# Feedback in Bayesian Models 

Martyn Plummer<br>International Agency for Research on Cancer

Vienna Nov 202015

## Motivation 1: measurement error in epidemiology

- MacMahon et al (1990): collaborative re-analysis of 9 cohort studies of blood pressure, stroke and coronary heart disease
- Participants categorized by baseline diastolic blood pressure (DBP) in 5 categories
- $\leq 79 ; 80-89 ; 90-99 ; 100-108 ; \geq 110 \mathrm{~mm} \mathrm{Hg}$
- What is the relationship between average DBP and stroke risk?


## Stroke risk by baseline DBP



## Regression to the mean in follow-up DBP measurement



## Stroke risk by mean DBP



## Regression Calibration

Theory of regression calibration is now well-developed (See, for example, Carroll et al 2006)


- Calculate plug-in predictor values:
- Expected value of true predictor given surrogate
- Using data from validation/calibration sub-study
- Regress outcome on plug-in predictors
- Correct standard errors for uncertainty in plug-in predictors


## Useful features of regression calibration

- Uses only data from calibration study for imputation of true predictors
- Does not depend on any assumptions about dose response
- In practice, efficient compared to full likelihood analysis

Is there a Bayesian equivalent to regression calibration?

## Notation for linear model example

Calibration data: true exposure $\left(X^{*}\right)$ and surrogate $\left(Z^{*}\right)$

$$
\begin{array}{lll}
X_{i}^{*} & \sim \mathrm{~N}\left(\mu_{x}, \tau_{x}^{-1}\right) & i=1 \ldots m \\
Z_{i}^{*} \mid X_{i}^{*} \sim \mathrm{~N}\left(\alpha_{z}+\beta_{z} X_{i}^{*}, \tau_{z}^{-1}\right) & i=1 \ldots m
\end{array}
$$

Regression data : surrogate $(Z)$ and outcome $(Y)$

$$
\begin{array}{ll}
X_{j} \sim \mathrm{~N}\left(\mu_{x}, \tau_{x}^{-1}\right) & j=1 \ldots N \\
Z_{j} \mid X_{j} \sim \mathrm{~N}\left(\alpha_{z}+\beta_{z} X_{j}, \tau_{z}^{-1}\right) & j=1 \ldots \mathrm{~N} \\
Y_{j} \mid X_{j} \sim \mathrm{~N}\left(\alpha_{y}+\beta_{y} X_{j}, \tau_{y}^{-1}\right) & j=1 \ldots \mathrm{~N}
\end{array}
$$

True exposure $(X)$ is unobserved in regression data

## Simulation: egregiously mis-specified dose-response



What happens if we fit a linear regression model to data generated by a threshold effect (or step-function)

## mis-specified dose-response by surrogate



The step-function is less obvious when using surrogate predictors. You could fit a linear regression but it diagnostic checks would show the mis-specification.

## Feedback in a Bayesian full probability model

Quality of surrogate measurement determined by correlation between true and surrogate predictors $(\rho)$.


Including outcome data and using the mis-specified linear regression model forces $\rho$ to appear worse. Lunn et al (2009) call this phenomenon "feedback". Liu et al (2009) call it "contamination"

## Feedback and MCMC mixing



Feedback is often accompanied by poor mixing of MCMC.
Here we have extremely high autocorrelation, and jumping between two local modes of the posterior for $\rho^{2}$.
Poor mixing is a strong motivation to seek alternate solutions.

## Modularization

- A large model combining different data sources can be conceptually divided into "modules"
- Clayton (1992) described three sub-models of measurement error models in epidemiology:
Exposure model Distribution of exposure in population Measurement model Relationship between true exposure and surrogate
Disease model Relationship of disease outcome to true exposure
- Liu et al (2009) describe modified MCMC algorithms that weaken relationships between modules as "modularization".


## Motivation 2: Population PK/PD

Population pharmacokinetic/pharmacodynamic (PD/PD) models aim to elicit the effects of drugs at a population level

- Variation within and between individuals
- Compartmental models
- Highly non-linear


NB Time dimension is missing in this graphical representation.

## Measurement error in Population PK/PD

True concentration is not known exactly


Use PK model to get estimates of true drug concentration for PD model.

