Majorization and the Lorenz order in statistics, applied probability, economics and beyond

Christian Kleiber

Universität Basel

Vienna, 2017-01-13

Introduction

How can we measure

inequality, variability, diversity, disorder ('chaos'), ...?

Numerous proposals in

- statistics
- economics
- physics
- biology/ecology
- . . .

Many parallel developments.

Outline

- 1. Introduction
- 2. Majorization
- 3. Schur convexity
- 4. Lorenz order
- 5. Selected applications Taxes and incomes Condorcet jury theorems Portfolio allocation and value at risk
- 6. Some new results

Lorenz ordering of beta distributions Spectra of correlation matrices Schur properties of win-probabilities

7. Concluding remarks

Given two vectors

$$\mathbf{x} = (x_1, \dots, x_n), \qquad \mathbf{y} = (y_1, \dots, y_n)$$

of equal length n with

$$\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i$$

define majorization as

$$\mathbf{x} \geq_M \mathbf{y}$$
 : \iff $\sum_{i=1}^k x_{(i:n)} \geq \sum_{i=1}^k y_{(i:n)}, \quad k = 1, \dots, n-1.$

Here $x_{(1:n)} \ge x_{(2:n)} \ge \cdots \ge x_{(n:n)}$ (decreasing rearrangement).

Basic properties best explained in terms of income (re)distribution.

Examples.

$$(1,1,1,1) \leq_M (2,1,1,0) \leq_M (3,1,0,0) \leq_M (4,0,0,0)$$

Note: ordering irrelevant, also have

$$(1,1,1,1) \leq_M (0,2,1,1) \leq_M (1,0,0,3) \leq_M (0,4,0,0)$$

More generally

$$(\bar{x}, \bar{x}, \dots, \bar{x}) \leq_M (x_1, x_2, \dots, x_n) \leq_M (x_1 + x_2 + \dots + x_n, 0, \dots, 0)$$

Christian Kleiber (U Basel)

Interpretation. comparison of income distributions

- identical total incomes (majorization describes distributive aspects)
- identical size of populations

Transition from x to y is result of finitely many "Robin Hood transfers":

Majorization and transfers. The following are equivalent

- $x \ge_M y$
- $y = T_1 T_2 \cdots T_m x$, with T_i matrix representing 'elementary transfers', $T = \epsilon I + (1 - \epsilon)P$ (P 'elementary' permutation matrix)

Some pioneers.

- R. F. Muirhead (1903)
- M. O. Lorenz (1905)
- H. Dalton (1920)
- I. Schur (1923)
- G. H. Hardy, J. E. Littlewood and G. Pólya (1929, 1934)

Some references.

- PM Alberti and A Uhlmann (1981). *Stochasticity and Partial Order*, Verlag der Wissenschaften.
- BC Arnold (1987). *Majorization and the Lorenz Order*, Springer-Verlag.
- R Bhatia (1997). Matrix Analysis, Springer-Verlag.
- GH Hardy, JE Littlewood and G Pólya (1934). *Inequalities*, Cambridge.
- AW Marshall and I Olkin (1979). Inequalities: Theory of Majorization and Its Applications, Academic Press.
 [2nd ed. 2011, with BC Arnold.]
- JM Steele (2004). The Cauchy-Schwarz Masterclass, Cambridge.

MATHEMATICS IN SCIENCE AND ENGINEERING Volume 143

> Inequalities: Theory of Majorization and Its Applications

Albert W. Marsha Ingram Olkin Copyrighter Historian

Springer Series in Statistics

Albert W. Marshall - Ingram Olkin - Barry C. Arnold

Inequalities: Theory of Majorization and Its Applications

Second Edition

2 Springer

copyrighted Material

Schur functions				
• g Schur convex	iff	$x \ge_M y$	\Rightarrow	$g(x) \geqslant g(y)$
• g Schur concave	iff	$x \geqslant_M y$	\Rightarrow	$g(x)\leqslant g(y)$

Unfortunate terminology ... a *monotonicity* property.

