Stochastic algorithms for the approximative pricing of financial derivatives

Arnulf Jentzen (ETH Zurich, Switzerland)

Joint works with
Weinan E (Princeton University, USA \& Beijing University, China),
Mate Gerencsér (IST Austria, Austria),
Martin Hairer (University of Warwick, UK), Mario Hefter (University of Kaiserslautern, Germany), Martin Hutzenthaler (University of Duisburg-Essen, Germany), Thomas Kruse (University of Duisburg-Essen, Germany),
Thomas Müller-Gronbach (University of Passau, Germany),
Diyora Salimova (ETH Zurich, Switzerland), and Larisa Yaroslavtseva (University of Passau, Germany)

Vienna Seminar in Mathematical Finance and Probability, Vienna, Austria
Thursday, 19 January 2017

Introduction

Consider $T \in(0, \infty), d \in \mathbb{N}$ and sufficiently regular functions $g: \mathbb{R}^{d} \rightarrow \mathbb{R}$, $f:[0, T] \times \mathbb{R}^{d} \times \mathbb{R} \times \mathbb{R}^{d} \rightarrow \mathbb{R}, \mu:[0, T] \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}, \sigma:[0, T] \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d \times d}$, $u:[0, T] \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ such that $u(T, x)=g(x)$ and

$$
\begin{aligned}
\left(\frac{\partial}{\partial t} u\right)(t, x)+f(t, x, u(t, x), & \left.\sigma(t, x)\left(\nabla_{x} u\right)(t, x)\right)+\left\langle\mu(t, x),\left(\nabla_{x} u\right)(t, x)\right\rangle \\
& +\frac{1}{2} \operatorname{Trace}_{\mathbb{R}^{d}}\left(\sigma(t, x) \sigma(t, x)^{*}\left(\operatorname{Hess}_{x} u\right)(t, x)\right)=0
\end{aligned}
$$

for $(t, x) \in[0, T) \times \mathbb{R}^{d}$.

- Black-Scholes model Consider $T, \beta>0, \alpha \in \mathbb{R}$ and

$$
\frac{\partial}{\partial t} X_{t}=\alpha X_{t}+\beta X_{t} \frac{\partial}{\partial t} d W_{t}
$$

for $t \in[0, T]$, where $\left(W_{t}\right)_{t \in[0, T]}$ is a one-dimensional Brownian motion.

- Heston model Consider $\alpha, \gamma \in \mathbb{R}, \beta, \delta, x_{0}^{(1)}, x_{0}^{(2)}>0, \rho \in[-1,1]$ and

- Black-Scholes model Consider $T, \beta>0, \alpha \in \mathbb{R}$ and

$$
\frac{\partial}{\partial t} X_{t}=\alpha X_{t}+\beta X_{t} \frac{\partial}{\partial t} d W_{t}
$$

for $t \in[0, T]$, where $\left(W_{t}\right)_{t \in[0, T]}$ is a one-dimensional Brownian motion.

- Heston model Consider $\alpha, \gamma \in \mathbb{R}, \beta, \delta, x_{0}^{(1)}, x_{0}^{(2)}>0, \rho \in[-1,1]$ and

$$
\begin{aligned}
& \frac{\partial}{\partial t} x_{t}^{(1)}=\alpha X_{t}^{(1)}+\sqrt{x_{t}^{(2)}} X_{t}^{(1)} \frac{\partial}{\partial t} W_{t}^{(1)} \\
& \frac{\partial}{\partial t} x_{t}^{(2)}=\delta-\gamma X_{t}^{(2)}+\beta \sqrt{X_{t}^{(2)}}\left(\rho \frac{\partial}{\partial t} W_{t}^{(1)}+\sqrt{1-\rho^{2}} \frac{\partial}{\partial t} W_{t}^{(2)}\right)
\end{aligned}
$$

for $t \in[0, T]$, where $\left(W_{t}\right)_{t \in[0, T]}=\left(\left(W_{t}^{(1)}, W_{t}^{(2)}\right)\right)_{t \in[0, T]}$ is a two-dim. BM.

- Black-Scholes model Consider $T, \beta>0, \alpha \in \mathbb{R}$ and

$$
\frac{\partial}{\partial t} X_{t}=\alpha X_{t}+\beta X_{t} \frac{\partial}{\partial t} d W_{t}
$$

for $t \in[0, T]$, where $\left(W_{t}\right)_{t \in[0, T]}$ is a one-dimensional Brownian motion.

- Heston model Consider $\alpha, \gamma \in \mathbb{R}, \beta, \delta, x_{0}^{(1)}, x_{0}^{(2)}>0, \rho \in[-1,1]$ and

$$
\begin{aligned}
& \frac{\partial}{\partial t} x_{t}^{(1)}=\alpha X_{t}^{(1)}+\sqrt{x_{t}^{(2)}} X_{t}^{(1)} \frac{\partial}{\partial t} W_{t}^{(1)} \\
& \frac{\partial}{\partial t} x_{t}^{(2)}=\delta-\gamma X_{t}^{(2)}+\beta \sqrt{X_{t}^{(2)}}\left(\rho \frac{\partial}{\partial t} W_{t}^{(1)}+\sqrt{1-\rho^{2}} \frac{\partial}{\partial t} W_{t}^{(2)}\right)
\end{aligned}
$$

for $t \in[0, T]$, where $\left(W_{t}\right)_{t \in[0, T]}=\left(\left(W_{t}^{(1)}, W_{t}^{(2)}\right)\right)_{t \in[0, T]}$ is a two-dim. BM.

Theorem (Hairer, Hutzenthaler \& J 2015 AOP)

Let $T \in(0, \infty), d \in\{4,5, \ldots\}, \xi \in \mathbb{R}^{d}$. Then there exist globally bounded $\mu, \sigma \in \mathcal{C}^{\infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ such that for every probability space $(\Omega, \mathcal{F}, \mathbb{P})$, every Brownian motion $W:[0, T] \times \Omega \rightarrow \mathbb{R}$, every solution $X:[0, T] \times \Omega \rightarrow \mathbb{R}^{d}$ of

$$
d X_{t}=\mu\left(X_{t}\right)+\sigma\left(X_{t}\right) d W_{t}, \quad t \in[0, T], \quad X_{0}=\xi
$$

and every $Y^{N}:\{0,1, \ldots, N\} \times \Omega \rightarrow \mathbb{R}^{4}, N \in \mathbb{N}$, with
$\forall N \in \mathbb{N}, n \in\{0,1, \ldots, N-1\}: Y_{0}^{N}=X_{0}$ and

$$
Y_{n+1}^{N}=Y_{n}^{N}+\mu\left(Y_{n}^{N}\right) \frac{T}{N}+\sigma\left(Y_{n}^{N}\right)\left(W_{\frac{(n+1) \tau}{N}}-W_{\frac{n T}{N}}\right)
$$

(Euler-Maruyama approximations) we have $\forall \alpha \in[0, \infty)$:

$$
\lim _{N \rightarrow \infty}\left(N^{\alpha}\left\|\mathbb{E}\left[X_{T}\right]-\mathbb{E}\left[Y_{N}^{N}\right]\right\|\right)= \begin{cases}0 & : \alpha=0 \\ \infty & : \alpha>0\end{cases}
$$

