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Quadratic Hedging

I H ∈ L2(FT ) contingent claim to be hedged

I S ∈M 2 price evolution of a tradable asset with local variance
σ2t = d〈S〉t/dt

I Föllmer and Sondermann: Minimize quadratic hedging error

ξH = arg minE

[(
H −

∫ T

0
ξtdSt)

)2
]

 ξH is replicating strategy if H is attainable

What if market frictions force us to follow an alternative strategy
X instead of ξH?
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Quadratic Hedging with frictions

Minimize quadratic hedging error

X ∗ = arg minE

[(
H −

∫ T

0
XtdSt)

)2
]

= arg minE

[(
H −

∫ T

0
ξHt dSt)

)2
]

+ E

[(∫ T

0
(ξHt − Xt)dSt

)2
]

= arg minE
[∫ T

0
(ξHt − Xt)

2σ2t dt

]
 We should try to track ξ , ξH as close as possible. . .

. . . subject to constraint by expected transaction costs:

E
∫ T

0
κtu

2
t dt ≤ c

where ut = Ẋt measures trading speed and

position at time t = Xt = x +

∫ t

0
us ds
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Quadratic tracking problem

Mathematical optimization problem

For a given predictable ξ ∈ L2(P⊗ dt) and given x ∈ R, find an
absolutely continuous, adapted process Xt = x +

∫ t
0 usds with

u ∈ L2(P⊗ ds), which minimizes

J(u) , E
[∫ T

0
(ξt − Xt)

2σ2t dt +

∫ T

0
κtu

2
t dt

]
for given progressively measurable, strictly positive processes σ, κ.

Possible additional constraint on terminal position:

XT = ΞT for some given ΞT ∈ L2.

Closely related references from Mathematical Finance

Rogers & Singh (2010) , Naujokat & Westray (2011), Frei &
Westray (2013), Schied (2013), Horst & Naujokat (2014),
Almgren & Li (2014), Cartea & Jaimungal (2015), Cai et al.
(2015, 2016), . . .
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Constant coefficients in the unconstrained case

Theorem
If σ and κ are constant and there is no constraint on the terminal
position, it is optimal to always trade towards

ξ̂t =
sech(T−t√

λ
)

√
λ

E
[∫ T

t
ξs cosh(

T − s√
λ

) ds

∣∣∣∣Ft

]
according to

dX ∗t =
tanh(T−t√

λ
)

√
λ

(
ξ̂t − X ∗t

)
dt

where λ , κ/σ2.

Rather than towards the current target ξt , one should trade
towards its expected future ξ̂t ; cf. Garleanu & Pedersen (2014).



Constant coefficients in the constrained case

Theorem
If σ and κ are constant and the terminal position has to be ΞT , it
is optimal to always trade towards

ξ̂t =
1

cosh(T−t√
λ

)
E [ΞT |Ft ]

+

(
1− 1

cosh(T−t√
λ

)

)
E

[∫ T

t
ξs

sinh(T−s√
λ

)
√
λ(cosh(T−t√

λ
)− 1)

∣∣∣∣∣Ft

]

according to

dX ∗t =
coth(T−t√

λ
)

√
λ

(
ξ̂t − X ∗t

)
dt

where λ , κ/σ2.

As t ↑ T we have to trade towards ξ̂ (and thus towards ΞT ) with
higher and higher urgency.



Illustration: Frictionless hedge with jump midway

0.0 0.2 0.4 0.6 0.8 1.0
time0.0

0.5

1.0

1.5

2.0

2.5

3.0
number of shares

Figure: Target strategy ξ with a jump at t = T/2 (blue)

, unconstrained
(orange, dashed) and constrained (green, dashed) target, corresponding
unconstrained (orange) and constrained (green) frictional hedge, and
directly targeting strategy (red)
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Illustration: Discretely monitored Asian option
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Figure: Target strategy ξ of “Asian option” ( 1
2 (ST/2 + ST )− K )+

(blue), unconstrained (orange, dashed) and constrained (green, dashed)
target, corresponding unconstrained (orange) and constrained (green)
frictional hedge, and directly targeting strategy (red)



Illustration: Call option with physical delivery
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Lemma
A terminal position ΞT can be attained at finite expected costs if
and only if∫ T

0

E[(ΞT − Ξt)
2]

(T − t)2
dt <∞ where Ξt = E [ΞT |Ft ] .
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General case with stochastic coefficients

For a given predictable ξ ∈ L2(P⊗ dt) and given x ∈ R, find an
absolutely continuous, adapted process X = x +

∫ ·
0 utdt with

u ∈ L2(P⊗ dt), which minimizes

E
[∫ T

0
(ξt − Xt)

2σ2t dt +

∫ T

0
κtu

2
t dt + η(ΞT − XT )2

]
with σ, κ progressively measurable, strictly positive, bounded
processes, nonnegative η and ΞT ∈ FT .

