the standard model.

H+
0 : Internal model is dominated by the standard model.

I Backtesting decision using H−0 : If we do not reject H−0 , the
risk measure estimates are acceptable (compared to the
standard).

I Backtesting decision using H+
0 : If we reject H+

0 , the risk
measure estimates are acceptable (compared to the standard).

I Elicitability is crucial for robust comparative backtests.

I Allows for comparison between methods.

I Necessitates a standard reference model.

I Respects increasing information sets (Holzmann and Eulert,
2014).
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Choice of a loss function for (VaRα,ESα)

A loss function L is called positively homogeneous of degree b if

L(cr , cx) = cbL(r , x), for all c > 0.

I Important in regression, forecast ranking; implies “unit
consistency” (Efron, 1991, Patton, 2011, Acerbi and Szekely,
2014).

Let A = (R× (0,∞)) ∩ A0.

I There are positively homogeneous strictly consistent loss
functions of degree b if and only if b ∈ (−∞, 1)\{0}.

I There are strictly consistent loss functions such that the loss
differences are positively homogeneous of degree b = 0:

L0(q, e, x) = 1{x > q}x − q

e
+ (1− α)

(q
e
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Three zone approach for comparative backtesting

L̄0
1.64 ΣN 1.64 ΣN

H−
0 pass fail

H+
0 pass fail
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P-values of traditional backtests and L0-ranking for
(VaRα,ESα)

α = 0.754

simple general L̄0
n-FP 0.000 0.000 9
n-FHS 0.881 0.184 4
n-EVT 0.754 0.672 8
t-FP 0.086 0.006 10
t-FHS 0.936 0.512 5
t-EVT 0.880 0.475 7
st-FP 0.569 0.824 3
st-FHS 0.909 0.796 2
st-EVT 0.935 0.706 6
opt 0.401 0.337 1

α = 0.975

simple general L̄0
0.000 0.000 10
0.653 0.231 8
0.886 0.226 7
0.000 0.000 9
0.697 0.717 6
0.995 0.498 5
0.695 0.419 2
0.843 0.758 4
0.962 0.564 3
0.131 0.571 1
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Backtesting with small sample size

(VaR0.975,ES0.975)

n
-F

P

n
-F

H
S

n
-E

V
T

t-
F

P

t-
F

H
S

t-
E

V
T

st
-F

P

st
-F

H
S

st
-E

V
T

op
t

n-FP 0 84 86 84 84 86 86 84 86 89

n-FHS 16 0 58 23 54 58 61 57 59 74

n-EVT 14 42 0 22 45 53 55 49 58 72

t-FP 16 77 78 0 79 80 81 77 80 84

t-FHS 16 46 55 21 0 60 58 51 63 72

t-EVT 14 42 47 20 40 0 52 43 53 73

st-FP 14 39 45 19 42 48 0 40 52 71

st-FHS 16 43 51 23 49 57 60 0 60 72

st-EVT 14 41 42 20 37 47 48 40 0 73

opt 11 26 28 16 28 27 29 28 27 0
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Conclusion

I Traditional backtests that are robust with respect to model
misspecification necessitate an identifiable risk measure.

I Robust comparative backtests necessitate an elicitable risk
measure.

I Robust traditional and comparative backtests for the whole
tail of the distribution are also available. (Holzmann & Klar,
2017, Gordi, Lok & McNeil, 2017)

I k-Elicitability allows to find loss functions for functionals that
are not elicitable individually.

I A relevant example in banking and insurance is the
non-elicitable risk measure ESα which is 2-elicitable with
VaRα.
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Outlook

I Characterization result for loss functions for (VaRα,ESα)
allows for Murphy diagrams: Forecast comparison without the
choice of a specific loss function (Z, Krüger, Jordan, Fasciati,
2017).

I The loss functions for (VaRα,ESα) allow for M-estimation
(Zwingmann & Holzmann, 2016), generalized regression
(Bayer & Dimitriadis, 2017, Barendse, 2017), semi-parametric
time series models (Patton, Z, Chen, 2017)

31 / 32



Some references

T. Fissler and J. F. Ziegel (2016). Higher order elicitability
and Osband’s principle. Annals of Statistics, 44:1680–1707.

T. Fissler, J. F. Ziegel and T. Gneiting (2016). Expected
Shortfall is jointly elicitable with Value at Risk – Implications for
backtesting. Risk Magazine, January 2016.

N. Nolde and J. F. Ziegel (2016). Elicitability and
backtesting. Annals of Applied Statistics, to appear with
discussion.

Thank you for your attention!
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