Pricing of Cyber Insurance Contracts in a Network Model

Stefan Weber

Leibniz Universität Hannover

www.stochastik.uni-hannover.de

(joint work with Matthias Fahrenwaldt & Kerstin Weske)

WU Wien - December 13, 2017

Motivation

- Cyber risks pose a large threat to businesses and governments
- \bullet Estimated global loss per year \approx 400 billion USD^1

• Dimensions of cyber risk

- Causes: Human errors; technical failures; insider/hacker attacks
- Damage: Lost, stolen or corrupted data; damage to firms' or governments' operations, property and reputation; severe disruption of critical infrastructure; physical damage, injury to people and fatalities
- Risk assessment: Analysis of critical scenarios; stochastic cyber model and statistical evaluation
- Mitigation: Modify system technology; develop emergency plan; insurance solutions

Stefan Weber, WU Wien 2017

 $^{^1}$ Center for Strategic & International Studies (2014)/ Llloyds of London CEO Inga Beale (2015)

Motivation (2)

• Actuarial challenges of cyber risk

Data:

Data is not available in the required amount or in the desired granularity

Non-stationarity:

Technology and cyber threats are evolving fast

Accumulation risks:

The typical insurance independence assumption does not hold, but there is no simple geographical distinction between dependent groups as, for example, in the case of NatCat

Motivation (3)

- We consider the special case of infectious cyber threats, e.g., viruses and worms
- Example:

WannaCry infected more than 230.000 computers in 150 countries in May 2017

• Our main contribution

A mathematical model for infectious cyber threats and cyber insurance

- Stochastic model based on IPS and marked point processes
- We suggest higher-order mean-field approximations
- Insurance application: premiums can be calculated
- Systemic risk: we analyze the influence of the network structure

Model Idea

• Infection spread process:

- Agents are connected in a network
- Infections spread from neighbor to neighbor and are cured independently
- $\rightarrow\,$ Continuous time Markov process, i.e., SIS/contact process

• Insurance claims processes:

- Infected nodes are vulnerable to cyber attacks that occur at random times and generate losses of random size
- $\rightarrow~$ Marked point process
- A (re-)insurance company covers a function of the nodes' losses

Outline

- 1 Spread Process
- 2 Claims Process
- **3** Mean-Field Approximation
- 4 Case Studies

Outline

- 1 Spread Process
 - 2 Claims Process
 - **3** Mean-Field Approximation
 - 4 Case Studies
 - 5 Conclusion

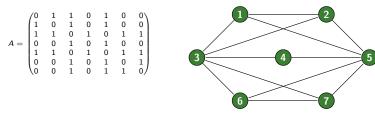
Network of Agents

• N interconnected agents, labeled 1, 2, ..., N

(e.g., corporations, systems of computers, or single devices)

- Connections: Network without self-loops, represented by a (symmetric) adjacency matrix A ∈ {0,1}^{N×N} (a_{ii} = 0)
 - $a_{ij} = 1$: connection between node *i* and *j*,
 - ▶ a_{ij} = 0: i and j are not directly connected

• Example:



Spread Process (1)

• SIS-model (Susceptible-Infected-Susceptible)

At each point in time, node *i* can be in one of **two states** $X_i(t) \in \{0, 1\}$:

- $X_i(t) = 1$: node *i* is infected = vulnerable to cyber attacks,
- ► X_i(t) = 0: node i is susceptible at time t
- Each node changes its state at a random time with a rate that may depend on the states of other nodes

Key parameters:

- $\beta > 0$ (infection rate),
- ▶ δ > 0 (curing rate)

Nodes are infected by their infected neighbors, and infected nodes are cured independently from other nodes:

- $X_i: 0 \to 1; \ \beta \sum_{j=1}^N a_{ij} X_j(t)$ (Infection),
- $X_i: 1 \rightarrow 0; \delta$ (Curing)

(1)

Spread Process (2)

Definition

The spread process X is a Feller process on the configuration space $E = \{0, 1\}^N$ defined by the generator $G : C(E) \to \mathbb{R}$ with

$$Gf(x) = \sum_{i=1}^{N} \left(\beta(1-x_i) \sum_{j=1}^{N} a_{ij}x_j + x_i \delta \right) (f(x^i) - f(x)), \quad x \in E, \ f \in C(E),$$

where $x_j^i = x_j$ for $i \neq j$ and $x_i^i = 1 - x_i$

9/27

Outline

2 Claims Process

3 Mean-Field Approximation

Case Studies

5 Conclusion

Stefan Weber, WU Wien 2017

Claims Process

• Mechanism

- The spread process X does not directly cause any damage
- The system as a whole is subject to randomly occurring cyber attacks
- A node is affected by a cyber attack at time t if and only if it is infected = vulnerable at time t