Theorem (Hairer, Hutzenthaler \& J 2015 AOP)

Let $T \in(0, \infty), d \in\{4,5, \ldots\}, \xi \in \mathbb{R}^{d}$. Then there exist globally bounded $\mu, \sigma \in \mathcal{C}^{\infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ such that for every probability space $(\Omega, \mathcal{F}, \mathbb{P})$, every Brownian motion W: $[0, T] \times \Omega \rightarrow \mathbb{R}$, every solution $X:[0, T] \times \Omega \rightarrow \mathbb{R}^{d}$ of

$$
d X_{t}=\mu\left(X_{t}\right)+\sigma\left(X_{t}\right) d W_{t}, \quad t \in[0, T], \quad X_{0}=\xi,
$$

and every $Y^{N}:\{0,1, \ldots, N\} \times \Omega \rightarrow \mathbb{R}^{4}, N \in \mathbb{N}$, with
$\forall N \in \mathbb{N}, n \in\{0,1, \ldots, N-1\}: Y_{0}^{N}=X_{0}$ and

$$
Y_{n+1}^{N}=Y_{n}^{N}+\mu\left(Y_{n}^{N}\right) \frac{T}{N}+\sigma\left(Y_{n}^{N}\right)\left(W_{\frac{(n+1) T}{N}}-W_{\frac{n T}{N}}^{N}\right)
$$

(Euler-Maruyama approximations) we have $\forall \alpha \in[0, \infty)$:

$$
\lim _{N \rightarrow \infty}\left(N^{a}\left\|\mathbb{E}\left[X_{T}\right]-\mathbb{E}\left[Y_{N}^{N}\right]\right\|\right)= \begin{cases}0 & : a=0 \\ \infty & : a>0\end{cases}
$$

Theorem (Hairer, Hutzenthaler \& J 2015 AOP)

Let $T \in(0, \infty), d \in\{4,5, \ldots\}, \xi \in \mathbb{R}^{d}$. Then there exist globally bounded
$\mu, \sigma \in \mathcal{C}^{\infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ such that for every probability space $(\Omega, \mathcal{F}, \mathbb{P})$, every Brownian motion $W:[0, T] \times \Omega \rightarrow \mathbb{R}$, every solution $X:[0, T] \times \Omega \rightarrow \mathbb{R}^{d}$ of

$$
d X_{t}=\mu\left(X_{t}\right)+\sigma\left(X_{t}\right) d W_{t}, \quad t \in[0, T], \quad X_{0}=\xi
$$

and every $Y^{N}:\{0,1, \ldots, N\} \times \Omega \rightarrow \mathbb{R}^{4}, N \in \mathbb{N}$, with
$\forall N \in \mathbb{N}, n \in\{0,1, \ldots, N-1\}: Y_{0}^{N}=X_{0}$ and

$$
Y_{n+1}^{N}=Y_{n}^{N}+\mu\left(Y_{n}^{N}\right) \frac{T}{N}+\sigma\left(Y_{n}^{N}\right)\left(W_{\frac{(n+1) T}{N}}-W_{\frac{n T}{N}}\right)
$$

(Euler-Maruyama approximations) we have $\forall \alpha \in[0, \infty)$:

$$
\lim _{N \rightarrow \infty}\left(N^{a}\left\|\mathbb{E}\left[X_{T}\right]-\mathbb{E}\left[Y_{N}^{N}\right]\right\|\right)= \begin{cases}0 & : a=0 \\ \infty & : a>0\end{cases}
$$

Theorem (Hairer, Hutzenthaler \& J 2015 AOP)

Let $T \in(0, \infty), d \in\{4,5, \ldots\}, \xi \in \mathbb{R}^{d}$. Then there exist globally bounded $\mu, \sigma \in \mathcal{C}^{\infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ such that for every probability space $(\Omega, \mathcal{F}, \mathbb{P})$, every Brownian motion W: $[0, T] \times \Omega \rightarrow \mathbb{R}$, every solution $X:[0, T] \times \Omega \rightarrow \mathbb{R}^{d}$ of

$$
d X_{t}=\mu\left(X_{t}\right)+\sigma\left(X_{t}\right) d W_{t}, \quad t \in[0, T], \quad X_{0}=\xi,
$$

(Euler-Maruyama approximations) we have $\forall \alpha \in[0, \infty)$:

Theorem (Hairer, Hutzenthaler \& J 2015 AOP)

Let $T \in(0, \infty), d \in\{4,5, \ldots\}, \xi \in \mathbb{R}^{d}$. Then there exist globally bounded $\mu, \sigma \in \mathcal{C}^{\infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ such that for every probability space $(\Omega, \mathcal{F}, \mathbb{P})$, every Brownian motion $W:[0, T] \times \Omega \rightarrow \mathbb{R}$, every solution $X:[0, T] \times \Omega \rightarrow \mathbb{R}^{d}$ of

$$
d X_{t}=\mu\left(X_{t}\right)+\sigma\left(X_{t}\right) d W_{t}, \quad t \in[0, T], \quad X_{0}=\xi
$$

(Euler-Maruyama approximations) we have $\forall \alpha \in[0, \infty)$:

Theorem (Hairer, Hutzenthaler \& J 2015 AOP)

Let $T \in(0, \infty), d \in\{4,5, \ldots\}, \xi \in \mathbb{R}^{d}$. Then there exist globally bounded $\mu, \sigma \in \mathcal{C}^{\infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ such that for every probability space $(\Omega, \mathcal{F}, \mathbb{P})$, every Brownian motion $W:[0, T] \times \Omega \rightarrow \mathbb{R}$, every solution $X:[0, T] \times \Omega \rightarrow \mathbb{R}^{d}$ of

(Euler-Maruyama approximations) we have $\forall \alpha \in[0, \infty)$

Theorem (Hairer, Hutzenthaler \& J 2015 AOP)

Let $T \in(0, \infty), d \in\{4,5, \ldots\}, \xi \in \mathbb{R}^{d}$. Then there exist globally bounded $\mu, \sigma \in \mathcal{C}^{\infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ such that for every probability space $(\Omega, \mathcal{F}, \mathbb{P})$, every Brownian motion W: $[0, T] \times \Omega \rightarrow \mathbb{R}$, every solution $X:[0, T] \times \Omega \rightarrow \mathbb{R}^{d}$

(Euler-Maruyama approximations) we have $\forall \alpha \in[0, \infty)$:

Theorem (Hairer, Hutzenthaler \& J 2015 AOP)

Let $T \in(0, \infty), d \in\{4,5, \ldots\}, \xi \in \mathbb{R}^{d}$. Then there exist globally bounded $\mu, \sigma \in \mathcal{C}^{\infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ such that for every probability space $(\Omega, \mathcal{F}, \mathbb{P})$, every Brownian motion $W:[0, T] \times \Omega \rightarrow \mathbb{R}$, every solution $X:[0, T] \times \Omega \rightarrow \mathbb{R}^{d}$ of

$$
d X_{t}=\mu\left(X_{t}\right)+\sigma\left(X_{t}\right) d W_{t}, \quad t \in[0, T], \quad X_{0}=\xi,
$$