HLP characterization (1934)

The following are equivalent:

- $x \ge_M y$
- y = Px, P doubly stochastic matrix
- $\sum_i h(x_i) \ge \sum_i h(y_i)$ for all (continuous) convex functions h

Not every analytic inequality is a consequence of the Schur convexity of some function, but enough are to make familiarity with majorization/Schur convexity a nece[s]sary part of the required background of a respectable mathematical analyst. (Arnold 1987) Christian Kleiber (U Basel) Majorization and the Lorenz order Vienna, 2017-01-13

11 / 51

How to recognize Schur concave/convex functions?

Schur's criterion (1923)

Continuously differentiable g, permutation symmetric, is Schur convex (concave) if, for all i, j,

$$(x_i - x_j) \left(\frac{\partial g(x)}{\partial x_i} - \frac{\partial g(x)}{\partial x_j} \right) \ge (\leqslant) \quad 0$$

Remark on terminology: (convexity connection) Why 'convex'? For f convex, composite function

$$g(x) := \sum_{i} f(x_i)$$

is Schur convex. Also have various representations involving doubly stochastic matrices, specific convex functions, etc.

Christian Kleiber (U Basel)

Examples: Classical inequality measures are Schur convex in incomes

• Gini

 $G = 2 \cdot \text{ concentration area}$

• coefficient of variation (squared)

$$CV^2 = \frac{1}{n} \sum_{i} \left(\frac{x_i}{\bar{x}} - 1\right)^2$$

Theil

$$T = \frac{1}{n} \sum_{i} \frac{x_i}{\bar{x}} \log \frac{x_i}{\bar{x}}$$

• Atkinson

$$A_{\epsilon} = 1 - \left\{ \frac{1}{n} \sum_{i} \left(\frac{x_i}{\bar{x}} \right)^{1-\epsilon} \right\}^{1/(1-\epsilon)}$$

Christian Kleiber (U Basel)

Majorization not sufficiently general for many tasks:

- identical population size?
- identical total incomes?

Suggestion of Max Otto Lorenz (1905):

Lorenz curve

For $\mathbf{x} = (x_1, \dots, x_n)$, $x_i \ge 0$, $\sum_{i=1}^n x_i > 0$, define Lorenz curve via linear interpolation of $(x_{i:n} \text{ increasingly ordered})$

$$L\left(\frac{k}{n}\right) = \frac{\sum_{i=1}^{k} x_{i:n}}{\sum_{i=1}^{n} x_{i:n}}, \quad k = 0, 1, \dots, n.$$

Interpretation:

"poorest
$$\frac{k}{n} \cdot 100$$
% possess $\frac{\sum_{i=1}^{k} x_{i:n}}{\sum_{i=1}^{n} x_{i:n}}$ of total income"

Christian Kleiber (U Basel)

x = (1,3,5,11)1.0 0.8 0.6 L(p) 0.4 -0.2 0.0 0.0 0.2 0.4 0.6 0.8 1.0

р

Christian Kleiber (U Basel)

Lorenz curve (Pietra 1915, Piesch 1967, Gastwirth 1971) For non-negative X with $0 < E(X) < \infty$, set

$$L_X(u) = \frac{1}{E(X)} \int_0^u F_X^{-1}(t) dt, \quad u \in [0, 1].$$

Properties.

- L continuous on [0,1], with L(0) = 0 and L(1) = 1,
- L monotonically increasing, and
- L convex.

Lorenz order

 X_1 more unequal (... or more spread out ... or more variable) than X_2 in the Lorenz sense, if $L_1(u) \leq L_2(u)$ for all $u \in [0, 1]$. Notation:

 $X_1 \geqslant_L X_2 \quad :\Longleftrightarrow \quad L_1 \leqslant L_2.$

Lorenz curves

х

Christian Kleiber (U Basel)

Christian Kleiber (U Basel)

Applications of majorization and the Lorenz order

'Random' paper in statistical distribution theory:

Kochar and Xu (J Mult Anal 2010) show for exponential distribution:

Suppose $X_i \sim \text{Exp}(\lambda_i)$ independent. If $(1/\lambda_1, \dots, 1/\lambda_n) \ge_M (1/\lambda_1^*, \dots, 1/\lambda_n^*)$, then $\sum_{i=1}^n X_{\lambda_i} \ge_L \sum_{i=1}^n X_{\lambda_i^*}$

Nice: Majorization and Lorenz order!