Mathematical Model

- Number of attacks: counting process $M = (M(t))_{t \ge 0}$
 - * ... with stochastic intensity $(\lambda(t))_{t\geq 0}$
 - \star ... independent of X
- ► Loss sizes: nonnegative process L = (L(t))_{t≥0}
 - \star ... independent of X
 - * ... with $L(t) = (L_1(t), \ldots, L_N(t))^\top$
 - * Losses of an attack at time *t* are captured by:

$$L(t) \circ X(t) = (L_1(t)X_1(t), \ldots, L_N(t)X_N(t))^{\top}$$

Expected Aggregate Losses

- For any time *t*, the insurance contract is characterized by a function $f(\cdot; \cdot) : \mathbb{R}_+ \times \mathbb{R}^N_+ \to \mathbb{R}_+$:
- The insurance company covers f(t; L(t) o X(t)), if a loss event occurs at time t
- \rightarrow The expected aggregate losses of the insurance company over time window [0, T] are given by:

$$\mathbb{E}\left[\int_0^T f(t; L(t) \circ X(t)) dM(t)\right] = \mathbb{E}\left[\int_0^T f(t; L(t) \circ X(t)) \lambda(t) dt\right]$$
(1)

• Question: Explicit calculation?

Example: Proportional Insurance

Let f describe a proportional insurance contract, i.e.,

$$f(t; L(t) \circ X(t)) = \sum_{i=1}^{N} \alpha_i L_i(t) X_i(t)$$

In this case, eq. (1) becomes

$$\mathbb{E}\left[\int_0^T f(t; L(t) \circ X(t)) dM(t)\right] = \mathbb{E}\left[\int_0^T f(t; L(t) \circ X(t)) \lambda(t) dt\right]$$
$$= \int_0^T \sum_{i=1}^N \alpha_i \cdot \mathbb{E}[X_i(t)] \cdot \mathbb{E}[L_i(t) \lambda(t)] dt$$

 \rightarrow For linear claim functions, only the first moments $\mathbb{E}[X_i(t)]$ of the spread process are needed in order to calculate the expected aggregate losses

General Claims

- Non-linear claim functions *f* can be uniformly approximated by polynomials of a chosen degree *n_p* in probability
- Basic idea:
 - By the theorem of Stone-Weierstraß, any continuous f can be uniformly approximated by polynomials on any compact set
 - The compact set is chosen such that the probability of the argument being outside the compact is sufficiently small

This leads to expressions of the following form:

$$\int_{0}^{T} \mathbb{E} \left(\mathbb{1}_{[0,u]}(\Lambda(L)) \cdot \lambda(t) \cdot \sum_{i=1}^{N} \left[a_{0} + a_{1} \sum_{i_{1}=1}^{N} b_{i_{1}} \mathcal{L}_{i_{1}} \mathbb{E}[X_{i_{1}}] + a_{2} \sum_{i_{1}=1}^{N} \sum_{i_{2}=1}^{N} b_{i_{1}} b_{i_{2}} \mathcal{L}_{i_{1}} \mathcal{L}_{i_{2}} \mathbb{E}[X_{i_{1}} X_{i_{2}}] \right]$$

$$+\ldots+a_np\sum_{i_1=1}^N\sum_{i_2=1}^N\cdots\sum_{i_np=1}^Nb_{i_1}b_{i_2}\cdots b_{i_np}\cdot L_{i_1}L_{i_2}\cdots L_{i_np}\cdot \mathbb{E}[X_{i_1}X_{i_2}\cdots X_{i_np}]\right]\right) dt$$

→ Only moments up to order n_p of the spread process (i.e., $\mathbb{E}[X_{i_1}(t) \cdots X_{i_k}(t)]$ for $i_j \in \{1, \dots, N\}$ and $k \leq n_p$) are required for the computation of the expected aggregate losses

14/27

General Claims (2)

For both linear and non-linear claim functions:

- Key issue when computing the expected aggregate losses:
 - Calculate moments of X
 - Due to Kolmogorov's equations, these are characterized by ODE systems
- Challenge:
 - Direct calculation of moments is hardly tractable for realistic network sizes due to very large ODE systems

Suggestion

Mean-field approximation of the moments of the spread process

Outline

- 1 Spread Process
- 2 Claims Process
- **3** Mean-Field Approximation
- Case Studies
- 5 Conclusion

First Order Mean-Field Approximation (1)

• ODEs of time-derivatives of first moments $\mathbb{E}[X_i(t)]$:

$$\frac{d\mathbb{E}[X_i(t)]}{dt} = -\delta\mathbb{E}[X_i(t)] + \beta\sum_{j=1}^N a_{ij}\mathbb{E}[X_j(t)] - \beta\sum_{j=1}^N a_{ij}\mathbb{E}[X_i(t)X_j(t)], \quad i = 1, 2, \dots, N$$

