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Introduction

How can we measure

�
�

�
�inequality, variability, diversity, disorder (‘chaos’), . . . ?

Numerous proposals in

• statistics

• economics

• physics

• biology/ecology

• . . .

Many parallel developments.
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Majorization

Given two vectors

x = (x1, . . . , xn), y = (y1, . . . , yn)

of equal length n with

n∑
i=1

xi =

n∑
i=1

yi

define majorization as

x >M y :⇐⇒
k∑

i=1

x(i :n) >
k∑

i=1

y(i :n), k = 1, . . . ,n − 1.

Here x(1:n) > x(2:n) > · · · > x(n:n) (decreasing rearrangement).
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Majorization

Basic properties best explained in terms of income (re)distribution.

Examples.

(1, 1, 1, 1) 6M (2, 1, 1, 0) 6M (3, 1, 0, 0) 6M (4, 0, 0, 0)

Note: ordering irrelevant, also have

(1, 1, 1, 1) 6M (0, 2, 1, 1) 6M (1, 0, 0, 3) 6M (0, 4, 0, 0)

More generally

(x̄ , x̄ , . . . , x̄ ) 6M (x1, x2, . . . , xn) 6M (x1 + x2 + · · ·+ xn , 0, . . . , 0)
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Majorization

Interpretation. comparison of income distributions

• identical total incomes
(majorization describes distributive aspects)

• identical size of populations

Transition from x to y is result of finitely many “Robin Hood
transfers”:

Majorization and transfers. The following are equivalent

• x >M y

• y = T1T2 · · ·Tm x , with Ti matrix representing ‘elementary
transfers’,
T = εI + (1− ε)P (P ‘elementary’ permutation matrix)
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Majorization

Some pioneers.

• R. F. Muirhead (1903)

• M. O. Lorenz (1905)

• H. Dalton (1920)

• I. Schur (1923)

• G. H. Hardy, J. E. Littlewood and G. Pólya (1929, 1934)
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Majorization
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Majorization

Some references.

• PM Alberti and A Uhlmann (1981). Stochasticity and Partial
Order, Verlag der Wissenschaften.

• BC Arnold (1987). Majorization and the Lorenz Order,
Springer-Verlag.

• R Bhatia (1997). Matrix Analysis, Springer-Verlag.

• GH Hardy, JE Littlewood and G Pólya (1934). Inequalities,
Cambridge.

• AW Marshall and I Olkin (1979). Inequalities: Theory of
Majorization and Its Applications, Academic Press.

[2nd ed. 2011, with BC Arnold.]

• JM Steele (2004). The Cauchy-Schwarz Masterclass, Cambridge.
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Majorization



Majorization and Schur convexity

Schur functions

• g Schur convex iff x >M y ⇒ g(x ) > g(y)

• g Schur concave iff x >M y ⇒ g(x ) 6 g(y)

Unfortunate terminology . . . a monotonicity property.

HLP characterization (1934)

The following are equivalent:

• x >M y

• y = Px , P doubly stochastic matrix

•
∑

i h(xi) >
∑

i h(yi) for all (continuous) convex functions h

Not every analytic inequality is a consequence of the Schur convexity

of some function, but enough are to make familiarity with

majorization/Schur convexity a nece[s]sary part of the required

background of a respectable mathematical analyst. (Arnold 1987)
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Majorization and Schur convexity

How to recognize Schur concave/convex functions?

Schur’s criterion (1923)

Continuously differentiable g , permutation symmetric, is Schur
convex (concave) if, for all i , j ,

(xi − xj )

(
∂g(x )

∂xi
−
∂g(x )

∂xj

)
> (6) 0

Remark on terminology: (convexity connection)

Why ‘convex’? For f convex, composite function

g(x ) :=
∑
i

f (xi)

is Schur convex. Also have various representations involving doubly
stochastic matrices, specific convex functions, etc.
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Majorization and Schur convexity

Examples: Classical inequality measures are Schur convex in incomes

• Gini
G = 2 · concentration area

• coefficient of variation (squared)

CV 2 =
1

n

∑
i

(xi
x̄

− 1
)2

• Theil

T =
1

n

∑
i

xi
x̄
log

xi
x̄

• Atkinson

Aε = 1−

{
1

n

∑
i

(xi
x̄

)1−ε}1/(1−ε)
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The Lorenz order

Majorization not sufficiently general for many tasks:

• identical population size?

• identical total incomes?

Suggestion of Max Otto Lorenz (1905):

Lorenz curve

For x = (x1, . . . , xn), xi > 0,
∑n

i=1 xi > 0, define Lorenz curve via
linear interpolation of (xi :n increasingly ordered)

L

(
k

n

)
=

∑k
i=1 xi :n∑n
i=1 xi :n

, k = 0, 1, . . . ,n .