Remark. Since 2000 dozens (hundreds?) of papers on distributional inequalities for linear combinations, order statistics etc from heterogeneous populations. Many involve majorization.

Christian Kleiber (U Basel)

Applications of majorization and the Lorenz order

- Mathematics, statistics, actuarial science
 - eigenvalues and diagonal elements of matrices
 - distributions of quadratic forms
 - power functions of tests in multivariate analysis
 - inequalities for special functions
 - distributions of aggregate losses (= random sums)
 - value at risk
 - ▶ ...
- Social sciences
 - tax progression and income redistribution
 - Condorcet jury theorems
 - "fair representation" in parliaments
 - ▶ ...

Applications of majorization and the Lorenz order

- Often variations on the main theme:
 - ▶ majorization of transformations (logarithms, ...)
 - weak majorization (super- or submajorization)
 - ▶ ...
- Especially Lorenz ordering results often require background on further stochastic orders to exploit interrelations
 - ► there are hundreds of stochastic orders in statistics, economics, reliability theory, actuarial science, ...
 - Examples include

stochastic dominance (of various orders), convex order, increasing convex/concave order, star-shaped order, mean residual life (or mean excess) order, hazard rate order, likelihood ratio order, excess wealth order, total time on test, superadditive order, ...

Applications: Taxes and incomes

Framework. Given

- vector of incomes $\mathbf{x} = (x_1, \dots, x_n)$
- tax schedule t(x)Call $\{1 - t(x)\} x$ after-tax income ("residual income")

Goal. Comparison of before- and after-tax incomes wrt. inequality. Majorization not applicable because

$$\sum_{i} x_i \quad \neq \quad \sum_{i} \{1 - t(x_i)\} \; x_i$$

Use Lorenz order instead.

Question. What does a 'Lorenz-equalizing' tax look like?

Applications: Taxes and incomes

Theorem (Eichhorn, Funke, Richter, J Math Econ 1984)

$$x \geqslant_L \{1 - t(x)\} x$$

iff

- t(x) increasing and
- $\{1 t(x)\} x$ increasing.

Interpretation. Income tax is inequality-reducing iff

- progressive and
- incentive preserving

Framework. Jury of *n* 'experts' faces binary decision.

- Suppose $X_i \in \{0, 1\}$ decision of expert i and $p_i = P(X_i = 1)$, i = 1, ..., n. Call p_i competence/ability of expert i.
- Consider number of correct decisions

$$S := \sum_{i=1}^{n} X_i$$

If all experts equally competent ($p_i\equiv p$) and independent,

$$P(S \ge k) = \sum_{i=k}^{n} \binom{n}{i} p^{i} (1-p)^{n-i},$$

a binomial probability.

 Decision is via majority voting. To avoid ties, set n = 2m + 1, hence k = m + 1.

Christian Kleiber (U Basel)

Setting of classical CJT.

- two alternatives
- common preferences
 (one alternative is superior in the light of full information)
- independent decisions
- homogeneous competences
- decision rule is simple majority voting

Applications: Condorcet jury theorems Classical CJTs. (Boland, JRSS D 1989)

Non-asymptotic CJT

Under majority voting with p > 1/2 ("experts") have

 $P(S \ge m+1) > p$

Proof: use Beta integral representation of binomial probabilities

$$P(S \ge m+1) \; = \; \frac{1}{B(m+1,m+1)} \int_0^p t^m (1-t)^m dt$$

NB. There is also an asymptotic CJT, but not needed here.

Christian Kleiber (U Basel)

Christian Kleiber (U Basel)

Extensions of basic version.

