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Outline of the Talk

I Bayesian Estimation in “Large-p, small-n”.

I Statistical Efficiency vs. Computational Efficiency, a key issue.

I In this talk: a concrete formulation of this problem.

I Shrinkage priors.

I Hierarchical Factor models for computational speed up.



Conversation with Peter E. Huybers

I Motivation: Time variability in covariance patterns for climate
data: stationarity?

I Instrumental measurements, only for the past n = 150 years.

I Measurements on p = 2000 latitude-longitude points.

I Estimate O(p2) parameters.

I Need judicious modeling.



Autism spectra-matrix

I Brain spectra covariance matrix for autism infected adults at
the National Taiwan University Hospital.

I Understand these patterns



Motivation

I An important class of models: Latent factor methods (West,
2003; Lucas et al., 2006; Carvalho et al., 2008).

I Set yi = (yi1, . . . , yip)T, i = 1, . . . , n

I yi ∼ Np(0,Σ)

I Goal: Estimate Σ.

I Note p � n.



Gaussian factor models

I Unstructured Σ has O(p2) free elements

I Assume a factor model

Σ = ΛΛ′ + σ2Ip

via parsimonious factorization

I k = O(1), the number of factors.

I Λ is the factor loadings.

I Λ is p × k and thus model complexity O(p) - huge
dimensionality reduction, but still challenging.



Sparse factor modeling

I Sparse factor modeling (West, 2003); also (Lucas et al., 2006;
Carvalho et al., 2008) and many others

I Allow zeros in loadings.

I Assume each column of Λ has only s non-zero elements.

I Here s denotes the sparsity.



High-dimensional covariance estimation

I ‘Frequentist’ solution – MLE doesn’t work.

I Start with sample covariance matrix:

Σsample =
1

n

n∑
i=1

yiy
T
i .

I Great interest in regularized estimation (Bickel & Levina,
2008a, b; Wu and Pourahmadi, 2010, Cai and Zhou, 2011 ...)

I Efficient Estimators based on Thresholding:

Σ̂ij = Σsample
ij 1|Σsample

ij |>tn
.

I Unstable; Confidence intervals..?
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Bayes-Frequentist Synergy

I Question: Given most regularization estimators are posterior
modes of a Bayesian model, can one run a Markov Chain
Monte Carlo algorithm to sample from the posterior
distribution, and compute the uncertainty intervals?

I Successfully exploited in “classical statistics”: i.e., fixed-p,
large-n situation.

I Here we assume, pn = O(en
α

) with α < 1/3 (ultra
high-dimensions).
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Bayes-Frequentist Synergy

I Set k = 1, thus
Σ = σ2Ip + ΛΛ′

I Λ is a p × 1 vector, with only s many non-zeroes.
I Questions:

1. What is the minimax rate for estimating Σ?
2. What prior on the vector Λ leads to a posterior which

concentrates at the minimax rate?

I Answer to the above two questions: a first step towards
Bayes-Frequentist agreement in this ”large-p, small-n”
problem.
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Assumptions:

I Recall, k = 1, thus

Σ = σ2Ip + ΛΛ′

I Λ is a p × 1 vector, with only s many non-zeroes.

I pn = O(en
α

) with α < 1/3

I Key facet:

σ2 < ‖ΛΛ′‖2 = ‖Λ‖2 = O(log pn)

I Thus Σ is not a “small” perturbation of identity (different
from other common assumptions...)



Minimax rate:

I Theorem (Minimax Lower Bound)

(Pati, Bhattacharya, P., Dunson, 2014)

inf
Σ̂

sup
Σ
‖Σ̂− Σ‖2 ≥

√
(log pn)3s

n

I Proof uses a variant of Le Cam’s method/ Fano’s Lemma.
I Questions:

1. What is the minimax rate for estimating Σ? =
√

(log pn)3s
n

2. What prior on the vector Λ leads to a posterior which
concentrates at the minimax rate?



Posterior rate

I What prior on the vector Λ leads to a posterior which
concentrates at the minimax rate?

I Let Σ0 be the true data generating parameter.

I We seek εn such that (Ghosh and Ramamoorthi)

lim
n→∞

PΣ0(‖Σ− Σ0‖2 ≥ εn|Data) = 0.

I Where to look for possible priors?

I First choice: point mass priors These can be thought of as the
Bayesian analogue of thresholding estimates.
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Posterior rate: Point Mass Priors

I Set
Λj ∼ (1− π)δ0 + πg(·)

where g(·) has exponential or heavier tails.

