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The Empirical Forecasting Exercise

McCracken and Ng (2015) created the FRED-MD macro-panel:

I 123 monthly macro variables.

I From January 1960 to 2015, balanced panel of 110 predictors with
approx. 660 data.

I Focus on: CPI inflation, non-farm payrolls, unemployment rate, labor
force participation, average hourly earnings in goods-producing
industries, industrial production, real personal consumption
expenditures and real personal income.

I Use popular statistical learning methods OLS, PCR, RIDGE, PLS and
SIR (Sliced Inverse Regression).

I Out-of-sample forecasts using recursive window at horizons
h = 1, 3, 6, 12.

I Compare results in classic horse-race against AR(4).
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DFM Forecasting

Dynamic Factor Models (DFMs) are the mainstream methodology in
Econometrics for both measuring comovement and forecasting time
series.

The modeling comprises of two unconnected steps: The factors that
replace xt are ordered according to how much variance in X they
explain; i.e., in relevance to X and not to Y .
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Best Estimators Before the Great Recession

Table: Recursive Out-of-Sample Window from 1992 to 2007, MSFE Relative to
AR4

h=1 h=3 h=6 h=12
Target Estimator MSFE Estimator MSFE Estimator MSFE Estimator MSFE

INDPRO RIDGEb-119 0.87 RIDGEb-141 0.95 R70SIRbc,d-2 0.95 R8SIRbc,d-2 0.9

PAYEMS R30SIRbc,d-1 0.96 R30SIRbc,d-1 0.94 R30SIRbc,d-2 0.87 R30SIRbc,d-2 0.82

UNRATE PC-1 0.93 PLS-1 0.76 RIDGEb-0.4 0.76 RIDGEb-0.3 0.78

CLF16O RIDGEb-141 0.94 PC-16 0.87 PC-23 0.81 PC-16 0.74

CPIAUC PC.BSh-8.7 0.89 SIRbd-2 0.94 PC.ONf-1.2 0.97 R8SIRbc,d-2 0.95

CES060 PLS-1 0.99 PLS-1 1 R8SIRbc,d-1 0.97 AR4 1
DPCER AR4 1 AR4 1 AR4 1 AR4 1

RPI R8SIRbc,d-1 0.93 R8SIRbc,d-1 0.88 R8SIRbc,d-1 0.88 RFSIRbc,d-1 0.83
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Best Estimators In the Recovery

Table: Recursive Out-of-Sample Window from 2010 to 2016, MSFE Relative to
AR4

h=1 h=3 h=6 h=12
Target Estimator MSFE Estimator MSFE Estimator MSFE Estimator MSFE

INDPRO RIDGEb-949 0.96 RIDGEb-949 0.93 RIDGEb-3532 0.94 R30SIRbc,d-3 0.74

PAYEMS RIDGEb-141 0.74 RIDGEb-141 0.56 RIDGEb-288 0.5 RIDGEb-288 0.44

UNRATE PCF.BSi-11 0.85 PLS-4 0.64 SIRad-7 0.55 PC.BSh-1 0.38

CLF16O PC-7 0.78 PCF.BSi-11 0.52 RIDGEb-0.6 0.39 PLS-5 0.33

CPIAUC PC.BSh-1 0.96 SIRbd-1.3 0.9 R70SIRbc,d-3 0.94 PC-5 0.87

CES060 SIRad-7 0.94 SIRbd-1 0.99 R8SIRbc,d-3.5 0.94 R8SIRac,d-2 0.87
DPCER PC-5 0.87 PC-5 0.7 PC-5 0.48 PC-17 0.44

RPI R8SIRac,d-1 0.91 RFSIRac,d-1.6 0.79 PLS-8 0.78 PLS-20 0.64
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Best Estimators in Full Sample

Table: Recursive Out-of-Sample Window from 1992 to 2016, MSFE Relative to
AR4

h=1 h=3 h=6 h=12
Target Estimator MSFE Estimator MSFE Estimator MSFE Estimator MSFE