Interpretation:

“poorest k
n · 100% possess

∑k
i=1 xi :n∑n
i=1 xi :n

of total income”
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The Lorenz order
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The Lorenz order
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The Lorenz order

Lorenz curve (Pietra 1915, Piesch 1967, Gastwirth 1971)

For non-negative X with 0 < E (X ) <∞, set

LX (u) =
1

E (X )

∫u
0
F−1
X (t) dt , u ∈ [0, 1].

Properties.

• L continuous on [0, 1], with L(0) = 0 and L(1) = 1,

• L monotonically increasing, and

• L convex.

Lorenz order

X1 more unequal (. . . or more spread out . . . or more variable) than
X2 in the Lorenz sense, if L1(u) 6 L2(u) for all u ∈ [0, 1]. Notation:

X1 >L X2 :⇐⇒ L1 6 L2.
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The Lorenz order
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The Lorenz order
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Applications of majorization and the Lorenz order

‘Random’ paper in statistical distribution theory:

Kochar and Xu (J Mult Anal 2010) show for exponential distribution:

Suppose Xi ∼ Exp(λi) independent.
If (1/λ1, . . . , 1/λn) >M (1/λ∗1 , . . . , 1/λ∗n), then

n∑
i=1

Xλi >L

n∑
i=1

Xλ∗i

Nice: Majorization and Lorenz order!

Remark. Since 2000 dozens (hundreds?) of papers on distributional
inequalities for linear combinations, order statistics etc from
heterogeneous populations. Many involve majorization.
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Applications of majorization and the Lorenz order

• Mathematics, statistics, actuarial science

I eigenvalues and diagonal elements of matrices
I distributions of quadratic forms
I power functions of tests in multivariate analysis
I inequalities for special functions
I distributions of aggregate losses (= random sums)
I value at risk
I . . .

• Social sciences

I tax progression and income redistribution
I Condorcet jury theorems
I “fair representation” in parliaments
I . . .
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Applications of majorization and the Lorenz order

• Often variations on the main theme:

I majorization of transformations (logarithms, ...)
I weak majorization (super- or submajorization)
I . . .

• Especially Lorenz ordering results often require background on
further stochastic orders to exploit interrelations

I there are hundreds of stochastic orders in
statistics, economics, reliability theory, actuarial science, . . .

I Examples include

stochastic dominance (of various orders), convex order, increasing
convex/concave order, star-shaped order, mean residual life (or
mean excess) order, hazard rate order, likelihood ratio order,
excess wealth order, total time on test, superadditive order, . . .
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Applications: Taxes and incomes

Framework. Given

• vector of incomes x = (x1, . . . , xn)

• tax schedule t(x )
Call {1− t(x )} x after-tax income (“residual income”)

Goal. Comparison of before- and after-tax incomes wrt. inequality.
Majorization not applicable because∑

i

xi 6=
∑
i

{1− t(xi)} xi

Use Lorenz order instead.

Question. What does a ‘Lorenz-equalizing’ tax look like?
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Applications: Taxes and incomes

Theorem (Eichhorn, Funke, Richter, J Math Econ 1984)

x >L {1− t(x )} x

iff

• t(x ) increasing and

• {1− t(x )} x increasing.

Interpretation. Income tax is inequality-reducing iff

• progressive and

• incentive preserving

Christian Kleiber (U Basel) Majorization and the Lorenz order Vienna, 2017-01-13 24 / 51



Applications: Condorcet jury theorems

Framework. Jury of n ‘experts’ faces binary decision.

• Suppose Xi ∈ {0, 1} decision of expert i and pi = P(Xi = 1),
i = 1, . . . ,n. Call pi competence/ability of expert i .

• Consider number of correct decisions

S :=

n∑
i=1

Xi

If all experts equally competent (pi ≡ p) and independent,

P(S > k) =

n∑
i=k

(
n

i

)
pi(1− p)n−i ,

a binomial probability.

• Decision is via majority voting.
To avoid ties, set n = 2m + 1, hence k = m + 1.
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Applications: Condorcet jury theorems



Applications: Condorcet jury theorems

Setting of classical CJT.

• two alternatives

• common preferences
(one alternative is superior in the light of full information)

• independent decisions

• homogeneous competences

• decision rule is simple majority voting
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Applications: Condorcet jury theorems

Classical CJTs. (Boland, JRSS D 1989)

Non-asymptotic CJT

Under majority voting with p > 1/2 (“experts”) have

P(S > m + 1) > p

Proof: use Beta integral representation of binomial probabilities

P(S > m + 1) =
1

B(m + 1,m + 1)

∫p
0
tm(1− t)mdt

NB. There is also an asymptotic CJT, but not needed here.
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Applications: Condorcet jury theorems
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Applications: Condorcet jury theorems

Extensions of basic version.