I If s is known, then π = s/p is a natural choice.

I If s is unknown, set a hyper-prior (Scott & Berger 2010,
Castillo & van der Vaart, 2012)

π ∼ Beta(1, p + 1).

I Has connections to automatic multiplicity adjustments, and
also optimal in other contexts.
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Frequentist validation of Bayesian procedures

I Bernstein von Mises Theorem (1949 Doob) - posterior is
independent of prior if sample size is large

I True only for finite dimensions

I Inconsistency of nonparametric Bayes (1986 Freedman and
Diaconis)

I Apparently simple minded priors can go wrong



Minimax rate: Pati, Bhattacharya, P., Dunson, 2014

I Theorem (Posterior Convergence Rate)

For point mass priors, with εn =

√
(log pn)3s

n , we have

lim
n→∞

PΣ0(‖Σ− Σ0‖2 ≥ εn|Data) = 0.

I Proof involves novel ideas, and uses results from
non-asymptotic random matrix theory (Vershynin 2010, Tropp
2012).

I The sample covariance will not be efficient in detecting the
points.

I Take the low dimensional projections of the data, and then
compute the sample covariance matrix.
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Have we solved the problem?

I ...Not yet!

I The MCMC algorithm for sampling the posterior has to
explore a model space of dimension O(2p).

I Curse of dimensionality catches up fast; not even feasible for
moderate p.

I Effective sample size is small; Point mass priors are
statistically efficient, but computationally NOT efficient!

I OK, what now?
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Funny you should ask...

I Continuous Shrinkage Priors!

I Appealing computationally & philosophically to relax
assumption of exact zeros.

I Zillions of them (Park and Casella, 2008; Carvalho, Polson and
Scott, 2010; Armagan, Dunson and Lee, 2011; Hans, 2011,..)

I Polson & Scott (2010) unifies them as

Λj ∼ N(0, ψjτ), ψj
i .i .d∼ g , τ ∼ f

I Many penalized least squares estimators correspond to mode
of a Bayesian posterior (e.g., L1 ≡ Laplace prior)
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Global-local scale mixtures of Gaussians (Polson & Scott, 2010)

I Essentially all shrinkage priors can be represented as

Λj
ind∼ N(0, ψjτ), ψj

i .i .d∼ g , τ ∼ f

I τ - global shrinkage toward zero, ψj ’s - avoid over-shrinking
signals locally

I g exponential = (Bayesian Lasso, Park & Casella, 2008; Hans,
2009)

I g inverse-gamma = (RVM, Tipping, 2001)

I g half-Cauchy = (Carvalho et al., 2009)
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Shrinkage priors

I Appealing computationally & philosophically to relax
assumption of exact zeros

I Rich literature on continuous shrinkage priors - student-t (T
01), normal/Jeffreys (BM 04), Laplace (Bayes Lasso) (PC 08,
H 09), horseshoe (CPS 09), normal-gamma (GB 10, 12),
generalized double Pareto (ADL 12), bridge (PSW 12) etc

I Many penalized least squares estimators correspond to mode
of a Bayesian posterior (e.g., L1 ≡ Laplace prior)



Global-local priors

Common choices of the kernel K & associated penalty functions



Global-local priors

I Scale mixtures of Gaussians appealing computationally - block
update possible

I However, understanding of such priors limited

I How to evaluate and compare such shrinkage priors relative to
point-mass mixture priors ?

I Marginal properties not enough



Posterior rate: Pati, Bhattacharya, P., Dunson, 2014

I Theorem (Posterior Rate)

For most global-local shrinkage priors defined as above, with

εn =

√
(log pn)3s

n , we have

lim
n→∞

PΣ0(‖Σ− Σ0‖2 ≥ εn|Data) 6= 0.

I Questions:

1. What is the minimax rate for estimating Σ?=
√

(log pn)3s
n

2. What prior on the vector Λ leads to a posterior which
concentrates at the minimax rate? = Point mass priors achieve
this! Most global-local priors do NOT!
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Statistical Inefficiency of Global-local priors

I What goes wrong? Two things:

1. A priori independence of coordinates: inefficient shrinkage, a la
Stein.

2. Concentration of Measure.

I As before:

Λj
ind∼ N(0, ψjτ), ψj

i .i .d∼ g , τ ∼ f

I Local scales ψ are apriori independent; thus no a priori
borrowing of information across coordinates, needed for
efficient shrinkage estimators!
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2. Concentration of Measure.

