Elicitability and backtesting

Johanna F. Ziegel

University of Bern

joint work with Natalia Nolde, UBC

17 November 2017 Research Seminar at the Institute for Statistics and Mathematics, WU Vienna

Introduction

Let X be the single-period return of some financial asset.

 A risk measure ρ assigns a real number ρ(X) to X (interpreted as the risk of the asset).

Risk measures are used for

- external regulatory capital calculation
- management, optimization and decision making
- performance analysis
- capital allocation

Introduction

Let X be the single-period return of some financial asset.

 A risk measure ρ assigns a real number ρ(X) to X (interpreted as the risk of the asset).

Risk measures are used for

- external regulatory capital calculation
- management, optimization and decision making
- performance analysis
- capital allocation

Risk measures

We assume that the risk $\rho(X)$ only depends on the distribution of X, that is,

 $\rho: \mathcal{P} \to \mathbb{R},$

where \mathcal{P} is a suitable class of probability measures on \mathbb{R} . (We write both: $\rho(X) = \rho(P)$ for $X \sim P$.)

- Impose theoretical requirements on ρ motivated by economic principles: monetary risk measures, coherent risk measures,....
- Consider statistical aspects of the resulting functionals.

Sign convention

- Losses are positive, profits are negative.
- Risky positions yield positive values of ρ .

Risk measures

We assume that the risk $\rho(X)$ only depends on the distribution of X, that is,

$$\rho: \mathcal{P} \to \mathbb{R},$$

where \mathcal{P} is a suitable class of probability measures on \mathbb{R} . (We write both: $\rho(X) = \rho(P)$ for $X \sim P$.)

- Impose theoretical requirements on ρ motivated by economic principles: monetary risk measures, coherent risk measures,....
- Consider statistical aspects of the resulting functionals.

Sign convention

- Losses are positive, profits are negative.
- Risky positions yield positive values of ρ .

Risk measures

We assume that the risk $\rho(X)$ only depends on the distribution of X, that is,

$$\rho: \mathcal{P} \to \mathbb{R},$$

where \mathcal{P} is a suitable class of probability measures on \mathbb{R} . (We write both: $\rho(X) = \rho(P)$ for $X \sim P$.)

- Impose theoretical requirements on ρ motivated by economic principles: monetary risk measures, coherent risk measures,....
- Consider statistical aspects of the resulting functionals.

Sign convention

- Losses are positive, profits are negative.
- Risky positions yield positive values of ρ .

Examples

Example (Value-at-Risk (VaR)) For $\alpha \in (0, 1)$ and a random variable X with distribution function F, we define

$$\mathsf{VaR}_lpha(X) = \mathsf{inf}\{x \in \mathbb{R}: F(x) \geq lpha\} = F^{-1}(lpha).$$

VaR is a co-monotonic additive, monetary risk measure.

Example (Expected shortfall (ES) If X has finite mean, we define

$$\mathsf{ES}_{\alpha}(X) = \frac{1}{1-\alpha} \int_{\alpha}^{1} \mathsf{VaR}_{u}(X) \,\mathrm{d}u \quad \Big(= \mathbb{E}[X|X \ge \mathsf{VaR}_{\alpha}(X)]\Big).$$

ES is a co-monotonic additive, coherent risk measure.

Examples

Example (Value-at-Risk (VaR)) For $\alpha \in (0, 1)$ and a random variable X with distribution function F, we define

$$\mathsf{VaR}_lpha(X) = \mathsf{inf}\{x \in \mathbb{R}: F(x) \geq lpha\} = F^{-1}(lpha).$$

VaR is a co-monotonic additive, monetary risk measure.

Example (Expected shortfall (ES)) If X has finite mean, we define

$$\mathsf{ES}_{\alpha}(X) = \frac{1}{1-\alpha} \int_{\alpha}^{1} \mathsf{VaR}_{u}(X) \, \mathrm{d}u \quad \Big(= \mathbb{E}[X|X \ge \mathsf{VaR}_{\alpha}(X)] \Big).$$

ES is a co-monotonic additive, coherent risk measure.

Examples

Example (Value-at-Risk (VaR)) For $\alpha \in (0, 1)$ and a random variable X with distribution function F, we define

$$\mathsf{VaR}_lpha(X) = \mathsf{inf}\{x \in \mathbb{R}: F(x) \geq lpha\} = F^{-1}(lpha).$$

VaR is a co-monotonic additive, monetary risk measure.

Example (Expected shortfall (ES)) If X has finite mean, we define

$$\mathsf{ES}_{lpha}(X) = rac{1}{1-lpha} \int_{lpha}^{1} \mathsf{VaR}_{u}(X) \, \mathrm{d}u \quad \Big(= \mathbb{E}[X|X \ge \mathsf{VaR}_{lpha}(X)] \Big).$$

ES is a co-monotonic additive, coherent risk measure.