## Sequential analysis of PK/PD models

Bennett \& Wakefield (2001): Bayesian PK/PD model

- Insufficient PK data $\rightarrow$ under-fitted PK model
- Worse predictions than using observed concentration for PD model
Zhang et al (2003a, 2003b): Frequentist sequential analysis
- Various strategies for plug-in concentration estimates based on PK only data
- Compared to simultaneous estimation: efficient; fast; robust to PD model mis-specification
Lunn et al (2009): Bayesian "sequential" PK/PD with MCMC
- Bayesian analogues of Zhang et al via "cuts"


## A cut model



## Implementation of cut models in OpenBUGS

OpenBUGS provides a cut function:

```
for (i in 1:N) {
    x.cut[i] <- cut(x[i]])
}
```

When calculating full conditional distribution of x [i], likelihood contributions from stochastic children of x .cut [i] are ignored.

The "cut" function forms a kind of 'valve' in the graph: prior information is allowed to flow 'downwards' through the cut, but likelihood information is prevented from flowing upwards.

- OpenBUGS Manual

Represented using diode notation in a graph.

## Other examples of modified MCMC algorithms

- Liu, Bayarri and Berger (2009) deal with contamination problem in computer models
- van Dyk and Jiao (2015) - "Partially Collapsed Gibbs Samplers"
- Modify MCMC updates to ignore some information
- But keep full posterior as target distribution
- Multiple Imputation with Chained Equations (MICE) for missing data.
- Doubts often expressed about foundations when imputation models are incoherent


## Toy epidemiological example

There is an ecological association between HPV prevalence and cervical cancer incidence ${ }^{1}$


HPV is a necessary cause of cancer, but risk is modulated by other cofactors: smoking, childbirth, hormonal contraceptives, ....

## A measurement error model for the ecological data

We experimented with a functional measurement error model for these data, with a Poisson regression model for incidence and a binomial model for (age-specific) prevalence:

$$
\begin{array}{ll}
Y_{i} \sim \operatorname{Poisson}\left(N_{i} \exp \left(\lambda_{i}\right)\right) & \text { Cancer incidence data } \\
\lambda_{i}=\theta_{1}+\theta_{2} \varphi_{i} & \text { Incidence rates } \\
Z_{i} \sim \operatorname{Bin}\left(n_{i}, \varphi_{i}\right) & \text { HPV prevalence data }
\end{array}
$$

## Results of naive cut algorithm for $\theta_{2}$ by sampling method ${ }^{2}$



Different update methods converge to different limiting distributions.

## What is the target density of a cut model?

The target density of a cut model is the mixture:

$$
p^{*}(\boldsymbol{\theta})=\int p(\boldsymbol{\varphi} \mid \mathbf{Z}) p(\boldsymbol{\theta} \mid \boldsymbol{\varphi}, \mathbf{Y}) d \boldsymbol{\varphi}
$$

This is the sampling density if we sample directly $\varphi$ then $\boldsymbol{\theta}$ at each iteration.

Need to maintain this target distribution with other sampling schemes, e.g.

- Element-wise updating of $\boldsymbol{\varphi}, \boldsymbol{\theta}$
- Block-updating with reversible transitions

For convenience, consider block updating here.

## Why the naive cut algorithm does not work

In general, MCMC methods do not sample directly from the target density but supply a reversible transition $\boldsymbol{\theta}^{t-1} \rightarrow \boldsymbol{\theta}^{t}$ at iteration $t$. The transition is in detailed balance with the full conditional distribution:

$$
\begin{aligned}
& p\left(\boldsymbol{\theta}^{t-1} \mid \mathbf{Y}, \varphi^{t}\right) p\left(\boldsymbol{\theta}^{t-1} \rightarrow \boldsymbol{\theta}^{t} \mid \varphi^{t}\right)= \\
& p\left(\boldsymbol{\theta}^{t} \mid \mathbf{Y}, \varphi^{t}\right) p\left(\boldsymbol{\theta}^{t} \rightarrow \boldsymbol{\theta}^{t-1} \mid \varphi^{t}\right)
\end{aligned}
$$

But for $p^{*}(\boldsymbol{\theta})$ to be the stationary distribution we need:

$$
\begin{aligned}
& p\left(\boldsymbol{\theta}^{t-1} \mid \mathbf{Y}, \varphi^{t-1}\right) p\left(\boldsymbol{\theta}^{t-1} \rightarrow \boldsymbol{\theta}^{t} \mid \varphi^{t-1}, \varphi^{t}\right)= \\
& p\left(\boldsymbol{\theta}^{t} \mid \mathbf{Y}, \boldsymbol{\varphi}^{t}\right) p\left(\boldsymbol{\theta}^{t} \rightarrow \boldsymbol{\theta}^{t-1} \mid \varphi^{t}, \boldsymbol{\varphi}^{t-1}\right)
\end{aligned}
$$