INDPRO PC-15 0.95 PC-15 0.94 SIRbd-1.4 0.96 R70SIRbc,d-3 0.94

PAYEMS R8SIRbc,d-1 0.88 R8SIRbc,d-1 0.82 R8SIRbc,d-1 0.89 R30SIRbc,d-2 0.9
UNRATE PC-15 0.9 PC-3 0.74 PC-3 0.73 PC-3 0.76
CLF16O PC-11 0.88 PC-17 0.69 PC-20 0.56 PC-17 0.41

CPIAUC PLS-3 0.9 RFSIRbc,d-5.1 0.91 SIRbd-4 0.97 R8SIRbc,d-1 0.99

CES060 AR4 1 SIRbd-1 0.99 R8SIRbc,d-1 0.94 PC-1 0.92

DPCER PC.ONf-1.5 0.93 PC-1 0.92 RFSIRbc,d-1 0.94 R8SIRbc,d-1 0.94
RPI PLS-1 0.91 PLS-1 0.85 PLS-1 0.82 PLS-1 0.8
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Model Deninition

bThe number after RIDGE Comp. is value of regularization param.
cR#SIR is regularized SIR. # refers to number of leading PCs used for regularization.
dIn type–a SIR target is yt+h. In type–b SIR target is yt .
eRFSIR is regularized SIR on most frequently selected PCs by out-of-sample best subset

selection.
fPC.ON is PCR in which number of components is chosen using Onatski criterion.
gPC.ICP1 is PCR in which number of components is chosen using Bai-Ng criterion.
hPC.BS is PCR in which number of components is chosen by best subset selection.
iPCF.BS is PCR in which number of components is chosen by best subset selection

applied on most frequently chosen PCs in out-of-sample.
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Near-Equivalence in Forecast Accuracy

Great variability of best estimator depending on
(target-sample-horizon) triplet.

Sometimes beating AR(4) remains a challenging task.

SIR–type estimators do fairly well, PLS is the estimator represented
the least in the tables.

Competitive edge of SIR is its parsimony: attains practically the same
forecasting accuracy using one or two linear combinations of the
predictors

No Clear Winner result ubiquitous in macro-forecasting literature.

Can we explain the results?
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Selection of PCs Using Different Criteria

Figure: Av. Num. of PC Comp. Selected by BSS versus ICps Over 1992-2010.
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MSFE As A Function of Number of Components
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Common Forecasting Framework
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Forecasting with Many Predictors

Forecasting target variable y with a large set of predictors x ∈ Rp.

Starting forecasting model includes all x predictors:

yt+h = α0 + α′1xt + α′2wt + εt+h

where

wt may contain additional regressors such as lags of yt

E(εt+h) = 0

α′1xt and α′2wt are uncorrelated with εt+h

Naturally conducive to OLS to estimate α1 and α2 and the feasible
forecast is

ŷt+h = α̂0 + α̂′1xt + α̂′2wt

Bura TU Wien
Near-equivalence in Forecasting Accuracy of Linear Dimension Reduction Methods in Large Macro-Panels 14

/ 38



Dimension Reduction Methods

OLS estimation can be problematic when p is large relative to T , or
variables in xt are nearly collinear, as in macro forecasting =⇒
dimension reduction.

Dimension reduction methods in regression fall into two categories:

I Variable Selection: subset of the original predictors is selected for
modeling the response (e.g. Stepwise Regression, All Subset Selection,
LASSO) =⇒ Some predictors are discarded

I Feature Extraction: linear combinations of the regressors replace the
original regressors, therefore reduction of p happens prior to model
fitting (e.g. PCR) =⇒ All predictors are retained.
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Forecasting with Extracted Linear Features

Assuming
yt+h = α′xt + εt+h

Forecasting with extracted features is implemented in two steps:

(i) Extract reduced features
ft = β′xt

(ii) Fit the reduced model

yt+h = γ ′ft + εt+h

= (βγ)′xt + εt+h
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Justifying Reduced Model

Proposition

Suppose x is a random p-vector with finite first two moments. Assume
y = α′x + ε, with E(ε) = 0 and Cov(ε, x) = 0 where α ∈ Rp is unknown,
and f = β′x, where the p × r matrix β is such that

(i) for each α, E(α′x|β′x = f) is linear in f ∈ Rr (LC);

(ii) for each α, Var(α′x|β′x = f) is constant in f ∈ Rr (CVC).