Returns $\{X_t\}_{t\in\mathbb{N}}$ (covariates $\{Z_t\}_{t\in\mathbb{N}}$) adapted to filtration $\{\mathcal{F}_t\}_{t\in\mathbb{N}}$ Historical data: returns x_1, \ldots, x_n , (covariates z_1, \ldots, z_n) Estimation

Approximate $\rho(X_{n+1}|\mathcal{F}_n)$ by $r_{n+1} = \hat{\rho}(x_1, \ldots, x_n, z_1, \ldots, z_n)$. (\rightarrow elicitability/identifiability)

Forecast evaluation

► Given r₁,..., r_n, evaluate the quality of the predictions (traditional backtesting). (→ identifiability)

► Given r₁,..., r_n, r^{*}₁,..., r^{*}_n, say which method has better predictive power (comparative backtesting). (→ elicitability)

Returns $\{X_t\}_{t\in\mathbb{N}}$ (covariates $\{Z_t\}_{t\in\mathbb{N}}$) adapted to filtration $\{\mathcal{F}_t\}_{t\in\mathbb{N}}$ Historical data: returns x_1, \ldots, x_n , (covariates z_1, \ldots, z_n) Estimation Approximate $\rho(X_{n+1}|\mathcal{F}_n)$ by $r_{n+1} = \hat{\rho}(x_1, \ldots, x_n, z_1, \ldots, z_n)$. (\rightarrow

elicitability/identifiability)

- ► Given r₁,..., r_n, evaluate the quality of the predictions (traditional backtesting). (→ identifiability)
- ► Given r₁,..., r_n, r^{*}₁,..., r^{*}_n, say which method has better predictive power (comparative backtesting). (→ elicitability)

Returns $\{X_t\}_{t\in\mathbb{N}}$ (covariates $\{Z_t\}_{t\in\mathbb{N}}$) adapted to filtration $\{\mathcal{F}_t\}_{t\in\mathbb{N}}$ Historical data: returns x_1, \ldots, x_n , (covariates z_1, \ldots, z_n) Estimation Approximate $\rho(X_{n+1}|\mathcal{F}_n)$ by $r_{n+1} = \hat{\rho}(x_1, \ldots, x_n, z_1, \ldots, z_n)$. (\rightarrow

elicitability/identifiability)

- ► Given r₁,..., r_n, evaluate the quality of the predictions (traditional backtesting). (→ identifiability)
- ► Given r₁,..., r_n, r^{*}₁,..., r^{*}_n, say which method has better predictive power (comparative backtesting). (→ elicitability)

Returns $\{X_t\}_{t\in\mathbb{N}}$ (covariates $\{Z_t\}_{t\in\mathbb{N}}$) adapted to filtration $\{\mathcal{F}_t\}_{t\in\mathbb{N}}$ Historical data: returns x_1, \ldots, x_n , (covariates z_1, \ldots, z_n) Estimation Approximate $\rho(X_{n+1}|\mathcal{F}_n)$ by $r_{n+1} = \hat{\rho}(x_1, \ldots, x_n, z_1, \ldots, z_n)$. (\rightarrow

Approximate $\rho(X_{n+1}|\mathcal{F}_n)$ by $r_{n+1} = \hat{\rho}(x_1, \dots, x_n, z_1, \dots, z_n)$. (\rightarrow elicitability/identifiability)

- ▶ Given r_1, \ldots, r_n , evaluate the quality of the predictions (traditional backtesting). (→ identifiability)
- ► Given r₁,..., r_n, r^{*}₁,..., r^{*}_n, say which method has better predictive power (comparative backtesting). (→ elicitability)

Returns $\{X_t\}_{t\in\mathbb{N}}$ (covariates $\{Z_t\}_{t\in\mathbb{N}}$) adapted to filtration $\{\mathcal{F}_t\}_{t\in\mathbb{N}}$ Historical data: returns x_1, \ldots, x_n , (covariates z_1, \ldots, z_n) Estimation

Approximate $\rho(X_{n+1}|\mathcal{F}_n)$ by $r_{n+1} = \hat{\rho}(x_1, \dots, x_n, z_1, \dots, z_n)$. (\rightarrow elicitability/identifiability)

- Given r_1, \ldots, r_n , evaluate the quality of the predictions (traditional backtesting). (\rightarrow identifiability)
- ► Given r₁,..., r_n, r^{*}₁,..., r^{*}_n, say which method has better predictive power (comparative backtesting). (→ elicitability)

Elicitability and identifiability

Let $\mathsf{A} \subset \mathbb{R}$ be such that

$$\rho \colon \mathcal{P} \to \mathsf{A}, \quad \mathcal{P} \mapsto \rho(\mathcal{P})$$

Definition

A loss function $L : A \times \mathbb{R} \to \mathbb{R}$ is consistent for ρ (relative to \mathcal{P}), if

$$\mathbb{E}[L(\rho(P), X)] \leq \mathbb{E}[L(r, X)], \quad P \in \mathcal{P}, \ X \sim P, \ r \in A.$$

It is strictly consistent (relative to \mathcal{P}) if "=" implies $r = \rho(\mathcal{P})$.