- Problem: Joint second moments keep the system from being closed
- Ansatz:

Incorrectly factorize the second moments

 $\mathbb{E}[X_i(t)X_j(t)] \approx F(\mathbb{E}[X_i(t)]) \cdot F(\mathbb{E}[X_j(t)])$

with a suitably chosen function $F : [0,1] \rightarrow [0,1]$, e.g., F(x) = x

First Order Mean-Field Approximation (2)

Definition

for i =

The first order mean-field approximation $z_i^{(1)}$ corresponding to the mean-field function F is defined as the solution to the following system of ODEs:

$$\frac{dz_i^{(1)}(t)}{dt} = -\delta z_i^{(1)}(t) + \beta \sum_{j=1}^N a_{ij} z_i^{(1)}(t) - \beta \sum_{j=1}^N a_{ij} F(z_i^{(1)}(t)) \cdot F(z_j^{(1)}(t)),$$

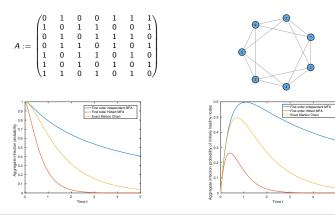
1,..., N

- The choice of F(x) = x leads to an upper bound, the choice of $F(x) = \sqrt{x}$ to a lower bound approximation of the exact moment
- For certain parameter choices, the approximation error decreases exponentially in time

First Order Mean-Field Approximation (3)

- The accuracy of first order mean-field approximations is typically low, if interaction is sufficiently strong
- Example:

We consider a regular network with N = 7 nodes and degree d = 4



n-th Order Mean-Field Approximation (1)

- In order to achieve higher accuracy, we extend this idea and construct mean-field approximations of order n: (z_l⁽ⁿ⁾)_{l⊆{1,2,...,N}}, |l|≤n
- This increases the complexity of the approximation
- Methodology
 - ▶ Define the product X_I := ∏_{i∈I} X_i for I ⊆ {1, 2, ..., N}. Since the components of X are commutative and idempotent, we may neglect the order of the indices or powers of its components
 - As a consequence of Kolmogorov's forward equations, the dynamics of the moments (*E*[X_I])_{I⊆{1,2,...,N}} are described by a coupled system of 2^N − 1 ODEs
 - Approximation

Focus only on $(E[X_I])_{I \subseteq \{1,2,\ldots,N\}, |I| \le n}$

n-th Order Mean-Field Approximation (2)

|I| = n

- Choose the following two objects:
 - a mean-field function F : [0,1] → [0,1] and
 a partition scheme (l₁, l₂) such that for j ∉ I we have I ∪ {j} = l₁(I,j) ∪ l₂(I,j) with non-empty l₁(j) = l₁(I,j), l₂(j) = l₂(I,j)
- This leads to the following approximation:

$$\begin{aligned} \frac{d}{dt} \mathbb{E}[X_I] &= -n\delta \mathbb{E}[X_I] + \beta \sum_{i \in I} \sum_{j=1}^N a_{ij} \mathbb{E}[X_{I \setminus \{i\} \cup \{j\}}] - \beta \sum_{i \in I} \sum_{j=1}^N a_{ij} \mathbb{E}[X_{I \cup \{j\}}] \\ &\approx -n\delta \mathbb{E}[X_I] + \beta \sum_{i \in I} \sum_{j=1}^N a_{ij} \mathbb{E}\left[X_{I \setminus \{i\} \cup \{j\}}\right] - \beta \sum_{i \in I} \sum_{j=1, j \in I}^N a_{ij} \mathbb{E}[X_I] \\ &-\beta \sum_{i \in I} \sum_{j=1, j \notin I}^N a_{ij} \cdot F\left(\mathbb{E}[X_{I_1(j)}]\right) \cdot F\left(\mathbb{E}[X_{I_2(j)}]\right). \end{aligned}$$

n-th Order Mean-Field Approximation (3)

|*I*| < *n*

• In the approximate ODE system, the ODE for $\frac{d}{dt}z_l^{(n)}$ is the exact ODE for $\frac{d}{dt}E[X_l]$:

$$\frac{d}{dt}\mathbb{E}[X_{I}] = -n\delta\mathbb{E}[X_{I}] + \beta \sum_{i \in I} \sum_{j=1}^{N} a_{ij}\mathbb{E}\left[X_{I \setminus \{i\} \cup \{j\}}\right] - \beta \sum_{i \in I} \sum_{j=1}^{N} a_{ij}\mathbb{E}\left[X_{I \cup \{j\}}\right]$$