(Euler-Maruyama approximations) we have $\forall \alpha \in[0, \infty)$

Theorem (Hairer, Hutzenthaler \& J 2015 AOP)

Let $T \in(0, \infty), d \in\{4,5, \ldots\}, \xi \in \mathbb{R}^{d}$. Then there exist globally bounded $\mu, \sigma \in \mathcal{C}^{\infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ such that for every probability space $(\Omega, \mathcal{F}, \mathbb{P})$, every Brownian motion $W:[0, T] \times \Omega \rightarrow \mathbb{R}$, every solution $X:[0, T] \times \Omega \rightarrow \mathbb{R}^{d}$ of

$$
d X_{t}=\mu\left(X_{t}\right)+\sigma\left(X_{t}\right) d W_{t}, \quad t \in[0, T], \quad X_{0}=\xi
$$

and every $Y^{N}:\{0,1, \ldots, N\} \times \Omega \rightarrow \mathbb{R}^{4}, N \in \mathbb{N}$, with
$\forall N \in \mathbb{N}, n \in\{0,1, \ldots, N-1\}: Y_{0}^{N}=X_{0}$ and

$$
Y_{n+1}^{N}=Y_{n}^{N}+\mu\left(Y_{n}^{N}\right) \frac{T}{N}+\sigma\left(Y_{n}^{N}\right)\left(W_{\frac{(n+1) T}{N}}-W_{\frac{n T}{N}}\right)
$$

(Euler-Maruyama approximations) we have $\forall \alpha \in[0, \infty)$:

Theorem (Hairer, Hutzenthaler \& J 2015 AOP)

Let $T \in(0, \infty), d \in\{4,5, \ldots\}, \xi \in \mathbb{R}^{d}$. Then there exist globally bounded $\mu, \sigma \in \mathcal{C}^{\infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ such that for every probability space $(\Omega, \mathcal{F}, \mathbb{P})$, every Brownian motion $W:[0, T] \times \Omega \rightarrow \mathbb{R}$, every solution $X:[0, T] \times \Omega \rightarrow \mathbb{R}^{d}$ of

$$
d X_{t}=\mu\left(X_{t}\right)+\sigma\left(X_{t}\right) d W_{t}, \quad t \in[0, T], \quad X_{0}=\xi
$$

and every $Y^{N}:\{0,1, \ldots, N\} \times \Omega \rightarrow \mathbb{R}^{4}, N \in \mathbb{N}$, with
$\forall N \in \mathbb{N}, n \in\{0,1, \ldots, N-1\}: Y_{0}^{N}=X_{0}$ and

$$
Y_{n+1}^{N}=Y_{n}^{N}+\mu\left(Y_{n}^{N}\right) \frac{T}{N}+\sigma\left(Y_{n}^{N}\right)\left(W_{\frac{(n+1) T}{N}}-W_{\frac{n T}{N}}\right)
$$

(Euler-Maruyama approximations) we have $\forall \alpha \in[0, \infty)$:

$$
\lim _{N \rightarrow \infty}\left(N^{\alpha}\left\|\mathbb{E}\left[X_{T}\right]-\mathbb{E}\left[Y_{N}^{N}\right]\right\|\right)
$$

Theorem (Hairer, Hutzenthaler \& J 2015 AOP)

Let $T \in(0, \infty), d \in\{4,5, \ldots\}, \xi \in \mathbb{R}^{d}$. Then there exist globally bounded $\mu, \sigma \in \mathcal{C}^{\infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ such that for every probability space $(\Omega, \mathcal{F}, \mathbb{P})$, every Brownian motion $W:[0, T] \times \Omega \rightarrow \mathbb{R}$, every solution $X:[0, T] \times \Omega \rightarrow \mathbb{R}^{d}$ of

$$
d X_{t}=\mu\left(X_{t}\right)+\sigma\left(X_{t}\right) d W_{t}, \quad t \in[0, T], \quad X_{0}=\xi
$$

and every $Y^{N}:\{0,1, \ldots, N\} \times \Omega \rightarrow \mathbb{R}^{4}, N \in \mathbb{N}$, with
$\forall N \in \mathbb{N}, n \in\{0,1, \ldots, N-1\}: Y_{0}^{N}=X_{0}$ and

$$
Y_{n+1}^{N}=Y_{n}^{N}+\mu\left(Y_{n}^{N}\right) \frac{T}{N}+\sigma\left(Y_{n}^{N}\right)\left(W_{\frac{(n+1) T}{N}}-W_{\frac{n T}{N}}\right)
$$

(Euler-Maruyama approximations) we have $\forall \alpha \in[0, \infty)$:

$$
\lim _{N \rightarrow \infty}\left(N^{\alpha}\left\|\mathbb{E}\left[X_{T}\right]-\mathbb{E}\left[Y_{N}^{N}\right]\right\|\right)=
$$

Theorem (Hairer, Hutzenthaler \& J 2015 AOP)

Let $T \in(0, \infty), d \in\{4,5, \ldots\}, \xi \in \mathbb{R}^{d}$. Then there exist globally bounded $\mu, \sigma \in \mathcal{C}^{\infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ such that for every probability space $(\Omega, \mathcal{F}, \mathbb{P})$, every Brownian motion $W:[0, T] \times \Omega \rightarrow \mathbb{R}$, every solution $X:[0, T] \times \Omega \rightarrow \mathbb{R}^{d}$ of

$$
d X_{t}=\mu\left(X_{t}\right)+\sigma\left(X_{t}\right) d W_{t}, \quad t \in[0, T], \quad X_{0}=\xi
$$

and every $Y^{N}:\{0,1, \ldots, N\} \times \Omega \rightarrow \mathbb{R}^{4}, N \in \mathbb{N}$, with
$\forall N \in \mathbb{N}, n \in\{0,1, \ldots, N-1\}: Y_{0}^{N}=X_{0}$ and

$$
Y_{n+1}^{N}=Y_{n}^{N}+\mu\left(Y_{n}^{N}\right) \frac{T}{N}+\sigma\left(Y_{n}^{N}\right)\left(W_{\frac{(n+1) T}{N}}-W_{\frac{n T}{N}}\right)
$$

(Euler-Maruyama approximations) we have $\forall \alpha \in[0, \infty)$:

$$
\lim _{N \rightarrow \infty}\left(N^{\alpha}\left\|\mathbb{E}\left[X_{T}\right]-\mathbb{E}\left[Y_{N}^{N}\right]\right\|\right)=\{
$$

Theorem (Hairer, Hutzenthaler \& J 2015 AOP)