The risk measure ρ is called *elicitable (relative to* \mathcal{P}) if there exists a loss function L that is strictly consistent for it.

In other words

$$\rho(P) = \arg\min_{r \in A} \mathbb{E}L(r, X).$$

Elicitability and identifiability

Let $\mathsf{A} \subset \mathbb{R}$ be such that

 $\rho\colon \mathcal{P} \to \mathsf{A}, \quad P \mapsto \rho(P)$

Definition

A loss function $L : A \times \mathbb{R} \to \mathbb{R}$ is consistent for ρ (relative to \mathcal{P}), if

$$\mathbb{E}[L(
ho(P),X)] \leq \mathbb{E}[L(r,X)], \quad P \in \mathcal{P}, \ X \sim P, \ r \in A.$$

It is strictly consistent (relative to \mathcal{P}) if "=" implies $r = \rho(\mathcal{P})$.

The risk measure ρ is called *elicitable (relative to* \mathcal{P}) if there exists a loss function L that is strictly consistent for it.

In other words

$$\rho(P) = \arg\min_{r \in A} \mathbb{E}L(r, X).$$

(ロ) (同) (目) (日) (日) (0) (0)

Elicitability and identifiability

Let $A \subset \mathbb{R}$ be such that

$$\rho \colon \mathcal{P} \to \mathsf{A}, \quad P \mapsto \rho(P)$$

Definition

 ρ is *identifiable (relative to* \mathcal{P}), if there is a function $V : A \times \mathbb{R} \to \mathbb{R}$ such that

$$\mathbb{E}(V(r,X))=0 \quad \Longleftrightarrow \quad r=
ho(X),$$

for all $P \in \mathcal{P}$, $X \sim P$, $r \in A$.

Some examples

Mean

$$L(r, x) = (x - r)^2$$
 $V(r, x) = x - r$

- Least squares regression
- Comparison of models/forecast performance in terms of MSE
- α -Quantiles/VaR $_{\alpha}$ (Median)

$$L(r,x) = (\mathbb{1}\{x \le r\} - \alpha)(r-x) \quad V(r,x) = \mathbb{1}\{x \le r\} - \alpha$$

- Quantile/Median regression
- α -Expectiles (Newey and Powell, 1987)

$$L(r,x) = |\mathbb{1}\{x \le r\} - \alpha | (r-x)^2$$

$$V(r,x) = |\mathbb{1}\{x \le r\} - \alpha | (r-x)$$

Expectile regression

Elicitable and non-elicitable functionals

Elicitable

- Mean, moments
- Median, quantiles/Value-at-Risk
- Expectiles (Newey and Powell, 1987)

Not elicitable

- Variance
- Expected shortfall (Weber, 2006, Gneiting, 2011)
- Spectral risk measures (Weber, 2006, Z, 2014)

イロト 不得下 イヨト イヨト 二日

k-Elicitability and k-identifiability

Let $\mathsf{A} \subset \mathbb{R}^{\textit{k}}$ be such that

$$\underline{\rho} \colon \mathcal{P} \to \mathsf{A}, \quad \mathcal{P} \mapsto \underline{\rho}(\mathcal{P})$$

Definition

A loss function $L : A \times \mathbb{R} \to \mathbb{R}$ is consistent for ρ (relative to \mathcal{P}), if

$$\mathbb{E}[L(\underline{\rho}(P),X)] \leq \mathbb{E}[L(r,X)], \quad P \in \mathcal{P}, \ X \sim P, \ r = (r_1,\ldots,r_k) \in \mathsf{A}.$$

It is strictly consistent (relative to \mathcal{P}) if "=" implies $r = \underline{\rho}(\mathcal{P})$.

The vector of risk measures $\underline{\rho}$ is called *k*-elicitable (relative to \mathcal{P}) if there exists a loss function L that is strictly consistent for it. In other words

$$\underline{\rho}(P) = \arg\min_{r \in A} \mathbb{E}L(r, X).$$

k-Elicitability and identifiability

Let $\mathsf{A} \subset \mathbb{R}^{\textit{k}}$ be such that

$$\underline{\rho} \colon \mathcal{P} \to \mathsf{A}, \quad \mathcal{P} \mapsto \underline{\rho}(\mathcal{P})$$

Definition

 $\underline{\rho}$ is *k*-identifiable (relative to \mathcal{P}), if there is a function $\overline{V} : A \times \mathbb{R} \to \mathbb{R}^k$ such that

$$\mathbb{E}(V(r,X))=0 \quad \Longleftrightarrow \quad r=\underline{
ho}(X),$$

for all $P \in \mathcal{P}$, $X \sim P$, $r = (r_1, \ldots, r_k) \in A$.