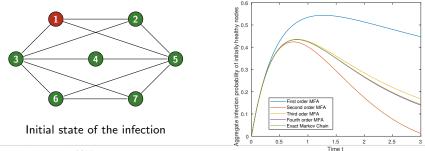
 \longrightarrow n-th order approximation with

$$\begin{aligned} |I| &= n: \quad \dot{z}_{I}^{(n)} = -\left(n\delta + \beta \sum_{i \in I} \sum_{j=1, j \in I}^{N} a_{ij}\right) z_{I}^{(n)} + \beta \sum_{i \in I} \sum_{j=1}^{N} a_{ij} z_{I \setminus \{i\} \cup \{j\}}^{(n)} \\ &- \beta \sum_{i \in I} \sum_{j=1, j \notin I}^{N} a_{ij} F\left(z_{I_{1}(j)}^{(n)}\right) \cdot F\left(z_{I_{2}(j)}^{(n)}\right) \\ |I| &< n: \quad \dot{z}_{I}^{(n)} = -n\delta z_{I}^{(n)} + \beta \sum_{i \in I} \sum_{j=1}^{N} a_{ij} z_{I \setminus \{i\} \cup \{j\}}^{(n)} - \beta \sum_{i \in I} \sum_{j=1}^{N} a_{ij} z_{I \cup \{j\}}^{(n)} \end{aligned}$$

n-th Order Mean-Field Approximation (4)

- The *n*-th order mean-field approximation yields approximations of all moments of X up to order *n*:
 - n-th moments enable us to compute expected aggregate losses for non-linear claim functions
 - The *n*-th order approximation also yields improved approximations of the first order moments, i.e., infection probabilities of each node

Example: Aggregate infection probability of initially healthy nodes in the *n*-th order mean-field approximation for n = 1, 2, 3, 4, F(x) = x, $\beta = 0.5$ and $\delta = 1.817$

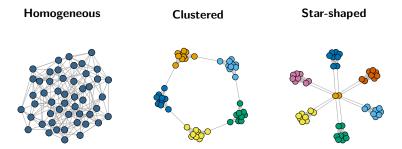


Outline

- 1 Spread Process
- 2 Claims Process
- **3** Mean-Field Approximation
- 4 Case Studies
 - 5 Conclusion

Network Scenarios

• We consider three different stylized network scenarios

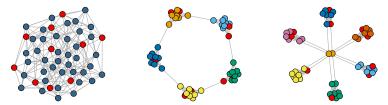


• The number of nodes and the degree of each node are equal in all scenarios (N = 50, d = 7)

 $\rightarrow~$ We are comparing the impact of the network topology

Simulation Setup

• We initially infect 20% of the nodes in the networks:



- For the spread process, we choose: $\beta = 0.5$, $\delta = 3.51$
- $\bullet\,$ Cyber attacks occur at the jumps of a homogeneous Poisson process with rate $\lambda=3$
- Losses at each vulnerable node are exponentially distributed with mean $\mu=2$
- Approximation of expected aggregate losses of the insurance company in [0, 3] on the basis of
 - mean-field approximations for the moments of the spread process,
 - Monte-Carlo simulations of the claims processes

Example: Aggregate Losses

Total loss coverage, i.e., the treaty function $f(t, \cdot)$ is given by

$$f(t,L(t)\circ X(t)):=\sum_{i=1}^N L_i(t)X_i(t)$$

 $\rightarrow~$ Estimated expected aggregate losses:

Losses: Total coverage	Homogeneous	Clustered	Star
First order MFA	96.4671	97.6170	96.5425
Second order MFA	51.4911	39.7776	39.4127
Third order MFA	77.8349	70.6588	68.0767
Fourth order MFA	68.0676	61.3693	59.9005

Example: Excess of Loss per Risk – XL

XL, i.e., the treaty function $f(t, \cdot)$ is given by

$$f(t, L(t) \circ X(t)) := \sum_{i=1}^{N} \min\{L_i(t), 2\} \cdot X_i(t)$$

 $\rightarrow~$ Estimated expected insurance losses:

Losses: XL	Homogeneous	Clustered	Star
First order MFA	60.9795	61.7036	61.0247
Second order MFA	32.5475	25.1401	24.9105
Third order MFA	49.2010	44.6618	43.0300
Fourth order MFA	43.0265	38.7894	37.8615

Outline

- 1 Spread Process
- 2 Claims Process
- **3** Mean-Field Approximation
- Case Studies

Conclusion

- Model for pricing cyber insurance
- Cyber losses that are triggered by two underlying risk processes:
 - a cyber infection \leftrightarrow interacting Markov chain
 - \blacktriangleright cyber attacks on vulnerable sites \leftrightarrow marked point process
- Due to the large dimension of the system, the computation of expected aggregate insurance losses and pricing of cyber contracts is challenging:
 - polynomial approximation of non-linear claim functions
 - *n*-th order mean-field approximation of moments of the spread process
- Numerical case studies demonstrate:
 - Significant impact of network topology
 - Higher order mean-field approximations improve accuracy

Thank you for your attention!