I In constructing prior distributions, we have to make sure that
the prior gives sufficient mass around the “true parameter”.

I Joint concentration P(‖Λ− Λ0‖2 ≤ t) crucial for sparse Λ0
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Prior concentration - some initial examples

I Recall The truth Λ0 ∈ Rp: with at most s non-zero elements.

I Focus: Need non-asymptotic concentration bounds for

P(‖Λ− Λ0‖2 <
√

p)

I If Λj ’s are i.i.d. N(0, 1), then

P(‖Λ− Λ0‖2 <
√

p) ≤ e−Cp

I On the other hand, for suitable point mass priors (g Laplace)

P(‖Λ− Λ0‖2 <
√

p) ≥ e−Cs log p
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Prior concentration

I KEY RESULT: Most continuous shrinkage priors give poor
concentration

I Bayesian LASSO:

P(‖Λ− Λ0‖2 <
√

p) ≤ e−C
√
p

I Thus the concentration improves only a little.



Prior concentration

I KEY RESULT: Most continuous shrinkage priors give poor
concentration

I Bayesian LASSO:

P(‖Λ− Λ0‖2 <
√

p) ≤ e−C
√
p

I Thus the concentration improves only a little.



Prior concentration

I KEY RESULT: Most continuous shrinkage priors give poor
concentration

I Bayesian LASSO:

P(‖Λ− Λ0‖2 <
√

p) ≤ e−C
√
p

I Thus the concentration improves only a little.



Dirichlet Laplace prior & properties

I Next key idea: Can we induce dependence across local scales?

I We propose a simple dependent modification leading to
optimal concentration & efficient computation

Λj ∼ DoubleExp(ψjτ)

I IDEA: Constrain ψ to the simplex - this allows for dependence

I We let ψ ∼ Diri(α, . . . , α) - α < 1 favors small # dominant
values with remaining ≈ 0.



Dirichlet Laplace prior & properties

I ψ ∼ Diri(α, . . . , α) with α < 1 favors small # dominant
values with remaining ≈ 0

I Induced marginal of Λj ∝ |Λj |α/2−1K1−α(
√

2|Λj |) , where
Kν(·) modified Bessel function of second kind

I Spike at zero controlled by α - use U(0, 1) prior

I Tune α to incorporate prior knowledge about sparsity

I Similar to horseshoe prior marginally

I τ ∼ Ga(pα, 1/2).



Concentration of DL priors

Recall: for suitable point mass priors (g Laplace)

P(‖Λ− Λ0‖2 <
√

p) ≥ e−Cs log p

A Key Result.

Theorem
Dirichlet-Laplace prior distributions have similar concentration as
the point mass prior distributions.



Prior draws

I α = 1/2

I α = 1/10



Novel sampling scheme for (φ | Λ)

I Normal scale mixture rep: Λj ∼ N(0, ψjφ
2
j τ

2), ψj ∼ Exp(1/2)

I φ = (φ1, . . . , φp)T ∼ Dir(α, α, . . . , α)

I generalized inverse Gaussian: Y ∼ giG (λ, ρ, χ)

fY (y) ∝ yλ−1e−
1
2

(ρy+χ/y)

I Theorem

The joint posterior of φ | Λ
d
= (T1/T , . . . ,Tp/T ) , where

Tj ∼ giG(α− 1, 1, 2|θj |) independently.

I Makes block update possible - highly efficient Gibbs sampler



Minimax rate: Pati, Bhattacharya, P., Dunson, 2013

I Questions:

1. What is the minimax rate for estimating Σ? =
√

(log pn)3s
n

2. What prior on the vector Λ leads to a posterior which
concentrates at the minimax rate? = Point mass priors achieve
this! The Dirichlet-Laplace Prior above also achieves this!



Improved prior concentration reflected in the posterior

Draw y ∼ N250(θ0, I250) with θ0[1 : 10] = 7, θ0[11 : 250] = 0. Blue dots: entries of y , red dots: posterior
median of θ, bars: point wise 95% credible intervals



Increase sample size



Now, have we solved the problem?

I Not completely!

I There are different MCMC algorithms for posterior sampling.

I The only commonly used measure so far is the “effective
sample” size.

I Hard to get exact bounds theoretically for most examples!