Elicitable and identifiable functionals

1-Elicitable and 1-identifiable

- Mean, moments
- Median, quantiles/VaR
- Expectiles (Newey and Powell, 1987)

2-Elicitable and 2-identifiable

- Mean and variance
- Second moment and variance
- ▶ VaR and ES (Acerbi and Szekely, 2014, Fissler and Z, 2016)

k-Elicitable and k-identifiable

 Some spectral risk measures together with several VaRs at certain levels (Fissler and Z, 2016)

$\underline{\rho} = (\mathsf{VaR}_{\alpha}, \mathsf{ES}_{\alpha})$

Theorem (Fissler and Z, 2016)

Let $\alpha \in (0,1)$, and $A_0 := \{r = (q, e) \in \mathbb{R}^2 : q \leq e\}$. Let \mathcal{P} be a class of probability measures on \mathbb{R} with finite first moments and unique α -quantiles. Any loss function $L: A_0 \times \mathbb{R} \to \mathbb{R}$ of the form

$$L(q, e, x) = (1 - \alpha - \mathbb{1}\{x > q\})g(q) + \mathbb{1}\{x > q\}g(x) + \phi'(e)\left((1 - \alpha - \mathbb{1}\{x > q\})\frac{q}{1 - \alpha} + \mathbb{1}\{x > q\}\frac{x}{1 - \alpha} - e\right) + \phi(e)$$

is consistent for $\underline{\rho} = (\mathsf{VaR}_{\alpha}, \mathsf{ES}_{\alpha})$ if $\mathbb{1}_{[q,\infty)}g$ is \mathcal{P} -integrable and

• g is increasing and ϕ is increasing and concave.

It is strictly consistent if, additionally,

 \bullet ϕ is strictly increasing and strictly concave.

Evaluating forecasts of expected shortfall

Filtration $\mathcal{F} = \{\mathcal{F}_t\}_{t \in \mathbb{N}}$

Prediction-observation triples

 $(Q_t, E_t, X_t)_{t \in \mathbb{N}}$

 Q_t : VaR_{α} prediction for time point t, \mathcal{F}_{t-1} -measurable E_t : ES_{α} prediction for time point t, \mathcal{F}_{t-1} -measurable X_t : Realization at time point t, \mathcal{F}_t -measurable

Absolute evaluation

Let V be an identification function for $(VaR_{\alpha}, ES_{\alpha})$, i.e.

$$V(q,e,x) = A(q,e) \begin{pmatrix} 1-\alpha - \mathbb{1}\{x > q\} \\ q-e - \frac{1}{1-\alpha} \mathbb{1}\{x > q\}(q-x) \end{pmatrix},$$

where $A(q, e) \in \mathbb{R}^{2 \times 2}$ with det $(A(q, e)) \neq 0$. (We take $A = I_2$.) Definition (Calibration)

The sequence of predictions $\{(Q_t, E_t)\}_{t \in \mathbb{N}}$ is conditionally calibrated for $(VaR_{\alpha}, ES_{\alpha})$ if

$$\mathbb{E}\left(V(Q_t, E_t, X_t)|\mathcal{F}_{t-1}\right) = 0 \quad \text{for all } t \in \mathbb{N}.$$

Compare Davis (2016).

Calibration and optimal prediction

► Given information *F*_{t-1} at time point *t* − 1, the best prediction for (VaR_α, ES_α) of *X*_t is

$$(\operatorname{VaR}_{\alpha}(\mathcal{L}(X_t|\mathcal{F}_{t-1})),\operatorname{ES}_{\alpha}(\mathcal{L}(X_t|\mathcal{F}_{t-1}))).$$

This is the only \mathcal{F}_{t-1} -measurable prediction which is conditionally calibrated.

• If $\mathcal{F}_{t-1}^* \supset \mathcal{F}_{t-1}$, then

$$\left(\operatorname{VaR}_{\alpha}\left(\mathcal{L}(X_{t}|\mathcal{F}_{t-1}^{*})\right),\operatorname{ES}_{\alpha}\left(\mathcal{L}(X_{t}|\mathcal{F}_{t-1}^{*})\right)\right).$$

is also conditionally calibrated (with respect to \mathcal{F}_{t-1}).

Calibration and optimal prediction

► Given information *F*_{t-1} at time point *t* − 1, the best prediction for (VaR_α, ES_α) of *X*_t is

$$(\operatorname{VaR}_{\alpha}(\mathcal{L}(X_t|\mathcal{F}_{t-1})),\operatorname{ES}_{\alpha}(\mathcal{L}(X_t|\mathcal{F}_{t-1}))).$$

This is the only \mathcal{F}_{t-1} -measurable prediction which is conditionally calibrated.

▶ If
$$\mathcal{F}_{t-1}^* \supset \mathcal{F}_{t-1}$$
, then

$$(\operatorname{VaR}_{\alpha}(\mathcal{L}(X_t|\mathcal{F}_{t-1}^*)),\operatorname{ES}_{\alpha}(\mathcal{L}(X_t|\mathcal{F}_{t-1}^*))).$$

is also conditionally calibrated (with respect to \mathcal{F}_{t-1}).