## Why the naive cut algorithm does not work

In general, MCMC methods do not sample directly from the target density but supply a reversible transition $\boldsymbol{\theta}^{t-1} \rightarrow \boldsymbol{\theta}^{t}$ at iteration $t$. The transition is in detailed balance with the full conditional distribution:

$$
\begin{aligned}
& p\left(\boldsymbol{\theta}^{t-1} \mid \mathbf{Y}, \varphi^{t}\right) p\left(\boldsymbol{\theta}^{t-1} \rightarrow \boldsymbol{\theta}^{t} \mid \varphi^{t}\right)= \\
& p\left(\boldsymbol{\theta}^{t} \mid \mathbf{Y}, \varphi^{t}\right) p\left(\boldsymbol{\theta}^{t} \rightarrow \boldsymbol{\theta}^{t-1} \mid \varphi^{t}\right)
\end{aligned}
$$

But for $p^{*}(\boldsymbol{\theta})$ to be the stationary distribution we need:

$$
\begin{aligned}
& p\left(\boldsymbol{\theta}^{t-1} \mid \mathbf{Y}, \varphi^{t-1}\right) p\left(\boldsymbol{\theta}^{t-1} \rightarrow \boldsymbol{\theta}^{t} \mid \varphi^{t-1}, \varphi^{t}\right)= \\
& p\left(\boldsymbol{\theta}^{t} \mid \mathbf{Y}, \varphi^{t}\right) p\left(\boldsymbol{\theta}^{t} \rightarrow \boldsymbol{\theta}^{t-1} \mid \varphi^{t}, \varphi^{t-1}\right)
\end{aligned}
$$

The balance relation uses the current and previous values of $\varphi$.

## Can we modify a standard MCMC update? (1/2)

Maybe we can add a Metropolis-Hastings acceptance step, treating the move $\boldsymbol{\theta}^{t-1} \rightarrow \boldsymbol{\theta}^{t}$ as a proposal to be accepted with probability $\min (1, R)$ where

$$
R=\frac{p\left(\boldsymbol{\theta}^{t} \mid \mathbf{Y}, \varphi^{t}\right) p\left(\boldsymbol{\theta}^{t} \rightarrow \boldsymbol{\theta}^{t-1} \mid \boldsymbol{\varphi}^{t-1}\right)}{p\left(\boldsymbol{\theta}^{t-1} \mid \mathbf{Y}, \boldsymbol{\varphi}^{t-1}\right) p\left(\boldsymbol{\theta}^{t-1} \rightarrow \boldsymbol{\theta}^{t} \mid \varphi^{t}\right)}
$$

Note that $R=1$ in the case of direct sampling:

$$
p\left(\boldsymbol{\theta}^{t-1} \rightarrow \boldsymbol{\theta}^{t} \mid \boldsymbol{\varphi}\right)=p\left(\boldsymbol{\theta}^{t} \mid \mathbf{Y}, \boldsymbol{\varphi}\right)
$$

## Can we modify a standard MCMC update? (2/2)

For a standard MCMC update (in detailed balance with the full conditional distribution) the acceptance ratio can be rewritten in terms of forward transitions:

$$
R=\frac{p\left(\boldsymbol{\theta}^{t} \mid \mathbf{Y}, \boldsymbol{\varphi}^{t}\right)}{p\left(\boldsymbol{\theta}^{t} \mid \mathbf{Y}, \boldsymbol{\varphi}^{t-1}\right)} \frac{p\left(\boldsymbol{\theta}^{t-1} \rightarrow \boldsymbol{\theta}^{t} \mid \boldsymbol{\varphi}^{t-1}\right)}{p\left(\boldsymbol{\theta}^{t-1} \rightarrow \boldsymbol{\theta}^{t} \mid \boldsymbol{\varphi}^{t}\right)}
$$

But this requires

- Explicit expressions for the transition probabilities (not available for slice sampling, Hamiltonian Monte Monte Carlo).
- Evaluation of the ratio of two normalized densities


