
Counterfactuals via Deep IV

Matt Taddy (Chicago + MSR) Greg Lewis (MSR)

Jason Hartford (UBC) Kevin Leyton-Brown (UBC)

Endogenous Errors

𝑦 = 𝑔 𝑝, 𝒙 + 𝑒 and 𝔼[𝑝 𝑒] ≠ 0

If you estimate this using naïve ML, you’ll get

𝐸 𝑦 𝑝, 𝒙 = 𝐸𝑒|𝑝[𝑔 𝑝, 𝒙 + 𝑒] = 𝑔 𝑝, 𝒙 + 𝐸[𝑒|𝑝, 𝒙]

This works for prediction. It doesn’t work for counterfactual inference:

What happens if I change p independent of e ?

Instrumental Variables (IV)

In IV we have a special z ⊥ 𝑒 that influences policy 𝑝 but not response 𝑦.

• Supplier costs that move price independent of demand (e.g., fish, oil)

• Any source of treatment randomization (intent to treat, AB tests, lottery)

y

p

x

ez

Instrumental Variables (IV)

The exclusion structure implies

𝐸 𝑦 𝑥, 𝑧 = 𝐸 𝑔 𝑝, 𝑥 𝑥, 𝑧 + 𝐸[𝑒|𝑥] = 𝑔 𝑝, 𝑥 𝑑F(𝑝|𝑥, 𝑧)

So to solve for structural g(𝑝, 𝑥) we have a new learning problem

min
𝑔∈𝐺

∑ 𝑦𝑖 −න𝑔 𝑝, 𝑥𝑖 𝑑F(𝑝|𝑥𝑖 , 𝑧𝑖)

2

cf Newey+Powell 2003

y

p

x

ez

min
𝑔∈𝐺

∑ 𝑦𝑖 −න𝑔 𝑝, 𝑥𝑖 𝑑F(𝑝|𝑥𝑖 , 𝑧𝑖)

2

2SLS:

𝑝 = 𝛽𝑧 + 𝜈 and 𝑔 𝑝 = 𝜏𝑝 so that 𝑔 𝑝 𝑑P 𝑝 𝑧 = 𝜏 Ƹ𝑝 = 𝜏 መ𝛽𝑧

So you first regress 𝑝 on 𝑧 then regress 𝑦 on Ƹ𝑝 to recover Ƹ𝜏.

This requires strict assumptions and homogeneous treatment effects.

min
𝑔∈𝐺

∑ 𝑦𝑖 −න𝑔 𝑝, 𝑥𝑖 𝑑F(𝑝|𝑥𝑖 , 𝑧𝑖)

2

Or look to nonparametric 2SLS like in Newey and Powell:

𝑔 𝑝, 𝑥𝑖 ≈ ∑𝑘𝜑𝑘 𝑝, 𝑥𝑖 and 𝜑𝑘 𝑝, 𝑥𝑖 ≈ ∑𝑗𝜙𝑘𝑗(𝑥𝑖 , 𝑧𝑖)

But this requires careful crafting and will not scale with dim(𝑥)

min
𝑔∈𝐺

∑ 𝑦𝑖 −න𝑔 𝑝, 𝑥𝑖 𝑑F(𝑝|𝑥𝑖 , 𝑧𝑖)

2

Instead, we propose to target the integral loss function directly

For discrete (or discretized) treatment

• Fit distributions F 𝑝 𝑥𝑖 , 𝑧𝑖 with probability masses መ𝑓 𝑝𝑏 𝑥𝑖 , 𝑧𝑖

• Train ො𝑔 to minimize yi − ∑𝑏 𝑔 Ƹ𝑝𝑏 , 𝑥𝑖 መ𝑓 𝑝𝑏 𝑥𝑖 , 𝑧𝑖
2

And you’ve turned IV into two generic machine learning tasks

Learning to love Deep Nets

What is a deep net?

ො𝑦𝑖 =

𝑘

ℎ𝑘
𝐿 𝑎𝑖𝑘

𝐿 , 𝑎𝑖𝑘
𝐿 = 𝒛𝑖𝑘

𝐿′𝑊𝐿 , 𝒛𝑖𝑘
𝐿 =

𝑗

ℎ𝑘
𝐿−1 (𝑎𝑖𝑘

𝐿−1) , …

And so-on until you get down to the input layer 𝒂𝑖 = 𝒙𝑖
′𝑊0

Many different variations here: recursive, convolutional, …

Apart from the bottom, usually ℎ 𝑣 = max{0, 𝑣}

e.g., first-stage learning for F 𝑝 𝑥𝑖 , 𝑧𝑖

Bishop 96: Final layer of network parametrizes a mixture of Gaussians

The second stage involves an integral loss function

If 𝑝 is not discrete or can take many values, not easy!