Then, y can be decomposed into the sum of a linear function of f and a
remainder or error term, as follows,

y = µy + γ ′(f − E(f)) + ε

where γ = (β′Σxβ)−β′Σxα ∈ Rr , µy = E(y), E(ε|f) = 0 and var(ε|f) is
constant.
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Discussion of Proposition

It assumes the DGP for target is: yt+h = α′xt + εt+h

It places assumptions on marginal distribution of observable
predictors

I No assumptions of underlying latent factor structure plus assumptions
on unobservable quantities.

I It concludes that the reduced forecasting model

yt+h = γ ′ft + εt+h

is “equivalent” to the DGP, with ft the linear extracted features.

I We can remove (CVC) and lose homoskedasticity in regression error.
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Do (LC) and (CVC) Hold in Practice?

Conditions (LC) and (CVC) are difficult to verify in practice since β is
unknown. However:

Conditions (LC) and (CVC) are satisfied for any β if x is multivariate
normal.

I Joint normality on FRED-MD is rejected.

I Condition (LC) is satisfied for all β if x has an elliptically contoured
distribution (Eaton (1986))

I FRED-MD satisfies ellipticity tests.

I Therefore with (LC) satisfied, we have first piece of the puzzle why
different feature extraction methods have similar forecast accuracy.

Bura TU Wien
Near-equivalence in Forecasting Accuracy of Linear Dimension Reduction Methods in Large Macro-Panels 19

/ 38



Feature Extraction

Feature extraction is carried out by solving:

max
{βi}

{β′iβi=1}
{β′iΣxβj=0}i−1

j=1

Corr2(h(y), x′βi )× H[Var(x′βi )]

where

I OLS: H(·) = 1, h(·) = identity

I PCR: H(·) = identity , h(·) = 1

I PLS: H(·) = identity , h(·) = identity

I RIDGE: H(·) = Var(x′βi )
Var(x′βi )+κ , h(·) = identity

I SIR: H(·) = identity , h(·) = E[β′ix|y ]
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Prediction

Estimate reduced predictors: f̂t = β̂
′
xt

Fit the reduced model: yt+h = γ ′(β̂
′
xt) + εt+h

Prediction coefficient: b = β̂γ̂

Prediction is: ŷt+h|t = b′x0 = γ̂ ′β̂
′
x0

Common pattern for b across feature extraction methods:

b = scaling factor ∗ signal

.
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Table: Summary of Estimators for y = α′x + ε

Metaparameter Scaling Factor Signal

OLS – Σx
−1 σxy

RIDGE κ (Σx + κI)−1 σxy

PCR m Σx
−(m) σxy

PLS s WPLS(s) (W′PLS(s)ΣxWPLS(s))−1 W′PLS(s) σxy

SIR d WSIR(d) (W′SIR(d)ΣxWSIR(d))−1 W′SIR(d) σxy

RSIR m, d WRSIR(d) (W′RSIR(d)Σx(m)WRSIR(d))−1 W′RSIR(d) σxy
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These estimators have

Same signal (σx,y ): near-equivalent forecast accuracy

Different scaling factor: dimension
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Focus on Targeted Estimators

For targeted estimators PLS and SIR scaling factor uses y .

How they differ:

I PLS: WPLS(s) =
(
σxy ,Σxσxy , . . . ,Σx

s−1σxy

)
I SIR: WSIR(d) =

(
E(x|y),Σx E(x|y), . . . ,Σx

d−1 E(x|y)
)

I Therefore the reduction is based:

I For PLS on a moment of the joint distribution F (y , x).