Let $T \in(0, \infty), d \in\{4,5, \ldots\}, \xi \in \mathbb{R}^{d}$. Then there exist globally bounded $\mu, \sigma \in \mathcal{C}^{\infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ such that for every probability space $(\Omega, \mathcal{F}, \mathbb{P})$, every Brownian motion $W:[0, T] \times \Omega \rightarrow \mathbb{R}$, every solution $X:[0, T] \times \Omega \rightarrow \mathbb{R}^{d}$ of

$$
d X_{t}=\mu\left(X_{t}\right)+\sigma\left(X_{t}\right) d W_{t}, \quad t \in[0, T], \quad X_{0}=\xi
$$

and every $Y^{N}:\{0,1, \ldots, N\} \times \Omega \rightarrow \mathbb{R}^{4}, N \in \mathbb{N}$, with
$\forall N \in \mathbb{N}, n \in\{0,1, \ldots, N-1\}: Y_{0}^{N}=X_{0}$ and

$$
Y_{n+1}^{N}=Y_{n}^{N}+\mu\left(Y_{n}^{N}\right) \frac{T}{N}+\sigma\left(Y_{n}^{N}\right)\left(W_{\frac{(n+1) T}{N}}-W_{\frac{n T}{N}}\right)
$$

(Euler-Maruyama approximations) we have $\forall \alpha \in[0, \infty)$:

$$
\lim _{N \rightarrow \infty}\left(N^{\alpha}\left\|\mathbb{E}\left[X_{T}\right]-\mathbb{E}\left[Y_{N}^{N}\right]\right\|\right)=\left\{\begin{array}{l}
0 \\
\end{array}\right.
$$

Theorem (Hairer, Hutzenthaler \& J 2015 AOP)

Let $T \in(0, \infty), d \in\{4,5, \ldots\}, \xi \in \mathbb{R}^{d}$. Then there exist globally bounded $\mu, \sigma \in \mathcal{C}^{\infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ such that for every probability space $(\Omega, \mathcal{F}, \mathbb{P})$, every Brownian motion $W:[0, T] \times \Omega \rightarrow \mathbb{R}$, every solution $X:[0, T] \times \Omega \rightarrow \mathbb{R}^{d}$ of

$$
d X_{t}=\mu\left(X_{t}\right)+\sigma\left(X_{t}\right) d W_{t}, \quad t \in[0, T], \quad X_{0}=\xi
$$

and every $Y^{N}:\{0,1, \ldots, N\} \times \Omega \rightarrow \mathbb{R}^{4}, N \in \mathbb{N}$, with
$\forall N \in \mathbb{N}, n \in\{0,1, \ldots, N-1\}: Y_{0}^{N}=X_{0}$ and

$$
Y_{n+1}^{N}=Y_{n}^{N}+\mu\left(Y_{n}^{N}\right) \frac{T}{N}+\sigma\left(Y_{n}^{N}\right)\left(W_{\frac{(n+1) T}{N}}-W_{\frac{n T}{N}}\right)
$$

(Euler-Maruyama approximations) we have $\forall \alpha \in[0, \infty)$:

$$
\lim _{N \rightarrow \infty}\left(N^{\alpha}\left\|\mathbb{E}\left[X_{T}\right]-\mathbb{E}\left[Y_{N}^{N}\right]\right\|\right)= \begin{cases}0 & : \alpha=0 \\ & : \alpha>0\end{cases}
$$

Theorem (Hairer, Hutzenthaler \& J 2015 AOP)

Let $T \in(0, \infty), d \in\{4,5, \ldots\}, \xi \in \mathbb{R}^{d}$. Then there exist globally bounded $\mu, \sigma \in \mathcal{C}^{\infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ such that for every probability space $(\Omega, \mathcal{F}, \mathbb{P})$, every Brownian motion $W:[0, T] \times \Omega \rightarrow \mathbb{R}$, every solution $X:[0, T] \times \Omega \rightarrow \mathbb{R}^{d}$ of

$$
d X_{t}=\mu\left(X_{t}\right)+\sigma\left(X_{t}\right) d W_{t}, \quad t \in[0, T], \quad X_{0}=\xi
$$

and every $Y^{N}:\{0,1, \ldots, N\} \times \Omega \rightarrow \mathbb{R}^{4}, N \in \mathbb{N}$, with
$\forall N \in \mathbb{N}, n \in\{0,1, \ldots, N-1\}: Y_{0}^{N}=X_{0}$ and

$$
Y_{n+1}^{N}=Y_{n}^{N}+\mu\left(Y_{n}^{N}\right) \frac{T}{N}+\sigma\left(Y_{n}^{N}\right)\left(W_{\frac{(n+1) T}{N}}-W_{\frac{n T}{N}}\right)
$$

(Euler-Maruyama approximations) we have $\forall \alpha \in[0, \infty)$:

$$
\lim _{N \rightarrow \infty}\left(N^{\alpha}\left\|\mathbb{E}\left[X_{T}\right]-\mathbb{E}\left[Y_{N}^{N}\right]\right\|\right)= \begin{cases}0 & : \alpha=0 \\ \infty & : \alpha>0\end{cases}
$$

Theorem (Hairer, Hutzenthaler \& J 2015 AOP)

Let $T \in(0, \infty), d \in\{4,5, \ldots\}, \xi \in \mathbb{R}^{d}$. Then there exist globally bounded $\mu, \sigma \in \mathcal{C}^{\infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ such that for every probability space $(\Omega, \mathcal{F}, \mathbb{P})$, every Brownian motion $W:[0, T] \times \Omega \rightarrow \mathbb{R}$, every solution $X:[0, T] \times \Omega \rightarrow \mathbb{R}^{d}$ of

$$
d X_{t}=\mu\left(X_{t}\right)+\sigma\left(X_{t}\right) d W_{t}, \quad t \in[0, T], \quad X_{0}=\xi
$$

and every $Y^{N}:\{0,1, \ldots, N\} \times \Omega \rightarrow \mathbb{R}^{4}, N \in \mathbb{N}$, with
$\forall N \in \mathbb{N}, n \in\{0,1, \ldots, N-1\}: Y_{0}^{N}=X_{0}$ and

$$
Y_{n+1}^{N}=Y_{n}^{N}+\mu\left(Y_{n}^{N}\right) \frac{T}{N}+\sigma\left(Y_{n}^{N}\right)\left(W_{\frac{(n+1) T}{N}}-W_{\frac{n T}{N}}\right)
$$

(Euler-Maruyama approximations) we have $\forall \alpha \in[0, \infty)$:

$$
\lim _{N \rightarrow \infty}\left(N^{\alpha}\left\|\mathbb{E}\left[X_{T}\right]-\mathbb{E}\left[Y_{N}^{N}\right]\right\|\right)= \begin{cases}0 & : \alpha=0 \\ \infty & : \alpha>0\end{cases}
$$

Plot of $\left\|\mathbb{E}\left[X_{T}\right]-\mathbb{E}\left[Y_{N}^{N}\right]\right\|$ for $T=2$ and $N \in\left\{2^{1}, 2^{2}, \ldots, 2^{30}\right\}$.