## Can we modify a standard MCMC update? (2/2)

For a standard MCMC update (in detailed balance with the full conditional distribution) the acceptance ratio can be rewritten in terms of forward transitions:

$$
R=\frac{p\left(\boldsymbol{\theta}^{t} \mid \mathbf{Y}, \boldsymbol{\varphi}^{t}\right)}{p\left(\boldsymbol{\theta}^{t} \mid \mathbf{Y}, \boldsymbol{\varphi}^{t-1}\right)} \frac{p\left(\boldsymbol{\theta}^{t-1} \rightarrow \boldsymbol{\theta}^{t} \mid \boldsymbol{\varphi}^{t-1}\right)}{p\left(\boldsymbol{\theta}^{t-1} \rightarrow \boldsymbol{\theta}^{t} \mid \varphi^{t}\right)}
$$

But this requires

- Explicit expressions for the transition probabilities (not available for slice sampling, Hamiltonian Monte Monte Carlo).
- Evaluation of the ratio of two normalized densities


## Can we modify a standard MCMC update? (2/2)

For a standard MCMC update (in detailed balance with the full conditional distribution) the acceptance ratio can be rewritten in terms of forward transitions:

$$
R=\frac{p\left(\boldsymbol{\theta}^{t} \mid \mathbf{Y}, \varphi^{t}\right)}{p\left(\boldsymbol{\theta}^{t} \mid \mathbf{Y}, \varphi^{t-1}\right)} \frac{p\left(\boldsymbol{\theta}^{t-1} \rightarrow \boldsymbol{\theta}^{t} \mid \boldsymbol{\varphi}^{t-1}\right)}{p\left(\boldsymbol{\theta}^{t-1} \rightarrow \boldsymbol{\theta}^{t} \mid \boldsymbol{\varphi}^{t}\right)}
$$

But this requires

- Explicit expressions for the transition probabilities (not available for slice sampling, Hamiltonian Monte Monte Carlo).
- Evaluation of the ratio of two normalized densities
- Unsuitable for most applications of MCMC where we have only unnormalized densities.


## Numerical issues

- Use of cuts often motivated by numerical issues
- Liu et al (2009) - not sufficient reason to modularize inference
- van Dyk and Jiao (2015) - sensitivity of Partially Collapsed Gibbs Samplers to update order and use of Metropolis-Hastings
- MICE?


## Statistical issues

- Cuts represent a refusal to learn about certain parameters in the model
- Lunn et al (2009) call these "distributional constants"
- Even if multiple imputation is a target for cut models, it leads to inconsistent inference
- Meng (1994) Multiple imputation inferences with uncongenial sources of input
- Nielsen (2003) Proper and improper multiple imputation


## "Sequential" Bayesian analysis

- In practice "sequential" Bayesian analysis is used whenever we include prior distributions based on summary statistics from previous studies.
- Perhaps the "feedback" problem is due to trying to carry over the full posterior from stage 1 (calibration data only) to stage 2 (including surrogate and outcome regression data) instead of a simplified summary.


## "Sequential Bayesian analysis

- In our Bayesian measurement error model, the predictive distribution of true predictor variables $X_{1} \ldots X_{N}$ from stage 1 becomes the prior of $X_{1} \ldots X_{N}$ in stage 2
- Hypothesis: We can reduce feedback by

1. Keeping correct marginal predictive distribution of $X_{i}$ from stage 1
2. But treating $X_{i}$ and $X_{j}$ as a priori independent for $i \neq j$ in stage 2
and otherwise respecting normal rules for Bayesian inference and MCMC

## Stage 1

Replicate calibration data $N$ times,

$$
\begin{array}{llll}
X_{i j}^{*} & \sim \mathrm{~N}\left(\mu_{x j}, \tau_{x j}^{-1}\right) & i=1 \ldots m & j=1 \ldots N \\
Z_{i j}^{*} \mid X_{i j}^{*} \sim \mathrm{~N}\left(\alpha_{z j}+\beta_{z j} X_{i j}^{*}, \tau_{z j}^{-1}\right) & i=1 \ldots m \quad j=1 \ldots \mathrm{~N}
\end{array}
$$

Each copy has its own private parameters for

1. exposure model: $\mu_{x j}, \tau_{x j}$
2. measurement model: $\alpha_{z j}, \beta_{z j}, \tau_{z j}$

Hence, e.g. $\alpha_{z j}$ is independent of $\alpha_{z k}$ for $j \neq k$, also a posteriori.