Also allow for η = +∞ with positive probability:

 imposes implicitly the terminal state constraint XT = ΞT on
{η = +∞} (constrained problem)

 we have to be careful with η(ΞT − XT )2 if η =∞ and
ΞT = XT : “truncation in space” vs. “truncation in time”.
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Bounded penalization

Kohlmann and Tang (2002) : for η ≥ 0 bounded, consider

(BSRDE) dct =
c2t
κt

dt − σ2t dt − dMt (0 ≤ t ≤ T ), cT = η.

Theorem
The optimal tracking strategy X ∗ is given by

dX ∗t =
ct
κt

(
ξ̂t − X ∗t

)
dt

where

ξ̂t , wt EQ[ΞT |Ft ] + (1− wt)E

[∫ T

t
ξr

e−
∫ r
t

cu
κu

du

(1− wt)ct
σ2r dr

∣∣∣∣Ft

]

with the supermartingale Lt , cte
−

∫ t
0

cu
κu

du ≥ 0 yielding

weights wt ,
E[LT |Ft ]

Lt
and the probability

dQ
dP

=
LT

E[LT ]
.



Solution to optimal liquidation problem

In case where P[η = +∞] > 0, but targeting ξ ≡ 0, ΞT = 0:

Theorem (Kruse & Popier (2015))

Let ξt ≡ 0 and ΞT = 0 P-a.s. Consider solution (ct)0≤t≤T of

(BSRDE) dct =
c2t
κt

dt − σ2t dt − dMt (0 ≤ t < T ), cT = η.

Then the optimal liquidation strategy X 0 is given by

dX 0
t = − ct

κt
X 0
t dt

and satisfies limt↑T X 0
t = 0 on {η = +∞}.

The minimal costs are given by

J(X 0) = c0x
2.



General result

Suppose:

I integrable coefficients:
∫ T
0 (σ2t + κ−1t ) dt <∞ a.s.

I There is a unique semimartingale c = (ct)0≤t<T > 0 with

(BSRDE) dct =
c2t
κt

dt−σ2t dt−dMt (0 ≤ t < T ), lim
t↑T

ct = η

such that

E sup
s<t

(c2s + M2
s ) <∞ for any t < T

and ∫
[0,T )

d [c]t
c2t−

<∞ on {η = +∞}.

I integrable targets: ξt ∈ L1(P⊗ σ2t dt), ΞTLT ∈ L1(P)



General result (ctd)

Then:

I The signal process

ξ̂t ,
1

Lt
E
[

ΞTLT +

∫ T

t
ξre
−

∫ r
0

cu
κu

duσ2r dr

∣∣∣∣Ft

]
(0 ≤ t < T )

is well defined and satisfies limt↑T ξ̂t = ΞT on {η > 0}.
I The target functional

J(u) , lim sup
τ↑T

E
[∫ τ

0
(X u

t − ξt)2σ2t dt +

∫ τ

0
κtu

2
t dt + cτ (X u

τ − ξ̂τ )2
]

has nonempty domain dom J , {u | J(u) <∞} iff

E
[∫ T

0
ξ̂2t σ

2
t dt

]
< +∞ and E

[∫
[0,T )

ctd [ξ̂]t

]
< +∞.



General result (ctd)

I If dom J 6= ∅, the optimal control u∗ is given in feedback form
with X ∗ , X u∗ via

u∗t =
ct
κt

(ξ̂t − X ∗t ), 0 ≤ t < T .

I The minimal costs decompose as

J(u∗) = c0(x − ξ̂0)2 + E
[∫ T

0
(ξt − ξ̂t)2σ2t dt

]
+ E

[∫
[0,T )

ctd [ξ̂]t

]

into costs due to suboptimal starting position, to the (lack of)
regularity and compatibility of the targets ξ, ΞT , and to the
signal’s variability given new information on problem data.



Key insights for proof

A lengthy calculation reveals that∫ τ

0
(X u

t − ξt)2σ2t dt +

∫ τ

0
κtu

2
t dt + cτ (X u

τ − ξ̂τ )2

=c0(x − ξ̂0)2 +

∫ τ

0
(ξt − ξ̂t)2σ2t dt +

∫ τ

0
ctd [ξ̂]t

+

∫ τ

0
κt

(
ut −

ct
κt

(
ξ̂t − X u

t

))2

dt

+ local martingaleτ .

Carefully taking expectations and letting τ ↑ T reveals optimality
of given û along with necessary and sufficient conditions for
dom J 6= ∅.



Conclusions

I quadratic hedging with quadratic transaction costs from
temporary price impact

I explicit solution for constant coefficients: trade towards
expected average future position of suitable frictionless
optimum

I . . . possibly combined with weighted expectation of ultimate
target position

I characterization of ultimate positions which are attainable
with finite expected costs

I closed-form hedging recipes also for frictionless reference
hedges which have singularities

I very general optimal control with stochastic coefficients solved
in terms of (singular) backward stochastic Riccati equation

I construction of signal process and interpretation of problem
value

Thank you very much!
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