Theorem (Gerencsér, J, \& Salimova 2016)

Lot $T \subset(0, \infty), d \in\{2,3,1, \ldots\}, \delta \subset \mathbb{D} C,\left(a_{N}\right)_{N \in \mathbb{N}} \subseteq \mathbb{R}$ satisfy $\lim _{N \rightarrow \infty} a_{N}=0$. Then there exist globally bounded $\mu, \sigma \in \mathcal{C} \infty\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ such that for every probability space $(\Omega, \mathcal{F}, \mathbb{P})$, every Brownian motion $W:[0, T] \times \Omega \rightarrow \mathbb{R}$, every solution $X:[0, T] \times \Omega \rightarrow \mathbb{R}^{d}$ of

$$
d X_{t}=\mu\left(X_{t}\right) d t+\sigma\left(X_{t}\right) d W_{t}, \quad t \in[0, T], \quad X_{0}=\xi
$$

and every $N \in \mathbb{N}$ we have

- Dimension $d \geq$ 4: J, Müller-Gronbach \& Yaroslavtseva 2016 CMS
- Weak convergence and $d>4$: Müller-Gronbach \& Yaroslavtseva 2016 SAA (to appear)
- Adaptive approximations and $d \geq 4$: Yaroslavtseva 2016

Theorem (Gerencsér, J, \& Salimova 2016)

Let $T \in(0, \infty), d \in\{2,3,4, \ldots\}, \xi \in \mathbb{R}^{d},\left(a_{N}\right)_{N \in N} \subseteq \mathbb{R}$ satisfy
$\lim _{N \rightarrow \infty} a_{N}=0$. Then there exist globally bounded $\mu, \sigma \in \mathcal{C}^{\infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ such that for every probability space $(\Omega, \mathcal{F}, \mathbb{P})$, every Brownian motion $W:[0, T] \times \Omega \rightarrow \mathbb{R}$, every solution $X:[0, T] \times \Omega \rightarrow \mathbb{R}^{d}$ of

$$
d X_{t}=\mu\left(X_{t}\right) d t+\sigma\left(X_{t}\right) d W_{t}, \quad t \in[0, T], \quad X_{0}=\xi,
$$

and every $N \in \mathbb{N}$ we have

- Dimension $d \geq$ 4: J, Müller-Gronbach \& Yaroslavtseva 2016 CNS
- Weak convergence and $d \geq$ 4: Müller-Gronbach \& Varoslavtseva 2016 SA (to appear)
- Adaptive approximations and $d \geq$ 4: Yaroslavtseva 2016

Theorem (Gerencsér, J, \& Salimova 2016)

Let $T \in(0, \infty), d \in\{2,3,4, \ldots\}, \xi \in \mathbb{R}^{d},\left(a_{N}\right)_{N \in \mathbb{N}} \subseteq \mathbb{R}$ satisfy
$\lim _{N \rightarrow \infty} a_{N}=0$. Then there exist globally bounded $\mu, \sigma \in \mathcal{C}^{\infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ such that for every probability space $(\Omega, \mathcal{F}, \mathbb{P})$, every Brownian motion $W:[0, T] \times \Omega \rightarrow \mathbb{R}$, every solution $X:[0, T] \times \Omega \rightarrow \mathbb{R}^{d}$ of

$$
d X_{t}=\mu\left(X_{t}\right) d t+\sigma\left(X_{t}\right) d W_{t}, \quad t \in[0, T], \quad X_{0}=\xi,
$$

and every $N \in \mathbb{N}$ we have

- Dimension $d \geq$ 4: J, Müller-Gronbach \& Yaroslavtseva 2016 CMS
- Weak convargence and $d \geq$ 4. Müller-Gronbach \& Varoslavtseva 2016 SAA (to appear)
- Adaptive approximations and $d \geq$ 4: Yaroslavtseva 2016

Theorem (Gerencsér, J, \& Salimova 2016)

Let $T \in(0, \infty), d \in\{2,3,4, \ldots\}, \xi \in \mathbb{R}^{d},\left(a_{N}\right)_{N \in \mathbb{N}} \subseteq \mathbb{R}$ satisfy $\lim _{N \rightarrow \infty} a_{N}=0$. Then there exist globally bounded $\mu, \sigma \in C^{\infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ such that for every probability space $(\Omega, \mathcal{F}, \mathbb{P})$, every Brownian motion $W:[0, T] \times \Omega \rightarrow \mathbb{R}$, every solution $X:[0, T] \times \Omega \rightarrow \mathbb{R}^{d}$ of

$$
d X_{t}=\mu\left(X_{t}\right) d t+\sigma\left(X_{t}\right) d W_{t}, \quad t \in[0, T], \quad X_{0}=\xi
$$

and every $N \in \mathbb{N}$ we have

- Dimension $d \geq$ 4: J, Müller-Gronbach \& Yaroslavtseva 2016 CMS
- Weak convergence and $d \geq$ 4: Müller-Gronbach \& Varoslavtseva 2016 SAA (to appear)
- Adaptive approximations and $d \geq$ 4: Yaroslavtseva 2016

Theorem (Gerencsér, J, \& Salimova 2016)

Let $T \in(0, \infty), d \in\{2,3,4, \ldots\}, \xi \in \mathbb{R}^{d},\left(a_{N}\right)_{N \in \mathbb{N}} \subseteq \mathbb{R}$ satisfy $\lim _{N \rightarrow \infty} a_{N}=0$. Then there exist globally bounded $\mu, \sigma \in \mathcal{C}^{\infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ such that for every probability space $(\Omega, \mathcal{F}, \mathbb{P})$, every Brownian motion $W:[0, T] \times \Omega \rightarrow \mathbb{R}$, every solution $X:[0, T] \times \Omega \rightarrow \mathbb{R}^{d}$ of

and every $N \in \mathbb{N}$ we have

- Dimension $d \geq$ 4: J, Müller-Gronbach \& Yaroslavtseva 2016 CMS
- Weak convargence and $d \geq$ 4. Müller-Gronbach \& Varoslavtseva 2016 SAA (to appear)
- Adaptive approximations and $d \geq$ 4: Yaroslavtseva 2016

Theorem (Gerencsér, J, \& Salimova 2016)

Let $T \in(0, \infty), d \in\{2,3,4, \ldots\}, \xi \in \mathbb{R}^{d},\left(a_{N}\right)_{N \in \mathbb{N}} \subseteq \mathbb{R}$ satisfy $\lim _{N \rightarrow \infty} a_{N}=0$. Then there exist globally bounded $\mu, \sigma \in \mathcal{C}^{\infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ such that for every probability space $(\Omega, \mathcal{F}, \mathbb{P})$, every Brownian motion $W:[0, T] \times \Omega \rightarrow \mathbb{R}$,
every solution $X:[0, T] \times \Omega \rightarrow \mathbb{R}^{d}$ of
$d X_{t}=\mu\left(X_{t}\right) d t+\sigma\left(X_{t}\right) d W_{t}$,
and every $N \in \mathbb{N}$ we have

- Dimension $d \geq$ 4: J, Müller-Gronbach \& Yaroslavtseva 2016 CMS
- Weak convergence and $d \geq 4$: Müller-Gronbach \& Yaroslavtseva 2016 SAA (to appear)
- Adaptive approximations and $d \geq$ 4: Yaroslavtseva 2016

Theorem (Gerencsér, J, \& Salimova 2016)