• supermajority voting (also called special majority voting)

• heterogeneous experts

• dependent experts (“opinion leaders”)

• juries of different sizes

• direct vs indirect majority voting (→ US presidential elections)
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Applications: Condorcet jury theorems

Framework. Jury J characterized by vector of probabilities
(“competences”)

p = (p1, . . . , pn) ∈ [0, 1]n

Question. Given 2 juries J1 und J2 of equal size, with competences
p1 and p2, when will J1 do better?

Need conditions for

P(S1 > m + 1) > P(S2 > m + 1) for pi ∈ P ⊆ [0, 1]n

• New problem: distribution of sums of independent, but not
identically distributed Bernoulli variables

• Goal: stochastic comparisons with e.g. binomial distribution

• Classical paper: Hoeffding (Ann Math Stat 1956)
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Applications: Condorcet jury theorems

In Hoeffding (1956) purely probabilistic point of view.

Sums of heterogeneous Bernoullis arise in many contexts

• CJTs

• reliability of “k out of n” systems (unequal default probabilities)

• portfolios of credit risks

• . . .
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Applications: Condorcet jury theorems

Point of reference. average competence p̄

Hoeffding’s inequality (Hoeffding 1956)

Suppose k > 0 with p̄ > k/n. Then

P(S > k) >
n∑

i=k

(
n

i

)
p̄i(1− p̄)n−i

This gives

Boland’s CJT (Boland 1989)

Suppose n > 3, p̄ > 1/2+ 1/(2n). Then

P(S > m + 1) > p̄
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Applications: Condorcet jury theorems

Generalization of Hoeffding’s inequality:

Gleser’s inequality (Ann Prob 1975)

Let p1 >M p2. Then

P(S 6 k | p1) 6 P(S 6 k | p2), k 6 bnp̄ − 2c

This gives

CJT under heterogeneity

Let n > 7 and p̄ > 1/2+ 5/(2n). If p1 >M p2 then

P(S > m + 1 | p1) > P(S > m + 1 | p2)

Note: need large p̄ for superiority of majority voting!
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Applications: Condorcet jury theorems

Further generalization of Hoeffding’s inequality:

Boland and Proschan’s inequality (Ann Prob 1983)

Let p1 >M p2. Then

P(S 6 k | p1) 6 P(S 6 k | p2), all pi ∈ [(k −1)/(n−1), 1]n

This gives

CJT under heterogeneity

Let pi ∈ [1/2, 1]n with p1 >M p2. Then

P(S > m + 1 | p1) > P(S > m + 1 | p2)

This differs from the Gleser version!

Can be generalized to supermajority voting.
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Applications: Condorcet jury theorems

Visualization via Lorenz curves

L

(
k

n

)
=

∑k
i=1 xi :n∑n
i=1 xi :n

, k = 0, 1, . . . ,n ,

where xi :n ith smallest income → consider probabilities as incomes

Example: n = 9, p̄ = 0.6

p1 <- c(1.0, 1.0, 1.0, 0.7, 0.7, 0.7, 0.5, 0.5, 0.5)

p2 <- c(1.0, 0.9, 0.9, 0.8, 0.8, 0.6, 0.6, 0.5, 0.5)
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Applications: Condorcet jury theorems
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Portfolio allocation and value at risk

Conventional wisdom in portfolio allocation:�
�

�
�Diversification reduces risk.

Q. Really ...?

Schur properties of VaR (Ibragimov, Quant Fin 2009)

Consider portfolios Ya =
∑

i aiYi and Yb =
∑

i biYi , and α < 1
2 .

Then

• a >M b =⇒ VaRα(Ya) > VaRα(Yb)
for Yi light-tailed.

• a >M b =⇒ VaRα(Ya) 6 VaRα(Yb)
for Yi (very) heavy-tailed.
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Applications: Lorenz ordering of beta distributions

Consider beta distribution β(p, q)

f (x ) =
1

B(p, q)
xp−1 (1− x )q−1, x ∈ [0, 1].

Q. Let Xi ∼ β(pi , qi), i = 1, 2. When do we have X1 >L X2?

Many applications: Order statistics, reliability, actuarial science, . . .

Partial results:

• X1 >L X2 implies p1 6 p2 and p1/p2 6 q1/q2
• β(p, q) >L β(q , p)⇐⇒ p 6 q

• Let Xi ∼ β(pi , pi), i = 1, 2. Then X1 >L X2 ⇐⇒ p1 6 p2.