- supermajority voting (also called special majority voting)
- heterogeneous experts
- dependent experts ("opinion leaders")
- juries of different sizes
- direct vs indirect majority voting (\rightarrow US presidential elections)

Framework. Jury J characterized by vector of probabilities ("competences")

$$\mathbf{p} = (p_1, \dots, p_n) \in [0, 1]^n$$

Question. Given 2 juries J_1 und J_2 of equal size, with competences p_1 and p_2 , when will J_1 do better?

Need conditions for

 $P(S_1 \geqslant m+1) \quad \geqslant \quad P(S_2 \geqslant m+1) \quad \text{for} \ \mathbf{p_i} \ \in \ \mathcal{P} \ \subseteq [0,1]^n$

- New problem: distribution of sums of *independent*, *but not identically distributed* Bernoulli variables
- Goal: stochastic comparisons with e.g. binomial distribution
- Classical paper: Hoeffding (Ann Math Stat 1956)

In Hoeffding (1956) purely probabilistic point of view.

Sums of heterogeneous Bernoullis arise in many contexts

- CJTs
- reliability of "k out of n" systems (unequal default probabilities)
- portfolios of credit risks
- . . .

Point of reference. average competence \bar{p}

Hoeffding's inequality (Hoeffding 1956) Suppose k > 0 with $\bar{p} \ge k/n$. Then

$$P(S \ge k) \quad \ge \quad \sum_{i=k}^n \binom{n}{i} \bar{p}^i (1-\bar{p})^{n-i}$$

This gives

Boland's CJT (Boland 1989) Suppose $n \ge 3$, $\bar{p} \ge 1/2 + 1/(2n)$. Then $P(S \ge m+1) > \bar{p}$

Generalization of Hoeffding's inequality:

Gleser's inequality (Ann Prob 1975)

Let $\mathbf{p}_1 \ge_M \mathbf{p}_2$. Then

 $P(S \leqslant k \mid \mathbf{p}_1) \quad \leqslant \quad P(S \leqslant k \mid \mathbf{p}_2), \quad k \leqslant \lfloor n\bar{p} - 2 \rfloor$

This gives

CJT under heterogeneity

Let $n \ge 7$ and $\bar{p} \ge 1/2 + 5/(2n)$. If $\mathbf{p}_1 \ge_M \mathbf{p}_2$ then

 $P(S \ge m+1 \mid \mathbf{p}_1) \ge P(S \ge m+1 \mid \mathbf{p}_2)$

Note: need large \bar{p} for superiority of majority voting!

Christian Kleiber (U Basel)

Further generalization of Hoeffding's inequality:

Boland and Proschan's inequality (Ann Prob 1983) Let $\mathbf{p}_1 \ge_M \mathbf{p}_2$. Then

 $P(S \leqslant k \mid \mathbf{p}_1) \quad \leqslant \quad P(S \leqslant k \mid \mathbf{p}_2), \quad \text{ all } \ p_i \in [(k-1)/(n-1), 1]^n$

This gives

CJT under heterogeneity

Let $p_i \in [1/2, 1]^n$ with $\mathbf{p}_1 \ge_M \mathbf{p}_2$. Then

 $P(S \ge m+1 \mid \mathbf{p}_1) \ge P(S \ge m+1 \mid \mathbf{p}_2)$

This differs from the Gleser version!

Can be generalized to supermajority voting.

Christian Kleiber (U Basel)

Visualization via Lorenz curves

$$L\left(\frac{k}{n}\right) = \frac{\sum_{i=1}^{k} x_{i:n}}{\sum_{i=1}^{n} x_{i:n}}, \quad k = 0, 1, \dots, n,$$

where $x_{i:n}$ ith smallest income \rightarrow consider probabilities as incomes

Example: n = 9, $\bar{p} = 0.6$

p1 <- c(1.0, 1.0, 1.0, 0.7, 0.7, 0.7, 0.5, 0.5, 0.5) p2 <- c(1.0, 0.9, 0.9, 0.8, 0.8, 0.6, 0.6, 0.5, 0.5)

1.0 0.8 0.6 L(p) 0.4 0.2 0.0 0.0 0.2 0.4 0.6 0.8 1.0

majorization of competences

р

Portfolio allocation and value at risk

Conventional wisdom in portfolio allocation:

Diversification reduces risk.