Let $T \in(0, \infty), d \in\{2,3,4, \ldots\}, \xi \in \mathbb{R}^{d},\left(a_{N}\right)_{N \in \mathbb{N}} \subseteq \mathbb{R}$ satisfy $\lim _{N \rightarrow \infty} a_{N}=0$. Then there exist globally bounded $\mu, \sigma \in \mathcal{C}^{\infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ such that for every probability space $(\Omega, \mathcal{F}, \mathbb{P})$, every Brownian motion $W:[0, T] \times \Omega \rightarrow \mathbb{R}$,
every solution $X:[0, T] \times \Omega \rightarrow \mathbb{R}^{d}$ of
$d X_{t}=\mu\left(X_{t}\right) d t+\sigma\left(X_{t}\right) d W_{t}$,
and every $N \in \mathbb{N}$ we have

- Dimension $d \geq$ 4: J, Müller-Gronbach \& Yaroslavtseva 2016 CMS
- Weak convergence and $d \geq 4$: Müller-Gronbach \& Yaroslavtseva 2016 SAA (to appear)
- Adaptive approximations and $d \geq$ 4: Yaroslavtseva 2016

Theorem (Gerencsér, J, \& Salimova 2016)

Let $T \in(0, \infty), d \in\{2,3,4, \ldots\}, \xi \in \mathbb{R}^{d},\left(a_{N}\right)_{N \in \mathbb{N}} \subseteq \mathbb{R}$ satisfy $\lim _{N \rightarrow \infty} a_{N}=0$. Then there exist globally bounded $\mu, \sigma \in \mathcal{C}^{\infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ such that for every probability space $(\Omega, \mathcal{F}, \mathbb{P})$, every Brownian motion $W:[0, T] \times \Omega \rightarrow \mathbb{R}$, every solution $X:[0, T] \times \Omega \rightarrow \mathbb{R}^{d}$

and every $N \in \mathbb{N}$ we have

- Dimension $d \geq$ 4: J, Müller-Gronbach \& Yaroslavtseva 2016 CMS
- Weak convargence and $d \geq$ 4. Müller-Gronbach \& Varoslavtseva 2016 SAA (to appear)
- Adaptive approximations and $d \geq$ 4: Yaroslavtseva 2016

Theorem (Gerencsér, J, \& Salimova 2016)

Let $T \in(0, \infty), d \in\{2,3,4, \ldots\}, \xi \in \mathbb{R}^{d},\left(a_{N}\right)_{N \in \mathbb{N}} \subseteq \mathbb{R}$ satisfy $\lim _{N \rightarrow \infty} a_{N}=0$. Then there exist globally bounded $\mu, \sigma \in \mathcal{C}^{\infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ such that for every probability space $(\Omega, \mathcal{F}, \mathbb{P})$, every Brownian motion $W:[0, T] \times \Omega \rightarrow \mathbb{R}$, every solution $X:[0, T] \times \Omega \rightarrow \mathbb{R}^{d}$ of

$$
d X_{t}=\mu\left(X_{t}\right) d t+\sigma\left(X_{t}\right) d W_{t}, \quad t \in[0, T], \quad X_{0}=\xi
$$

and every $N \in \mathbb{N}$ we have
measurable

- Dimension $d \geq$ 4: J, Müller-Gronbach \& Yaroslavtseva 2016 CMS
- Weak convergence and $d \geq$ 4: Müller-Gronbach \& Varoslavtseva 2016 SAA (to appear)
- Adaptive approximations and $d \geq$ 4: Yaroslavtseva 2016

Theorem (Gerencsér, J, \& Salimova 2016)

Let $T \in(0, \infty), d \in\{2,3,4, \ldots\}, \xi \in \mathbb{R}^{d},\left(a_{N}\right)_{N \in \mathbb{N}} \subseteq \mathbb{R}$ satisfy $\lim _{N \rightarrow \infty} a_{N}=0$. Then there exist globally bounded $\mu, \sigma \in \mathcal{C}^{\infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ such that for every probability space $(\Omega, \mathcal{F}, \mathbb{P})$, every Brownian motion $W:[0, T] \times \Omega \rightarrow \mathbb{R}$, every solution $X:[0, T] \times \Omega \rightarrow \mathbb{R}^{d}$ of

$$
d X_{t}=\mu\left(X_{t}\right) d t+\sigma\left(X_{t}\right) d W_{t}, \quad t \in[0, T], \quad X_{0}=\xi
$$

and every $N \in \mathbb{N}$ we have
measurable

- Dimension $d \geq$ 4: J, Müller-Gronbach \& Yaroslavtseva 2016 CMS
- Weak convargence and $d \geq$ 1. Müller-Gronbach \& Varoslavtseva 2016 SAA (to appear)
- Adaptive approximations and $d \geq$ 4: Yaroslavtseva 2016

Theorem (Gerencsér, J, \& Salimova 2016)

Let $T \in(0, \infty), d \in\{2,3,4, \ldots\}, \xi \in \mathbb{R}^{d},\left(a_{N}\right)_{N \in \mathbb{N}} \subseteq \mathbb{R}$ satisfy $\lim _{N \rightarrow \infty} a_{N}=0$. Then there exist globally bounded $\mu, \sigma \in \mathcal{C}^{\infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ such that for every probability space $(\Omega, \mathcal{F}, \mathbb{P})$, every Brownian motion $W:[0, T] \times \Omega \rightarrow \mathbb{R}$, every solution $X:[0, T] \times \Omega \rightarrow \mathbb{R}^{d}$ of

$$
d X_{t}=\mu\left(X_{t}\right) d t+\sigma\left(X_{t}\right) d W_{t}, \quad t \in[0, T], \quad X_{0}=\xi
$$

and every $N \in \mathbb{N}$ we have

- Dimension $d>4$: J, Müller-Gronbach \& Yaroslavtseva 2016 CMS
- Weak convergence and $d \geq$ 4: Müller-Gronbach \& Yaroslavtseva 2016 SAA (to appear)
- Adaptive approximations and $d \geq$ 4: Yaroslavtseva 2016

Theorem (Gerencsér, J, \& Salimova 2016)

Let $T \in(0, \infty), d \in\{2,3,4, \ldots\}, \xi \in \mathbb{R}^{d},\left(a_{N}\right)_{N \in \mathbb{N}} \subseteq \mathbb{R}$ satisfy $\lim _{N \rightarrow \infty} a_{N}=0$. Then there exist globally bounded $\mu, \sigma \in \mathcal{C}^{\infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ such that for every probability space $(\Omega, \mathcal{F}, \mathbb{P})$, every Brownian motion $W:[0, T] \times \Omega \rightarrow \mathbb{R}$, every solution $X:[0, T] \times \Omega \rightarrow \mathbb{R}^{d}$ of

$$
d X_{t}=\mu\left(X_{t}\right) d t+\sigma\left(X_{t}\right) d W_{t}, \quad t \in[0, T], \quad X_{0}=\xi
$$

and every $N \in \mathbb{N}$ we have

- Dimension $d \geq$ 4: J, Müller-Gronbach \& Yaroslavtseva 2016 CMS
- Weak convergence and $d \geq$ 4: Müller-Gronbach \& Yaroslavtseva 2016 SAA (to appear)
- Adaptive approximations and $d \geq$ 4: Yaroslavtseva 2016