Calibration and optimal prediction

► Given information *F*_{t-1} at time point *t* − 1, the best prediction for (VaR_α, ES_α) of *X*_t is

$$(\operatorname{VaR}_{\alpha}(\mathcal{L}(X_t|\mathcal{F}_{t-1})),\operatorname{ES}_{\alpha}(\mathcal{L}(X_t|\mathcal{F}_{t-1}))).$$

This is the only \mathcal{F}_{t-1} -measurable prediction which is conditionally calibrated.

▶ If
$$\mathcal{F}_{t-1}^* \supset \mathcal{F}_{t-1}$$
, then

$$(\operatorname{VaR}_{\alpha}(\mathcal{L}(X_t|\mathcal{F}_{t-1}^*)),\operatorname{ES}_{\alpha}(\mathcal{L}(X_t|\mathcal{F}_{t-1}^*))).$$

is also conditionally calibrated (with respect to \mathcal{F}_{t-1}).

Traditional backtesting

H_0^C : The sequence of predictions $\{(Q_t, E_t)\}_{t \in \mathbb{N}}$ is conditionally calibrated.

- Backtesting decision: If we do not reject H^C₀, the risk measure estimates are adequate.
- Many existing backtests can be described as a test for conditional calibration (with different choices for the identification function, different model assumptions). (McNeil and Frey, 2000, Acerbi and Szekely 2014)
- Does not give guidance for decision between methods.
- Does not respect increasing information sets.

Traditional backtesting

 H_0^C : The sequence of predictions $\{(Q_t, E_t)\}_{t \in \mathbb{N}}$ is conditionally calibrated.

- Backtesting decision: If we do not reject H^C₀, the risk measure estimates are adequate.
- Many existing backtests can be described as a test for conditional calibration (with different choices for the identification function, different model assumptions). (McNeil and Frey, 2000, Acerbi and Szekely 2014)
- Does not give guidance for decision between methods.
- Does not respect increasing information sets.

Constructing conditional calibration tests

- ▶ $\mathbb{E}(V(Q_t, E_t, X_t) | \mathcal{F}_{t-1}) = 0$ is equivalent to $\mathbb{E}(h_t^\top V(Q_t, E_t, X_t)) = 0$ for all \mathcal{F}_{t-1} -measurable \mathbb{R}^2 -valued functions h_t .
- ► Choose *F*-predictable sequence {h_t}_{t∈N} of q × 2-matrices h_t of *test functions*: Ideally, the rows of h_t generate *F*_{t-1}.
- Construct test statistic: For example,

$$T_1 = n \Big(\frac{1}{n} \sum_{t=1}^n \mathbf{h}_t V(Q_t, E_t, X_t) \Big)^\top \widehat{\Omega}_n^{-1} \Big(\frac{1}{n} \sum_{t=1}^n \mathbf{h}_t V(Q_t, E_t, X_t) \Big),$$

where

$$\widehat{\Omega}_n = \frac{1}{n} \sum_{t=1}^n (\mathbf{h}_t V(Q_t, E_t, X_t)) (\mathbf{h}_t V(Q_t, E_t, X_t))^\top.$$

Giacomini and White (2006) give general conditions under which T_1 is asymptotically χ^2_q .

For these traditional ES_α backtests, VaR_α is also needed but they are robust with respect to model misspecification.

Constructing conditional calibration tests

- $\mathbb{E}(V(Q_t, E_t, X_t)|\mathcal{F}_{t-1}) = 0$ is equivalent to $\mathbb{E}(h_t^\top V(Q_t, E_t, X_t)) = 0$ for all \mathcal{F}_{t-1} -measurable \mathbb{R}^2 -valued functions h_t .
- ► Choose *F*-predictable sequence {h_t}_{t∈N} of q × 2-matrices h_t of *test functions*: Ideally, the rows of h_t generate *F*_{t-1}.
- Construct test statistic: For example,

$$T_1 = n \Big(\frac{1}{n} \sum_{t=1}^n \mathbf{h}_t V(Q_t, E_t, X_t) \Big)^\top \widehat{\Omega}_n^{-1} \Big(\frac{1}{n} \sum_{t=1}^n \mathbf{h}_t V(Q_t, E_t, X_t) \Big),$$

where

$$\widehat{\Omega}_n = \frac{1}{n} \sum_{t=1}^n (\mathbf{h}_t V(Q_t, E_t, X_t)) (\mathbf{h}_t V(Q_t, E_t, X_t))^\top.$$

Giacomini and White (2006) give general conditions under which T_1 is asymptotically χ^2_q .

For these traditional ES_{α} backtests, VaR_{α} is also needed but they are robust with respect to model misspecification.