I For SIR on a moment of the conditional distribution F (y |x).
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Why is SIR more effective?

var(X) = var[E(X|Y )] + E[var(X|Y )]

For simplicity, assume Y is categorical: X|Y is the restriction of X in
the class defined by Y

Signal: var[E(X|Y )] is between group variation in X

Noise: E[var(X|Y )] is within group variation

PCR mixes up noise and signal when extracting PCs

PLS produces ordering of eigen-components according to their
importance to cov(X,Y ), i.e. captures linear dependence of X and Y

SIR produces ordering of eigen-components according to their
importance to Y , linear and non-linear

Bura TU Wien
Near-equivalence in Forecasting Accuracy of Linear Dimension Reduction Methods in Large Macro-Panels 25

/ 38



Why is SIR more effective?

var(X) = var[E(X|Y )] + E[var(X|Y )]

For simplicity, assume Y is categorical: X|Y is the restriction of X in
the class defined by Y

Signal: var[E(X|Y )] is between group variation in X

Noise: E[var(X|Y )] is within group variation

PCR mixes up noise and signal when extracting PCs

PLS produces ordering of eigen-components according to their
importance to cov(X,Y ), i.e. captures linear dependence of X and Y

SIR produces ordering of eigen-components according to their
importance to Y , linear and non-linear

Bura TU Wien
Near-equivalence in Forecasting Accuracy of Linear Dimension Reduction Methods in Large Macro-Panels 25

/ 38



Why is SIR more effective?

var(X) = var[E(X|Y )] + E[var(X|Y )]

For simplicity, assume Y is categorical: X|Y is the restriction of X in
the class defined by Y

Signal: var[E(X|Y )] is between group variation in X

Noise: E[var(X|Y )] is within group variation

PCR mixes up noise and signal when extracting PCs

PLS produces ordering of eigen-components according to their
importance to cov(X,Y ), i.e. captures linear dependence of X and Y

SIR produces ordering of eigen-components according to their
importance to Y , linear and non-linear

Bura TU Wien
Near-equivalence in Forecasting Accuracy of Linear Dimension Reduction Methods in Large Macro-Panels 25

/ 38



Why is SIR more effective?

var(X) = var[E(X|Y )] + E[var(X|Y )]

For simplicity, assume Y is categorical: X|Y is the restriction of X in
the class defined by Y

Signal: var[E(X|Y )] is between group variation in X

Noise: E[var(X|Y )] is within group variation

PCR mixes up noise and signal when extracting PCs

PLS produces ordering of eigen-components according to their
importance to cov(X,Y ), i.e. captures linear dependence of X and Y

SIR produces ordering of eigen-components according to their
importance to Y , linear and non-linear

Bura TU Wien
Near-equivalence in Forecasting Accuracy of Linear Dimension Reduction Methods in Large Macro-Panels 25

/ 38



Why is SIR more effective?

var(X) = var[E(X|Y )] + E[var(X|Y )]

For simplicity, assume Y is categorical: X|Y is the restriction of X in
the class defined by Y

Signal: var[E(X|Y )] is between group variation in X

Noise: E[var(X|Y )] is within group variation

PCR mixes up noise and signal when extracting PCs

PLS produces ordering of eigen-components according to their
importance to cov(X,Y ), i.e. captures linear dependence of X and Y

SIR produces ordering of eigen-components according to their
importance to Y , linear and non-linear

Bura TU Wien
Near-equivalence in Forecasting Accuracy of Linear Dimension Reduction Methods in Large Macro-Panels 25

/ 38



Why is SIR more effective?

var(X) = var[E(X|Y )] + E[var(X|Y )]

For simplicity, assume Y is categorical: X|Y is the restriction of X in
the class defined by Y

Signal: var[E(X|Y )] is between group variation in X

Noise: E[var(X|Y )] is within group variation

PCR mixes up noise and signal when extracting PCs

PLS produces ordering of eigen-components according to their
importance to cov(X,Y ), i.e. captures linear dependence of X and Y

SIR produces ordering of eigen-components according to their
importance to Y , linear and non-linear

Bura TU Wien
Near-equivalence in Forecasting Accuracy of Linear Dimension Reduction Methods in Large Macro-Panels 25

/ 38



Beyond Linear Signals: Sufficient Dimension Reduction
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Sufficient Reductions

Suppose R(x) : Rp → Rd with d ≤ p.