Q. Really ...?

Schur properties of VaR (Ibragimov, *Quant Fin* 2009)

Consider portfolios $Y_a = \sum_i a_i Y_i$ and $Y_b = \sum_i b_i Y_i$, and $\alpha < \frac{1}{2}$. Then

- $a \ge_M b \implies VaR_{\alpha}(Y_a) \ge VaR_{\alpha}(Y_b)$ for Y_i light-tailed.
- $a \ge_M b \implies VaR_{\alpha}(Y_a) \leqslant VaR_{\alpha}(Y_b)$ for Y_i (very) heavy-tailed.

Applications: Lorenz ordering of beta distributions

Consider beta distribution $\beta(p, q)$

$$f(x) = \frac{1}{B(p,q)} x^{p-1} (1-x)^{q-1}, \qquad x \in [0,1].$$

Q. Let $X_i \sim \beta(p_i, q_i)$, i = 1, 2. When do we have $X_1 \ge_L X_2$?

Many applications: Order statistics, reliability, actuarial science, ... Partial results:

• $X_1 \ge_L X_2$ implies $p_1 \leqslant p_2$ and $p_1/p_2 \leqslant q_1/q_2$

•
$$\beta(p,q) \ge_L \beta(q,p) \iff p \leqslant q$$

- Let $X_i \sim \beta(p_i, p_i)$, i = 1, 2. Then $X_1 \ge_L X_2 \iff p_1 \leqslant p_2$.
- $p_1 \leqslant p_2$ and $q_1 \geqslant q_2$ imply $X_1 \geqslant_L X_2$.

Tools: relations for tailweight, log-concavity, beta-gamma algebra.

Remark. Can be translated into (obscure?) inequalities for regularized incomplete beta function.

Christian Kleiber (U Basel)

Applications: Lorenz ordering of beta distributions

 $\beta(1,3) \ge_L \beta(2,2)$ (proof!)

 $\beta(1,2) \ge_L \beta(2,3)$ (no proof ...)

Christian Kleiber (U Basel)

Applications: Spectra of correlation matrices

Q: How to compare correlation matrices of time series models? Consider AR(1) process

$$y_t = \rho y_{t-1} + \varepsilon_t$$

and (auto)correlation matrix

$$R_{\rho} = (\rho^{|i-j|})_{i,j=1,...,T}$$

Obvious: process is more persistent for larger ρ .

Can say more: Spectra of correlation matrices are ordered

$$\rho_1 \leqslant \rho_2 \implies \lambda(R_{\rho_1}) \leqslant_M \lambda(R_{\rho_2})$$

Further examples:

- MA(1) processes
- equicorrelation matrices $(1 \rho)I + \rho 11^{\top}$

Ingredients: Majorization inequalities for Schur products.

Christian Kleiber (U Basel)

Applications: Spectra of correlation matrices

two AR(1) spectra (T = 100)

Christian Kleiber (U Basel)

p Majorization and the Lorenz order

Applications: Win-probabilities

Consider random variables X_1, \ldots, X_k , independent.

Win-probability for 'treatment' X_k is

$$W^{U}(k;1,\ldots,k-1) = P\left(X_{k} > \max_{1 \leq j \leq k-1} X_{j}\right)$$
$$= \int_{\mathbb{R}} f_{k}(x) \prod_{j=1}^{k-1} F_{j}(x) dx$$

Example: Let k = 3 and $X_j \sim \text{Exp}(\lambda_j)$, independent. With $\rho_i = \lambda_i / \lambda_3$, i = 1, 2, have

$$W^{U}(3;1,2 \mid \rho) = 1 - \frac{1}{\rho_{1}+1} - \frac{1}{\rho_{2}+1} + \frac{1}{\rho_{1}+\rho_{2}+1}$$

This is Schur-concave in $\rho = (\rho_1, \rho_2)^{\top}$. Thus

$$\rho \geq_M \tau \implies W^U(\dots \mid \rho) \leqslant W^U(\dots \mid \tau)$$

Christian Kleiber (U Basel)

Applications: Win-probabilities

Remarks:

- works for k>3
- works for Pareto
- works for Weibull with common shape
- similar for W^L 'lower win (lose?) probability'
- related to stress-strength models in reliability

Concluding remarks

Majorization has many applications, not only in mathematics.