• p1 6 p2 and q1 > q2 imply X1 >L X2.

Tools: relations for tailweight, log-concavity, beta-gamma algebra.

Remark. Can be translated into (obscure?) inequalities for
regularized incomplete beta function.
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Applications: Lorenz ordering of beta distributions
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β(1, 3) >L β(2, 2) (proof!) β(1, 2) >L β(2, 3) (no proof ...)
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Applications: Spectra of correlation matrices

Q: How to compare correlation matrices of time series models?

Consider AR(1) process

yt = ρyt−1 + εt

and (auto)correlation matrix

Rρ = (ρ|i−j |)i ,j=1,...,T

Obvious: process is more persistent for larger ρ.

Can say more: Spectra of correlation matrices are ordered

ρ1 6 ρ2 =⇒ λ(Rρ1) 6M λ(Rρ2)

Further examples:

• MA(1) processes

• equicorrelation matrices (1− ρ)I + ρ11>

Ingredients: Majorization inequalities for Schur products.
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Applications: Spectra of correlation matrices
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Applications: Win-probabilities

Consider random variables X1, . . . ,Xk , independent.

Win-probability for ‘treatment’ Xk is

W U (k ; 1, . . . , k − 1) = P

(
Xk > max

16j6k−1
Xj

)
=

∫
R
fk (x )

k−1∏
j=1

Fj (x ) dx

Example: Let k = 3 and Xj ∼ Exp(λj ), independent.

With ρi = λi/λ3, i = 1, 2, have

W U (3; 1, 2 | ρ) = 1−
1

ρ1 + 1
−

1

ρ2 + 1
+

1

ρ1 + ρ2 + 1

This is Schur-concave in ρ = (ρ1, ρ2)>. Thus

ρ >M τ =⇒ W U (... | ρ) 6 W U (... | τ)
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Applications: Win-probabilities

Remarks:

• works for k > 3

• works for Pareto

• works for Weibull with common shape

• similar for W L ‘lower win (lose?) probability’

• related to stress-strength models in reliability
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Concluding remarks

Majorization has many applications, not only in mathematics.

Classical problem: (majorization)

a >M b =⇒ f (a) > (6) f (b)

Open problem: (Lorenz order)

a >L b ? f (a) > (6) f (b)

• Lorenz order is less widely known but potentially more useful

• Lorenz curve is useful for visualizing majorization inequalities
. . . and for hypothesizing theorems (!)

• many majorization and Lorenz ordering results remain to be
discovered
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Applications: Chemistry
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Applications: Schur-Horn theorem

Problem. Relation between eigenvalues λi and diagonal elements
aii of a symmetric matrix A?

Note tr(A) =
∑

j λj , hence majorization meaningful.

Schur (1923) shows

(a11, a22, . . . , ann) 6M (λ1, λ2, . . . , λn)

This implies Hadamard’s inequality:
For any real, symmetric matrix∏

i

aii >
∏
i

λi
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Applications: Schur-Horn theorem

But there is more:

Schur-Horn theorem. Suppose a , b ∈ Rn with a 6M b.

Then there exists a real, symmetric matrix A with diagonal a and
eigenvalues b.

Recent abstract version: majorization of sequences implies existence
of compact operator with suitable eigenvalues, etc.
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Applications: Credit risks

Framework. n credit risks Xi described by sizes ai , i = 1, . . . ,n,
and (possibly distinct) default probabilities pi .

Quantities of interest:

• number of defaults
∑

i Xi , Xi ∼ Bin(1, pi)

• aggregate losses
∑

i aiXi , Xi ∼ Bin(1, pi)

Result on number of defaults.
If p(1) >M p(2) and risks independent, then

Var

(∑
i

Xi | p(1)

)
6 Var

(∑
i

Xi | p(2)

)

Proof: variance is Schur concave in p

Can also use Hoeffding etc bounds ... but they provide lower bounds
on probabilities.
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Applications: Credit risks

Result on aggregate losses.
This requires assumption on ai s. Suppose ai decreasing in pi .
Assume

aipi ≈ const . =: a

hence consider ∑
aiXi = a

∑ 1

pi
Xi , wlog a = 1

If p(1) >M p(2) and risks independent, then

Var

(∑
i

aiXi | p(1)

)
> Var

(∑
i

aiXi | p(2)

)
Proof: variance is Schur concave in p
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Majorization and Schur convexity

Axiomatic approach to inequality measurement.

For a scalar measure of inequality I , require (at least) the following
properties:

• I (x ) = I (λx ) for λ > 0 (homogeneity of degree 0)

• for x >M y must have I (x ) > I (y) (Schur convexity)

• I ((x , x )) = I (x ) (population principle)
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