R(x) is a Sufficient Reduction when no information about y is lost
when x is replaced by R(x), i.e.

F (y |x) = F (y |R(x))

How to use in forecasting: For example, if the reduction is linear,

R(x) = β′x

the forecasting model is

yt+h = g(β′x, εt+h)
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Identifying Sufficient Linear Reductions

Linear SDR allows identification and estimation of C(β) with
F (Y |X) = F (Y |βTX)

General Idea: find a kernel matrix M so that

span(M) ⊂ span(β)

SDR methods: different proposals for M
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For example: In SIR

If E(x|β′x) is linear in β′x for any β (LC) such that F (y |x) = F (y |β′x),
then

C
(
Σ−1

x [E(x|y)− E(x)]
)

= C (Var[E(x|y)])

⊆ C(β)

In SIR,
M = Σ−1

x Var(E(X|Y ))
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Forecasting with Sliced Inverse Regression

SIR Reduces the predictors:

(i) Computes non-parametric estimate of Var(E(x|y))

(ii) Sets β̂d(SIR) to be the first d eigenvectors of Σ̂
−1

x
̂Var(E(x|y))

Run non-parametric regression yt+h = g(β̂d(SIR)′xt , εt+h) and
predict.

I We did not find any forecasting improvement with non-linear g(·).

I RSIR formed by substituting x with PCs of Σx .
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Conclusions
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Comparing Forecasting Frameworks

Forecasting Framework DGP for yt+h DGP for xt

DFM

Standard yt+h = γ′ft + εt+h xt = Γft + ut

With Irrelevant Factors yt+h = γ′f1,t + εt+h xt = Γ1f1,t + Γ2f2,t + ut

No Factors for Target yt+h = α′xt + εt+h xt = Γft + ut

Other

No Factors yt+h = α′xt + εt+h Conditions on Σx and β

SDR

Non-linear Forecast yt+h = g(α′xt , εt+h) E [xt |β′xt ] = Aβ′xt

Linear Forecast yt+h = γ′(α′xt) + εt+h E [xt |β′xt ] = Aβ′xt

Most forecasting literature studies shrinkage under factor structure.

We study shrinkage estimators under different DGP for observables.
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Data Specific Conclusions

Since there is no non-linear trend in E(y |x) and x is elliptically
contoured, Proposition 1 yields that the reduced model

yt+h = γ ′(β′xt) + εt+h

is a good approximation model to the true population model.

What does this mean for prediction?
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E(y − µy |β′x) = α′Σxβ(β′Σxβ)−β′(x− E(x)) = α′P′β(Σx )(x− E(x))

where Pβ(Σx ) = β(β′Σxβ)−β′Σx is the projection operator onto span(β)
relative to (a,b) = a′Σxb.

For a given x value, how close E(y |x) will be to the truth is reflected
by the norm of I− Pβ(Σx ), which is controlled solely by β.

In consequence, ordering estimators β′x with respect to their
forecasting accuracy is tantamount to identifying β’s with smaller
norm.
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Can we improve the forecasting ability of the model?

Forecasting accuracy results do not support non-linearities in the
conditional mean of the target variable

If there is non-linear signal, it must be in the variance

Dimension two or higher in SIR indicates the presence of nonlinear
relationships

Plots of the residuals of the fitted forecasting model versus the second
SIR component indicate that the variance of the forecasting models
varies for most targets
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Can we improve the forecasting ability of the model?

The data passed the multivariate elliptical symmetry test but not the
normality test

(LC) holds but not (NCV)

Model-based SDR: (Bura and Forzani (2015))

When X|Y ∼ ECp(µY ,∆, gY ), then

R(X) = (α′(X− E(X)), (X− E(X))′Σ−1
x (X− E(X))

The minimal sufficient reduction has a non-linear component

Need to model the variance using (X− E(X))′Σ−1
x (X− E(X))
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