Constructing conditional calibration tests

- $\mathbb{E}(V(Q_t, E_t, X_t)|\mathcal{F}_{t-1}) = 0$ is equivalent to $\mathbb{E}(h_t^\top V(Q_t, E_t, X_t)) = 0$ for all \mathcal{F}_{t-1} -measurable \mathbb{R}^2 -valued functions h_t .
- ► Choose *F*-predictable sequence {h_t}_{t∈N} of q × 2-matrices h_t of *test functions*: Ideally, the rows of h_t generate *F*_{t-1}.
- Construct test statistic: For example,

$$T_1 = n \Big(\frac{1}{n} \sum_{t=1}^n \mathbf{h}_t V(Q_t, E_t, X_t) \Big)^\top \widehat{\Omega}_n^{-1} \Big(\frac{1}{n} \sum_{t=1}^n \mathbf{h}_t V(Q_t, E_t, X_t) \Big),$$

where

$$\widehat{\Omega}_n = \frac{1}{n} \sum_{t=1}^n (\mathbf{h}_t V(Q_t, E_t, X_t)) (\mathbf{h}_t V(Q_t, E_t, X_t))^\top.$$

Giacomini and White (2006) give general conditions under which T_1 is asymptotically χ^2_q .

For these traditional ES_α backtests, VaR_α is also needed but they are robust with respect to model misspecification.

Examples of a traditional ES_{α} backtests

Mean of exceedance residuals (McNeil and Frey, 2000):

$$\mathbf{h}_t = \frac{1}{\hat{\sigma}_t} \left(\frac{E_t - V_t}{1 - \alpha}, 1 \right),$$

where $\hat{\sigma}_t$ is an \mathcal{F}_{t-1} -measurable estimator of the volatility of X_t .

They assume a model of the form

$$X_t = \mu_t + \sigma_t Z_t$$

to calculate the distribution of $(1/n) \sum_{t=1}^{n} \mathbf{h}_t V(Q_t, E_t, X_t)$ under H_0^C .

- ▶ $\mathbf{h}_t = (0, 1)$.
- Other options: Acerbi and Szekely (2014)

A simulation study

AR(1)-GARCH(1,1)-model:

$$X_t = \mu_t + \varepsilon_t, \quad \mu_t = -0.05 + 0.3X_{t-1},$$

$$\varepsilon_t = \sigma_t Z_t, \quad \sigma_t^2 = 0.01 + 0.1 \varepsilon_{t-1}^2 + 0.85 \sigma_{t-1}^2,$$

 (Z_t) iid with skewed t distribution with shape = 5 and skewness = 1.5.

Estimation procedures:

- Fully parametric (n-FP, t-FP, st-FP)
- Filtered historical simulation (n-FHS, t-FHS, st-FHS)
- EVT based semi-parametric estimation (n-EVT, t-EVT, st-EVT)

Moving window of size 500 for estimation 5000 out-of-sample verifying observations

P-values of traditional backtests for $(VaR_{\alpha}, ES_{\alpha})$

	$\alpha = 0.754$		$\alpha = 0.975$	
	simple	general	simple	general
n-FP	0.000	0.000	0.000	0.000
n-FHS	0.881	0.184	0.653	0.231
n-EVT	0.754	0.672	0.886	0.226
t-FP	0.086	0.006	0.000	0.000
t-FHS	0.936	0.512	0.697	0.717
t-EVT	0.880	0.475	0.995	0.498
st-FP	0.569	0.824	0.695	0.419
st-FHS	0.909	0.796	0.843	0.758
st-EVT	0.935	0.706	0.962	0.564
opt	0.401	0.337	0.131	0.571

Comparative evaluation

Filtrations $\mathcal{F} = \{\mathcal{F}_t\}_{t\in\mathbb{N}}$ and $\mathcal{F}^* = \{\mathcal{F}_t^*\}_{t\in\mathbb{N}}$

 Q_t , Q_t^* : VaR_{α} predictions for time point t E_t , E_t^* : ES_{α} predictions for time point t

 Q_t , E_t : internal model, \mathcal{F}_{t-1} -measurable Q_t^* , E_t^* : standard model, \mathcal{F}_{t-1}^* -measurable

 X_t : Realization at time point t, \mathcal{F}_t -measurable and \mathcal{F}_t^* -measurable

Comparative evaluation

Filtrations $\mathcal{F} = \{\mathcal{F}_t\}_{t\in\mathbb{N}}$ and $\mathcal{F}^* = \{\mathcal{F}^*_t\}_{t\in\mathbb{N}}$

 Q_t , Q_t^* : VaR_{α} predictions for time point t E_t , E_t^* : ES_{α} predictions for time point t

- Q_t , E_t : internal model, \mathcal{F}_{t-1} -measurable
- Q_t^* , E_t^* : standard model, \mathcal{F}_{t-1}^* -measurable

 X_t : Realization at time point t, \mathcal{F}_t -measurable and \mathcal{F}_t^* -measurable

Comparative evaluation

Filtrations $\mathcal{F} = \{\mathcal{F}_t\}_{t\in\mathbb{N}}$ and $\mathcal{F}^* = \{\mathcal{F}_t^*\}_{t\in\mathbb{N}}$

 Q_t , Q_t^* : VaR_{α} predictions for time point t E_t , E_t^* : ES_{α} predictions for time point t

- Q_t , E_t : internal model, \mathcal{F}_{t-1} -measurable
- Q_t^* , E_t^* : standard model, \mathcal{F}_{t-1}^* -measurable

 X_t : Realization at time point t, \mathcal{F}_t -measurable and \mathcal{F}_t^* -measurable

Forecast dominance

Let *L* be a consistent loss function for $(VaR_{\alpha}, ES_{\alpha})$.