The Divide-and-Conquer Framework

I Basic Idea -
I divide the high-dimensional data into low dimensional

subproblems
I solve the subproblems in parallel using existing MCMC

techniques
I combine the estimates to produce a global estimate of the

covariance matrix

I Other divide-and-conquer approaches in the literature focus on
tackling “large n” problems where the data are assumed to be
independent and identically distributed (Mackey et al. 2011,
Zhang et al. 2013, Minsker et al. 2014, Cheng & Shang 2015)



Divide step

Randomly partition yi ∈ Rp into g pg -dimensional subvectors,

{y(1), . . . , y(g)} where y
(m)
i ∈ Rpg , m = 1, . . . , g and pg = p/g

Figure : Yi is partitioned into 3 groups, namely, Y(1), Y(2) and Y(3)



Fit step

Fit step -

I Fit factor models to the group m for m = 1, . . . , g as

y
(m)
i = Λ(m)η

(m)
i + ε

(m)
i , ε

(m)
i ∼ N(0,Ω(m)).

and obtain posterior distribution of Σ(m) ∈ Rpg×pg based on
a shrinkage prior on (Λ(m),Ω(m)) conditional on the latent

factors η
(m)
i .



Conquer Step

How to combine estimates from different groups to form a
global estimator for the covariance matrix?

Figure : The task is divided across 3 groups/machines and the estimates
obtained from each subproblem are assumed to be independent



Inducing Dependence Via Factor Augmentation

I Consider the hierarchical model,

η
(m)
i | Xi,Z

(m)
i =

√
ρ Xi +

√
1− ρ Z

(m)
i , i = 1, . . . , n, m = 1, . . . , g

where
I Xi ∼ Nkg (0, I ), is the component that is shared across all the

latent sub-factors
I Z

(m)
i ∼ Nkg (0, I ) is the component that is idiosyncratic to the

specific sub-factor
I ρ is the correlation induced between the latent sub-factors.
ρ ∼ U(0, 1) is a convenient choice



Inducing Dependence Via Factor Augmentation

The hierarchical structure has two distinct advantages:

I it induces a correlation structure among sub-estimates Σ̂(m) in
the conquer step (Lemma 1)

I it does not increase the computational complexity of the
algorithm

I Cov
{

Y
(m)
i ,Y

(m′)
i

}
= ρΛ(m)Λ(m′).



Conquer step I

The estimate for the original covariance matrix Σ is obtained using
ΣE = DEDT + Ω, where D = diag

{
Λ(1), · · · ,Λ(g)

}
,

Ω = diag
{

Ω(1), · · · ,Ω(g)
}

, E = Ikg ⊗ C for a g × g positive
definite matrix C such that Cmm′ = 1 if m = m′ and Cmm′ = ρ if
m 6= m′

Figure : The task is divided across 3 groups/machines and the estimates
obtained are pooled using the hierarchical framework



Conquer step II

For g = 2 groups, an estimate of the covariance matrix Σ is given
by

ΣE =

[
Λ̂(1)Λ̂(1)T + Ω̂(1) ρΛ̂(1)Λ̂(2)T

ρΛ̂(1)Λ̂(2)T Λ̂(2)Λ̂(2)T + Ω̂(2)

]
We have some theory to show to what extent is ΣE = DEDT + Ω
is a good approximation to Σ = ΛΛT + Ω where Λ ∈ Rp×k ?



Sensitivity to Random Splitting I
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Figure : Results across 10 replicates for n = 100



Table : Comparison of Divide and Conquer (g = 20) with POET and
Carvalho et al. across 1 simulation replicate for p = 20, 000 and k = 200.

Carvalho DnC POET
meanop 630.02 84.63 Fail
meanfro 3470.2 423.38 Fail

time 48890 9858 Fail



Paradigm Shift for Large Data Sets

I The computational complexity of the some of the commonly
used MCMC algorithms are exponential in the data set.

I Need new theoretical framework for evaluating the efficiency
MCMC algorithms with fixed computational complexity.

I Evaluate the efficiency of MCMC algorithms keeping the CPU
time fixed- Widely open area!

I Can we MCMC algorithms which scale polynomially with the
sample size (n) and/or the dimension of the parameter space
(p)?



Summary

I Concrete formulation of the statistical efficiency vs.
computational efficiency.

I Under mild conditions, efficient posterior convergence is
possible even if p � n.

I Prior concentration very important - should give enough
probability near sparse subspaces.

I Appropriate point mass mixture priors can achieve this - prior
probability of subset size important

I Most continuous shrinkage priors do not achieve this.

I Also developed a continuous shrinkage prior which does
indeed meets both the theoretical and computational
efficiency criteria.

I Divide and conquer factor model seems to be a promising
area, and worth exploring!
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