## Stage 2

Each observation in the regression data uses its own copy of the parameters from stage 1.

$$
\begin{array}{ll}
X_{j} \sim \mathrm{~N}\left(\mu_{x j}, \tau_{x j}^{-1}\right) & j=1 \ldots \mathrm{~N} \\
Z_{j} \mid X_{j} \sim \mathrm{~N}\left(\alpha_{z j}+\beta_{z j} X_{j}, \tau_{z j}^{-1}\right) & j=1 \ldots \mathrm{~N}
\end{array}
$$

Regression parameters are common

$$
Y_{j} \mid X_{j} \sim \mathrm{~N}\left(\alpha_{y}+\beta_{y} X_{j}, \tau_{y}^{-1}\right) j=1 \ldots N
$$

## How does this affect feedback?

- Marginal posterior of $X_{i}$ given only validation data $\mathbf{X}^{*}, \mathbf{Z}^{*}$ is the same as in full probability model
- Parameters of exposure model and measurement model are estimated from $m$ validation measurements but only 1 outcome measurement
- Informally, influence of outcome data on distribution of $X_{i}$ is $O\left(m^{-1}\right)$ not $O\left(\mathrm{Nm}^{-1}\right)$
- Data replication is computationally expensive, but there is scope for parallelization


## What do I hope to see?

Some kind of efficiency/robustness trade-off, e.g.

- Minimal loss of efficiency when model is true (q.v. regression calibration)
- Robustness to outliers
- Increased ability to detect mis-specified outcome model by posterior predictive simulation


## Perspectives

- Cuts take an algorithmic view of the feedback problem
- Statistical properties not well defined
- Promoted by software implementation


## References

$>$ J Bennett, J Wakefield (2001) Errors-in-variables in joint population pharmacokinetic/pharmacodynamic modeling, Biometrics, 57, 803-812

- RJ Carroll, D Ruppert, LA Stefanski, C Crainiceanu (2006) Measurement error in nonlinear models, second edition, Chapman \& Hall/CRC
- DG Clayton (1992) Models for the longitudinal analysis of cohort and case-control studies with inaccurately measured exposures. In Statistical Models for Longitudinal Studies of Health (eds JH Dwyer, M Feinleib, P Lippert, H Hoffmeister), 301-331. Oxford: Oxford University Press
$\rightarrow$ F Liu, MJ Bayarri, JO Berger (2009) Modularization in Bayesian analysis with emphasis on analysis of computer models, Bayesian Analysis, 4, 119-150
$\rightarrow$ D Lunn, N Best, D Spiegelhalter, G Graham, B Neuenschwander (2009) Combining MCMC with 'sequential' PKPD modelling, J Pharmacokinet Pharmacodynam, 36, 19-38
- S MacMahon, R Peto, J Cutler, R Collins, P Sorlie, J Neaton, R Abbott, J Godwin, A Dyer, J Stamler (1990) Blood pressure, stroke, and coronary heart disease: Part 1, prolonged differences in blood pressure: prospective observational studies corrected for the regression dilution bias, Lancet, 355, 765-74
- D Maucort-Boulch, S Franceschi, M Plummer; IARC HPV Prevalence Surveys Study Group (2008) International correlation between human papillomavirus prevalence and cervical cancer incidence, Cancer Epidemiol Biomarkers Prev, 17, 717-20
$>$ X-L Meng (1994) Multiple imputation inference with uncongenial sources of input, Statistical Science, 9, 538-573
$\rightarrow$ SF Nielsen (2003) Proper and improper multiple imputation, International Statistical Review, 71, 593-627
- M Plummer (2015) Cuts in Bayesian graphical models, Stat Comput, 25, 37-43
- D van Dyk, X Jiao (2015) Metropolis-Hastings with partially collapsed Gibbs samplers, J Comput Graph Stat, 24, 301-327
$>$ L Zhang, SL Beal, LB Sheiner (2003a) Simultaneous vs sequential analysis for population PK/PD data I: Best-case performance, J Pharmacokinet Pharmacodynam, 30, 387-404


## International Agency for Research on Cancer

L Zhang, SL Beal, LB Sheiner (2003b) Simultaneous vs sequential analysis for population PK/PD data II:
$\square$ World HeRobustness of methods, J Pharmacokinet Pharmacodynam, 30, 405-416
Organization