Brute force just samples from F 𝑝 𝑥𝑖 , 𝑧𝑖 and you take gradients on

1

𝑁
∑𝑖 𝑦𝑖 −

1

𝐵
∑𝑏 𝑔(ሶ𝑝𝑖𝑏 , 𝑥𝑖; 𝜃)

2
, ሶ𝑝𝑖𝑏∼ F 𝑝 𝑥𝑖 , 𝑧𝑖

This is what economists usually do, but this is super inefficient

Stage 2: Integral Loss

Stochastic Gradient Descent

You have loss 𝐿(𝑫, 𝜃) where 𝑫 = 𝒅1 …𝒅𝑁
In the usual GD, you iteratively descend

𝜃𝑡 = 𝜃𝑡−1 − 𝑪𝑡𝛻𝐿(𝑫, 𝜃𝑡−1)

In SGD, you instead follow noisy but unbiased sample gradients

𝜃𝑡 = 𝜃𝑡−1 − 𝑪𝑡𝛻𝐿({𝒅𝑡𝑏}𝑏=1
𝐵 , 𝜃𝑡−1)

Our one-observation stochastic gradient is

𝛻𝐿 𝑑𝑖 , 𝜃 = −2 𝑦𝑖 − න𝑔𝜃 𝑝, 𝑥𝑖 𝑑 𝐹 𝑝 𝑥𝑖 , 𝑧𝑖 න𝑔𝜃′ 𝑝, 𝑥𝑖 𝑑 𝐹(𝑝|𝑥𝑖 , 𝑧𝑖)

Do SGD by pairing each observation with two independent treatment draws

𝛻𝐿 𝑑𝑖 , 𝜃 = −2 𝑦𝑖 − 𝑔𝜃(ሶ𝑝 , 𝑥𝑖) 𝑔𝜃
′ ሷ𝑝 , 𝑥𝑖 , ሶ𝑝, ሷ𝑝~F 𝑝 𝑥𝑖 , 𝑧𝑖

So long as the draws are independent, 𝔼𝛻𝐿 𝑑𝑖 , 𝜃 = 𝔼𝛻𝐿 𝑑𝑖 , 𝜃 = 𝐿(𝑫, 𝜃)

SGD for integral loss functions

Validation and model tuning

We can do causal validation via two OOS loss functions

Leave-out deviance on first stage

𝑖∈𝐿𝑂

− log መ𝑓 𝑝 𝑥𝑖 , 𝑧𝑖

Leave-out loss on second stage (constrained fit of 𝔼 𝑦 𝑥𝑧)

𝑖∈𝐿𝑂

𝑦𝑖 − 𝑔𝜃 𝑝, 𝑥𝑖 𝑑 𝐹(𝑝|𝑥𝑖 , 𝑧𝑖)
2

You want to minimize both of these (in order).

heterogeneous price effects

‘time’ dependent prices, sensitivity, utility

Customer ‘type’ 1-7 impacts demand

observed

n
o

rm
a

liz
ed

 s
a

le
s

normalized price

structural

Inference? Good question

Data split! Get top node values and averages on left-out data:

ҧ𝜂𝑖𝑘 = 𝐸 𝐹(ሶ𝑝|𝑥𝑖,𝑧𝑖)
𝜂𝑘 𝑥𝑖 , ሶ𝑝 𝑎𝑛𝑑 𝜂𝑖𝑘 = 𝜂𝑘 𝑥𝑖 , 𝑝𝑖

Stack as instruments ഥH = [ҧ𝜂1⋯ ҧ𝜂𝐿]′ and treatments H = [𝜂1⋯𝜂𝐿]′

Then the treatment effect is መ𝛽 = ഥ𝐻′𝐻 −1 ഥ𝐻′𝑦 with usual variance and

Inference? Good question

Or Approximate Bayes…

When training with SGD, we actually use dropout for regularization

At each update, calculate gradients against W𝑙 = Ξ𝑙Ω𝑙 at layer 𝑙 where

Ξ𝑙 = diag 𝜉𝑙1 …𝜉𝑙𝐾𝑙 , 𝜉𝑘𝑗 ∼ Bern(𝑐)

i.e., dropout randomly drops rows of each layer’s weight matrix

Variational Bayesian inference via dropout

VB minimizes 𝔼q −log 𝑝 𝑫 𝑾 − log 𝑝 𝑾 + log 𝑞 𝑾

With 𝑞 𝑾 = ς𝑙ς𝑘(𝑐1 𝑊𝑙𝑘=Ω𝑙𝑘
+ (1 − 𝑐) 1 𝑊𝑙𝑘=0) and normal prior,

So dropout is VB!

(more complex argument in Gal and Ghahramani 2015)

Tuning the dropout rate is like treating it as a variational parameter

Ads Application

Taken from Goldman and Rao (2014)

We have 74 mil click-rates over 4 hour increments for 10k search terms

Treatment: ad position 1-3

Instrument: background AB testing (bench of ~ 100 tests)

Covariates: advertiser id and ad properties, search text, time period

Average Treatment Effects

These compare to observed click probabilities of 0.33, 0.1, and 0.05.

Heterogeneity across brand/search and in time

Each point/dash is an independent draw from the `posterior’

Automated Learning and Intelligence for Causation and Economics

We use economic theory to build systems of tasks that can be

addressed with deep nets and other state-of-the-art ML.

This is the construction of systems for Economic AI