Classical problem: (majorization)

$$a \ge_M b \implies f(a) \ge (\leqslant) f(b)$$

Open problem: (Lorenz order)

$$a \geq_L b$$
 ? $f(a) \geq (\leqslant) f(b)$

- Lorenz order is less widely known but potentially more useful
- Lorenz curve is useful for visualizing majorization inequalities ... and for hypothesizing theorems (!)
- many majorization and Lorenz ordering results remain to be discovered

Applications: Chemistry

bubble sizes

Christian Kleiber (U Basel)

D Majorization and the Lorenz order

Vienna, 2017-01-13 46 / 51

Applications: Schur-Horn theorem

Problem. Relation between eigenvalues λ_i and diagonal elements a_{ii} of a symmetric matrix A?

Note $tr(A) = \sum_{j} \lambda_{j}$, hence majorization meaningful.

Schur (1923) shows

$$(a_{11}, a_{22}, \ldots, a_{nn}) \leqslant_M (\lambda_1, \lambda_2, \ldots, \lambda_n)$$

This implies **Hadamard's inequality**: For any real, symmetric matrix

$$\prod_i a_{ii} \geqslant \prod_i \lambda_i$$

Applications: Schur-Horn theorem

But there is more:

Schur-Horn theorem. Suppose $a, b \in \mathbb{R}^n$ with $a \leq_M b$.

Then there exists a real, symmetric matrix A with diagonal a and eigenvalues b.

Recent abstract version: majorization of sequences implies existence of compact operator with suitable eigenvalues, etc.

Applications: Credit risks

Framework. n credit risks X_i described by sizes a_i , i = 1, ..., n, and (possibly distinct) default probabilities p_i .

Quantities of interest:

- number of defaults $\sum_i X_i$, $X_i \sim Bin(1, p_i)$
- aggregate losses $\sum_i a_i X_i$, $X_i \sim Bin(1, p_i)$

Result on number of defaults. If $\mathbf{p}_{(1)} \ge_M \mathbf{p}_{(2)}$ and risks independent.

If $\mathbf{p_{(1)}} \geqslant_M \mathbf{p_{(2)}}$ and risks independent, then

$$\mathsf{Var}\left(\sum_{i} X_{i} \mid \mathbf{p}_{(1)}\right) \quad \leqslant \quad \mathsf{Var}\left(\sum_{i} X_{i} \mid \mathbf{p}_{(2)}\right)$$

Proof: variance is Schur concave in p

Can also use Hoeffding etc bounds ... but they provide lower bounds on probabilities.

Applications: Credit risks

Result on aggregate losses.

This requires assumption on a_i s. Suppose a_i decreasing in p_i . Assume

 $a_i p_i \approx const. =: a$

hence consider

$$\sum a_i X_i = a \sum \frac{1}{p_i} X_i, \quad \text{wlog } a = 1$$

If $\mathbf{p_{(1)}} \geqslant_M \mathbf{p_{(2)}}$ and risks independent, then

$$\mathsf{Var}\left(\sum_{i} a_{i} X_{i} \mid p_{(1)}\right) \quad \geqslant \quad \mathsf{Var}\left(\sum_{i} a_{i} X_{i} \mid p_{(2)}\right)$$

Proof: variance is Schur concave in p

Axiomatic approach to inequality measurement.

For a scalar measure of inequality I, require (at least) the following properties:

I(x) = I(λx) for λ > 0 (homogeneity of degree 0)
for x ≥_M y must have I(x) ≥ I(y) (Schur convexity)
I((x, x)) = I(x) (population principle)