Theorem (Gerencsér, J, \& Salimova 2016)

Let $T \in(0, \infty), d \in\{2,3,4, \ldots\}, \xi \in \mathbb{R}^{d},\left(a_{N}\right)_{N \in \mathbb{N}} \subseteq \mathbb{R}$ satisfy $\lim _{N \rightarrow \infty} a_{N}=0$. Then there exist globally bounded $\mu, \sigma \in \mathcal{C}^{\infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ such that for every probability space $(\Omega, \mathcal{F}, \mathbb{P})$, every Brownian motion $W:[0, T] \times \Omega \rightarrow \mathbb{R}$, every solution $X:[0, T] \times \Omega \rightarrow \mathbb{R}^{d}$ of

$$
d X_{t}=\mu\left(X_{t}\right) d t+\sigma\left(X_{t}\right) d W_{t}, \quad t \in[0, T], \quad X_{0}=\xi
$$

and every $N \in \mathbb{N}$ we have

- Dimension $d \geq$ 4: J, Müller-Gronbach \& Yaroslavtseva 2016 CMS
- Weak convergence and $d \geq 4$: Müller-Gronbach \& Yaroslavtseva 2016 SAA (to appear)
- Adaptive approximations and $d \geq 4$: Yaroslavtseva 2016

Theorem (Hefter \& J 2016)

Let $T, \delta, \beta \in(0, \infty), \gamma, \xi \in[0, \infty)$, let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, let $W:[0, T] \times \Omega \rightarrow \mathbb{R}$ be a Brownian motion, let $X:[0, T] \times \Omega \rightarrow \mathbb{R}$ be a solution of

$$
d X_{t}=\left(\delta-\gamma X_{t}\right) d t+\beta \sqrt{X_{t}} d W_{t}, \quad i \in[0, T], \quad X_{0}=\xi .
$$

Then there exists a $c \in(0, \infty)$ such that for all $N \in \mathbb{N}$ we have

$$
\begin{equation*}
\inf _{u: \mathbb{R}^{N} \rightarrow \mathbb{R}} \mathbb{E}^{r}\left[X_{T}-u\left(W_{T}, W_{\frac{2 T}{N}}, \ldots, W_{T}\right)^{\top}\right] \geq c \cdot N \min ^{\min }\left\{1, \frac{28}{B^{2}}\right\} . \tag{}
\end{equation*}
$$

Theorem (Hefter \& J 2016)

Let $T, \delta, \beta \in(0, \infty), \gamma, \xi \in[0, \infty)$, let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, let $W:[0, T] \times \Omega \rightarrow \mathbb{R}$ be a Brownian motion, let $X:[0, T] \times \Omega \rightarrow \mathbb{R}$ be a solution of

$$
d X_{t}=\left(\delta-\gamma X_{t}\right) d t+\beta \sqrt{X_{t}} d W_{t}, \quad t \in[0, T], \quad X_{0}=\xi
$$

Then there exists a $c \in(0, \infty)$ such that for all $N \in \mathbb{N}$ we have

$$
\begin{equation*}
\inf _{u: \mathbb{R}^{N} \rightarrow \mathbb{R}} \mathbb{E}^{[}\left[X_{T}-u\left(W_{T}, W_{\frac{2 T}{N}}, \ldots, W_{T}\right)\right] \geq c \cdot N^{-1 m n}\left\{1, \frac{28}{\beta^{2}}\right\} . \tag{*}
\end{equation*}
$$

Theorem (Hefter \& J 2016)

Let $T, \delta, \beta \in(0, \infty), \gamma, \xi \in[0, \infty)$, let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, W: $[0, T] \times \Omega \rightarrow \mathbb{R}$ be a Brownian motion, let $X:[0, T] \times \Omega \rightarrow \mathbb{R}$ be a solution of

$$
d X_{t}=\left(\delta-\gamma X_{t}\right) d t+\beta \sqrt{X_{t}} d W_{t}, \quad t \in[0, T], \quad X_{0}=\xi
$$

Then there exists a $c \in(0, \infty)$ such that for all $N \in \mathbb{N}$ we have

Theorem (Hefter \& J 2016)

Let $T, \delta, \beta \in(0, \infty), \gamma, \xi \in[0, \infty)$, let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, let $W:[0, T] \times \Omega \rightarrow \mathbb{R}$ be a Brownian motion,

$$
d X_{t}=\left(\delta-\gamma X_{t}\right) d t+\beta \sqrt{X_{t}} d W_{t}, \quad t \in[0, T]
$$

Then there exists a $c \in(0, \infty)$ such that for all $N \in \mathbb{N}$ we have

Theorem (Hefter \& J 2016)

Let $T, \delta, \beta \in(0, \infty), \gamma, \xi \in[0, \infty)$, let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, let $W:[0, T] \times \Omega \rightarrow \mathbb{R}$ be a Brownian motion, let $X:[0, T] \times \Omega \rightarrow \mathbb{R}$ be a solution of

$$
d X_{t}=\left(\delta-\gamma X_{t}\right) d t+\beta \sqrt{X_{t}} d W_{t}, \quad t \in[0, T], \quad X_{0}=\xi
$$

Then there exists a c $\in(0, \infty)$ such that for all $N \in \mathbb{N}$ we have

Theorem (Hefter \& J 2016)

Let $T, \delta, \beta \in(0, \infty), \gamma, \xi \in[0, \infty)$, let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, let $W:[0, T] \times \Omega \rightarrow \mathbb{R}$ be a Brownian motion, let $X:[0, T] \times \Omega \rightarrow \mathbb{R}$ be a solution of

$$
d X_{t}=\left(\delta-\gamma X_{t}\right) d t+\beta \sqrt{X_{t}} d W_{t}, \quad t \in[0, T], \quad X_{0}=\xi
$$

Then there exists a $c \in(0, \infty)$ such that for all $N \in \mathbb{N}$ we have

$$
\inf _{\substack{u: \mathbb{R}^{N} \rightarrow \mathbb{R} \\ \text { measurable }}} \mathbb{E}\left[\left|X_{T}-u\left(W_{\frac{T}{N}}, W_{\frac{2 T}{N}}, \ldots, W_{T}\right)\right|\right] \geq c \cdot N^{-\min \left\{1, \frac{2 \delta}{\beta^{2}}\right\}}
$$

The S\&P 500 (the Standard \& Poor's 500) is a stock market index.
In Hutzenthaler, J \& Noll 2016 we calibrate 498 stocks from the S\&P 500 within the Heston model: 359 stocks satisfy $\frac{2 \delta}{\beta^{2}} \leq 25,162$ stocks ($\approx 32 \%$) satisfy $\frac{2 \delta}{\beta^{2}}<1$. More than 100 stocks $(=20 \%)$ satisfy $\frac{2 \delta}{\beta^{2}} \leq \frac{1}{10}$.