Definition (S-Dominance)

The sequence of predictions $\{(Q_t, E_t)\}_{t\in\mathbb{N}}$ (L-)dominates $\{(Q_t^*, E_t^*)\}_{t\in\mathbb{N}}$ if

 $\mathbb{E}(L(Q_t,E_t,X_t)-L(Q_t^*,E_t^*,X_t))\leq 0,\quad\text{for all }t\in\mathbb{N}.$

- Diebold-Mariano tests for difference in predictive performance (Diebold and Mariano, 1995).
- Test statistic:

$$\frac{\sqrt{n}}{\hat{\Sigma}_n}\frac{1}{n}\sum_{t=1}^n (L(Q_t, E_t, X_t) - L(Q_t^*, E_t^*, X_t)).$$

Asymptotically normal under suitable conditions (Giacomini and White, 2006).

Forecast dominance

Let *L* be a consistent loss function for $(VaR_{\alpha}, ES_{\alpha})$.

Definition (S-Dominance)

The sequence of predictions $\{(Q_t, E_t)\}_{t\in\mathbb{N}}$ (L-)dominates $\{(Q_t^*, E_t^*)\}_{t\in\mathbb{N}}$ if

$$\mathbb{E}(L(Q_t, E_t, X_t) - L(Q_t^*, E_t^*, X_t)) \leq 0, \quad \text{for all } t \in \mathbb{N}.$$

- Diebold-Mariano tests for difference in predictive performance (Diebold and Mariano, 1995).
- Test statistic:

$$\frac{\sqrt{n}}{\hat{\Sigma}_n}\frac{1}{n}\sum_{t=1}^n (L(Q_t, E_t, X_t) - L(Q_t^*, E_t^*, X_t)).$$

Asymptotically normal under suitable conditions (Giacomini and White, 2006).

Comparative backtesting

- H_0^- : Internal model dominates the standard model.
- H_0^+ : Internal model is dominated by the standard model.
 - ▶ Backtesting decision using H_0^- : If we do not reject H_0^- , the risk measure estimates are acceptable (compared to the standard).
 - Backtesting decision using H₀⁺: If we reject H₀⁺, the risk measure estimates are acceptable (compared to the standard).
 - Elicitability is crucial for robust comparative backtests.
 - Allows for comparison between methods.
 - Necessitates a standard reference model.
 - Respects increasing information sets (Holzmann and Eulert, 2014).

Comparative backtesting

- H_0^- : Internal model dominates the standard model.
- H_0^+ : Internal model is dominated by the standard model.
 - ► Backtesting decision using H₀⁻: If we do not reject H₀⁻, the risk measure estimates are acceptable (compared to the standard).
 - Backtesting decision using H₀⁺: If we reject H₀⁺, the risk measure estimates are acceptable (compared to the standard).
 - Elicitability is crucial for robust comparative backtests.
 - Allows for comparison between methods.
 - Necessitates a standard reference model.
 - Respects increasing information sets (Holzmann and Eulert, 2014).

Comparative backtesting

- H_0^- : Internal model dominates the standard model.
- H_0^+ : Internal model is dominated by the standard model.
 - ► Backtesting decision using H₀⁻: If we do not reject H₀⁻, the risk measure estimates are acceptable (compared to the standard).
 - Backtesting decision using H₀⁺: If we reject H₀⁺, the risk measure estimates are acceptable (compared to the standard).
 - Elicitability is crucial for robust comparative backtests.
 - Allows for comparison between methods.
 - Necessitates a standard reference model.
 - Respects increasing information sets (Holzmann and Eulert, 2014).

Choice of a loss function for $(VaR_{\alpha}, ES_{\alpha})$

A loss function L is called positively homogeneous of degree b if

$$L(cr, cx) = c^b L(r, x), \text{ for all } c > 0.$$

 Important in regression, forecast ranking; implies "unit consistency" (Efron, 1991, Patton, 2011, Acerbi and Szekely, 2014).

Let $A = (\mathbb{R} \times (0, \infty)) \cap A_0$.

- ► There are positively homogeneous strictly consistent loss functions of degree b if and only if b ∈ (-∞, 1)\{0}.
- There are strictly consistent loss functions such that the loss differences are positively homogeneous of degree b = 0:

$$L_0(q, e, x) = \mathbb{1}\{x > q\} \frac{x - q}{e} + (1 - \alpha) \left(\frac{q}{e} - 1 + \log(e)\right)$$

25 / 32

イロン イロン イヨン イヨン 三日

Choice of a loss function for $(VaR_{\alpha}, ES_{\alpha})$

A loss function L is called positively homogeneous of degree b if

$$L(cr, cx) = c^b L(r, x)$$
, for all $c > 0$.