The S\&P 500 (the Standard \& Poor's 500) is a stock market index. In Hutzenthaler, J \& Noll 2016 we calibrate 498 stocks from the S\&P 500 within the Heston model:

The S\&P 500 (the Standard \& Poor's 500) is a stock market index. In Hutzenthaler, J \& Noll 2016 we calibrate 498 stocks from the S\&P 500 within the Heston model: 359 stocks satisfy $\frac{2 \delta}{\beta^{2}} \leq 25$,

The S\&P 500 (the Standard \& Poor's 500) is a stock market index. In Hutzenthaler, J \& Noll 2016 we calibrate 498 stocks from the S\&P 500 within the Heston model: 359 stocks satisfy $\frac{2 \delta}{\beta^{2}} \leq 25,162$ stocks ($\approx 32 \%$) satisfy $\frac{2 \delta}{\beta^{2}}<1$.

The S\&P 500 (the Standard \& Poor's 500) is a stock market index. In Hutzenthaler, J \& Noll 2016 we calibrate 498 stocks from the S\&P 500 within the Heston model: 359 stocks satisfy $\frac{2 \delta}{\beta^{2}} \leq 25,162$ stocks ($\approx 32 \%$) satisfy $\frac{2 \delta}{\beta^{2}}<1$. More than 100 stocks $(=20 \%)$ satisfy $\frac{2 \delta}{\beta^{2}} \leq \frac{1}{10}$.

Let $\Theta=\cup_{n \in \mathbb{N}} \mathbb{R}^{n}$, let $\left(q_{s}^{k, l, \rho}\right)_{k, l \in \mathbb{N}_{0}, \rho \in(0, \infty), s \in[0, T)} \subseteq \mathcal{Q}_{T}$,
$\left(m_{k, l, \rho}^{g}\right)_{k, l \in \mathbb{N}_{0}, \rho \in(0, \infty)},\left(m_{k, l, \rho}^{f}\right)_{k, l \in \mathbb{N}_{0}, \rho \in(0, \infty)} \subseteq \mathbb{N}$, let $\left(\Omega, \mathcal{F}, \mathbb{P},\left(\mathbb{F}_{t}\right)_{t \in[0, \tau]}\right)$ be a stochastic basis, let $W^{\theta}:[0, T] \times \Omega \rightarrow \mathbb{R}^{d}, \theta \in \Theta$, be independent standard $\left(\mathbb{F}_{t}\right)_{t \in[0, T]}$-Brownian motions, for every $I \in \mathbb{Z}, \rho \in(0, \infty), \theta \in \Theta, x \in \mathbb{R}^{d}$, $s \in[0, T), t \in[s, T]$ let $\mathcal{X}_{x, s, t}^{l, \rho, \theta}: \Omega \rightarrow \mathbb{R}^{d}, \mathcal{D}_{x, s, t}^{\prime, \rho, \theta}: \Omega \rightarrow \mathbb{R}^{d \times d}$ and $\mathcal{I}_{x, s, t}^{l, \rho, \theta}: \Omega \rightarrow \mathbb{R}^{1+d}$ be functions, and for every $\theta \in \Theta, \rho \in(0, \infty)$ let $\mathbf{U}_{k, \rho}^{\theta}:[0, T] \times \mathbb{R}^{d} \times \Omega \rightarrow \mathbb{R}^{d+1}, k \in \mathbb{N}_{0}$, be functions which satisfy for all $k \in \mathbb{N}$, $(s, x) \in[0, T) \times \mathbb{R}^{d}$ that
$\mathbf{U}_{k, \rho}^{\theta}(s, x)$
$=\sum_{l=0}^{k-1} \sum_{i=1}^{m_{k, l, \rho}^{g}} \frac{\left[g\left(\mathcal{X}_{x, s, T}^{l, \rho,(\theta, l,-i)}\right)-\mathbb{1}_{\mathbb{N}}(I) g\left(\mathcal{X}_{x, s, T}^{l-1, \rho,(\theta, l,-i)}\right)-\mathbb{1}_{\{0\}}(I) g(x)\right]}{m_{k, l, \rho}^{g}} \mathcal{I}_{x, s, T}^{l, \rho,(\theta, l,-i)}$
$+(g(x), 0)+\sum_{l=0}^{k-1} \sum_{i=1}^{m_{k, l, \rho}^{t}} \sum_{t \in[s, T]} \frac{q_{s}^{k, l, \rho}(t)}{m_{k, l, \rho}^{t}}\left[f\left(t, \mathcal{X}_{x, s, t}^{\rho, k-l,(\theta, l, i)}, \mathbf{u}_{l, \rho}^{(\theta, l, i, t)}\left(t, \mathcal{X}_{x, s, t}^{k-l, \rho,(\theta, l, i)}\right)\right)\right.$
$\left.-\mathbb{1}_{\mathbb{N}}(I) f\left(t, \mathcal{X}_{x, s, t}^{k-l, \rho,(\theta, l, i)}, \mathbf{u}_{[l-1]^{+}, \rho}^{(\theta,-l, t)}\left(t, \mathcal{X}_{x, s, t}^{k-l, \rho,(\theta, l, i)}\right)\right)\right] \mathcal{I}_{x, s, t}^{k-l, \rho,(\theta, l, i)}$.

Allen-Cahn equation

Figure: Relative approximation errors $\frac{1}{10|v|} \sum_{i=1}^{10}\left|\mathbf{U}_{\rho, \rho}^{j} ;\left|(1)\left(0, x_{0}\right)-v\right|\right.$ for $\rho \in\{1,2, \ldots, 5\}$ against the average runtime in the case $d=1\left(u\left(0, x_{0}\right) \approx v=0.905\right)$. Right: Relative approximation
 against the average runtime in the case $d=100\left(u\left(0, x_{0}\right) \approx 0.317\right)$.

Numerical simulations in MATLAB with an Intel i7 CPU with 2.8 GHz Intel and 16 GB RAM.

Pricing with different interest rates for borrowing and lending

Figure: Relative approximation errors $\frac{1}{10|v|} \sum_{i=1}^{10}\left|\mathbf{U}_{\rho, \rho}^{i,[1]}\left(0, x_{0}\right)-v\right|$ for $\rho \in\{1,2, \ldots, 7\}$ against the average runtime in the case $d=1\left(u\left(0, x_{0}\right) \approx v=7.156\right)$. Right: Relative approximation increments $\left(\frac{1}{10} \sum_{i=1}^{10}\left|\mathbf{U}_{\rho+1, \rho+1}^{i,[1]}\left(0, x_{0}\right)-\mathbf{u}_{\rho, \rho}^{i,[1]}\left(0, x_{0}\right)\right|\right) /\left(\frac{1}{10}\left|\sum_{i=1}^{10} \mathbf{u}_{7,7}^{i,[1]}\left(0, x_{0}\right)\right|\right)$ for $\rho \in\{1,2, \ldots, 6\}$ against the average runtime in the case $d=100\left(u\left(0, x_{0}\right) \approx 21.299\right)$.

Runtime needed to compute one realization of $\mathbf{U}_{6,6}^{1}\left(0, x_{0}\right)$ against dimension $d \in\{5,6, \ldots, 100\}$ for the pricing with different interest rates example.