 Important in regression, forecast ranking; implies "unit consistency" (Efron, 1991, Patton, 2011, Acerbi and Szekely, 2014).

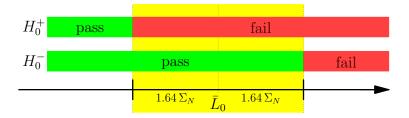
Let $A = (\mathbb{R} \times (0, \infty)) \cap A_0$.

- ► There are positively homogeneous strictly consistent loss functions of degree b if and only if b ∈ (-∞, 1)\{0}.
- There are strictly consistent loss functions such that the loss differences are positively homogeneous of degree b = 0:

$$L_0(q, e, x) = \mathbb{1}\{x > q\}\frac{x - q}{e} + (1 - \alpha)\left(\frac{q}{e} - 1 + \log(e)\right)$$

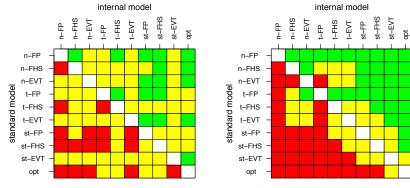
25 / 32

Three zone approach for comparative backtesting



P-values of traditional backtests and L_0 -ranking for (VaR_{α}, ES_{α})

	α	= 0.754		$\alpha = 0.975$			
	simple	general	\overline{L}_0	simple	general	\overline{L}_0	
n-FP	0.000	0.000	9	0.000	0.000	10	
n-FHS	0.881	0.184	4	0.653	0.231	8	
n-EVT	0.754	0.672	8	0.886	0.226	7	
t-FP	0.086	0.006	10	0.000	0.000	9	
t-FHS	0.936	0.512	5	0.697	0.717	6	
t-EVT	0.880	0.475	7	0.995	0.498	5	
st-FP	0.569	0.824	3	0.695	0.419	2	
st-FHS	0.909	0.796	2	0.843	0.758	4	
st-EVT	0.935	0.706	6	0.962	0.564	3	
opt	0.401	0.337	1	0.131	0.571	1	



v = 0.754

v = 0.975

Backtesting with small sample size

(VaR _{0.975} , ES _{0.975})												
	n-FP	n-FHS	n-EVT	t-FP	t-FHS	t-EVT	st-FP	st-FHS	st-EVT	opt		
n-FP	0	84	86	84	84	86	86	84	86	89		
n-FHS	16	0	58	23	54	58	61	57	59	74		
n-EVT	14	42	0	22	45	53	55	49	58	72		
t-FP	16	77	78	0	79	80	81	77	80	84		
t-FHS	16	46	55	21	0	60	58	51	63	72		
t-EVT	14	42	47	20	40	0	52	43	53	73		
st-FP	14	39	45	19	42	48	0	40	52	71		
st-FHS	16	43	51	23	49	57	60	0	60	72		
st-EVT	14	41	42	20	37	47	48	40	0	73		
opt	11	26	28	16	28	27	29	28	27	0		

29 / 32

Conclusion

- Traditional backtests that are robust with respect to model misspecification necessitate an identifiable risk measure.
- Robust comparative backtests necessitate an elicitable risk measure.
- Robust traditional and comparative backtests for the whole tail of the distribution are also available. (Holzmann & Klar, 2017, Gordi, Lok & McNeil, 2017)
- k-Elicitability allows to find loss functions for functionals that are not elicitable individually.
- A relevant example in banking and insurance is the non-elicitable risk measure ES_α which is 2-elicitable with VaR_α.

Conclusion

- Traditional backtests that are robust with respect to model misspecification necessitate an identifiable risk measure.
- Robust comparative backtests necessitate an elicitable risk measure.
- Robust traditional and comparative backtests for the whole tail of the distribution are also available. (Holzmann & Klar, 2017, Gordi, Lok & McNeil, 2017)
- k-Elicitability allows to find loss functions for functionals that are not elicitable individually.
- A relevant example in banking and insurance is the non-elicitable risk measure ES_α which is 2-elicitable with VaR_α.

Outlook

- Characterization result for loss functions for (VaR_α, ES_α) allows for Murphy diagrams: Forecast comparison without the choice of a specific loss function (Z, Krüger, Jordan, Fasciati, 2017).
- The loss functions for (VaR_α, ES_α) allow for M-estimation (Zwingmann & Holzmann, 2016), generalized regression (Bayer & Dimitriadis, 2017, Barendse, 2017), semi-parametric time series models (Patton, Z, Chen, 2017)

Some references

T. FISSLER AND J. F. ZIEGEL (2016). *Higher order elicitability* and Osband's principle. Annals of Statistics, 44:1680–1707.

T. FISSLER, J. F. ZIEGEL AND T. GNEITING (2016). *Expected Shortfall is jointly elicitable with Value at Risk – Implications for backtesting*. Risk Magazine, January 2016.

N. NOLDE AND J. F. ZIEGEL (2016). *Elicitability and backtesting*. Annals of Applied Statistics, to appear with discussion.

Thank you for your attention!