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Key Ideas

The same algorithmic framework on different targets:

• Hastings-Peskun framework
• Sub-optimality vs computational efficiency

• Think big:
• Hypo-dimensional MCMC and moves on manifolds
• Groups and generalised Gibbs sampling

• Algorithm augmentation: meta-algorithms
• Intractable targets and proposals
• Augmenting algorithms
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Invariant measures

A σ-finite measure π on B(X) with the property

π(A) =

∫
X
π(dx)P(x ,A), A ∈ B(X)

will be called invariant.

Reversibility

We say that a Markov chain P is reversible with respect
to a probability measure π if

π(dx)P(x , dy) = π(dy)P(y , dx)

the equality being understood as an equality of the two
measures as defined on B(X)⊗ B(X).



Markov transition kernels based on proposals
and rejections

P(x , dy) = Q(x , dy)α(x , y) + r(x)δx(dy)

where

r(x) =

∫
(1− α(x , u))Q(x , du) .

hence, reversibility becomes

π(dx)Q(x , dy)α(x , y) = π(dy)Q(y , dx)α(y , x) ,

Now define the Radon-Nikodym derivative,

t(x , y) =
π(dx)Q(x , dy)

π(dy)Q(y , dx)



Hastings1-Peskun2 framework

Re-arranging the reversibility equation we get

α(x , y)t(x , y) = α(y , x)

and since
s(x , y) = α(x , y) + α(y , x)

is symmetric by construction, we obtain that any reversible-inducing
acceptance probability should be

α(x , y) =
s(x , y)

1 + t(x , y)

where s(x , y) is symmetric such that 0 ≤ α(x , y) ≤ 1

1
Hastings, W. (1970). Monte Carlo sampling methods using Markov chains and their applications.

Biometrika, 57:97–109

2
Peskun, P. H. (1973). Optimum Monte Carlo sampling using Markov chains.

Biometrika, 60:607–612



From above we get

α(x , y) ≤ min{1, t(y , x)}

Proposition

Any valid acceptance probability can be expressed as

α(x , y) = min{1, t(y , x)}s̃(x , y) ,

where s̃ is symmetric, and 0 ≤ s̃(x , y) ≤ 1.

Metropolis-Hastings rule:

α(x , y) = min{1, t(y , x)} = min

{
1,
π(dy)Q(y , dx)

π(dx)Q(x , dy)

}
Barker’s algorithm:

s(x , y) = 1



MCMC for computationally expensive and
measures on Hilbert spaces

π(x) = π2(x)π1(x)

where one is expensive and other cheap to compute:

• likelihood/prior

• π1 = π̃ and π2 = π/π̃

t1(x , y) =
π1(dx)Q(x , dy)

π1(dy)Q(y , dx)
, t2(x , y) =

π2(x)

π2(y)
, t = t1 × t2



Practically cheaper to decide according to

min{1, t1(y , x)} × min{1, t2(y , x)} ,

as opposed to
min{1, t1(y , x)t2(y , x)}

Easy to check that this is a special case of generic with

s(x , y) = (1 + t(x , y)) min{1, t1(y , x)} min{1, t2(y , x)} ,

Essence behind delayed acceptance3 and certain methods in graph-
ical models 4

3
Christen, J. A. and Fox, C. (2005). Markov chain Monte Carlo using an approximation.

J. Comput. Graph. Statist., 14(4):795–810

4
Green, P. J. and Thomas, A. (2013). Sampling decomposable graphs using a Markov chain on junction trees.

Biometrika, 100(1):91–110



Rejection probability at the first step is zero when Q(x , dy) is re-
versible wrt π1. Then overall:

min{1, π2(y)/π2(x)}

Attractive, e.g. when π1(dx) ≡ N(0,C ), see latent Gaussian models
of Neal5 and distributions on Hilbert spaces6

E.g.

y =
√

1− ρ2x + ρLξ , ξ ∼ N(0, I ) , ρ ∈ [−1, 1] , LL∗ = C ,

5
Neal, R. M. (1999). Regression and classification using Gaussian process priors.

In Bayesian statistics, 6 (Alcoceber, 1998), pages 475–501. Oxford Univ. Press, New York

6
Beskos, A., Roberts, G. O., Stuart, A. M., and Voss, J. (2008b). MCMC methods for diffusion bridges.

Stochastics and Dynamics, 8(3):319–350
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Hypo-dimensional MCMC

Perspective: view proposal as deterministic transform of current and
random seeds and expand the state-space of the Markov chain. De-
sign moves on manifolds.

• (original) state-space X ⊆ IRd , noise space U ⊆ IRm

• π(x,u) = π(x)πx(u)

• Involution T : X×U→ X×U
• (Y,V) = T (X,U)

(most perturbations you can think of are special case of this)

For example in random-walk Metropolis, (Y,V) = (X + U,−U)



Appealing to the generic Hastings-Peskun framework we get

t(x,u, y, v) =
π(x)πx(u)

π(y)πy(v)|det JT (x,u)|
, where (y, v) = T (x,u) .

Common implementations of Metropolis-Hastings would discard V
before the next step of the algorithm. However, it can be beneficial
not to do so, e.g. within Hamiltonian MCMC or Reversible Jump
MCMC 7

A strict subset of this framework is Hastings-within-Gibbs

7
Brooks, S. P., Giudici, P., and Roberts, G. (2001). Efficient rjmcmc proposals.

submitted for publication



Example: random walk on a hypersurface

Aim: perturb locally x while keeping h(x) constant. Then:

T (x(−d), x (d),u) = (y(−d) = x(−d)+u, y (d) = f (x(−d)+u, h(x)), v = −u)

with Hastings-Peskun ratio

t(x,u, y, v) =
π(x)|fd(x(−d), h(x))|
π(y)|fd(y(−d), h(x))|



Generalised Gibbs sampler

Q: is there a choice of πx(u) s.t. t(x,u, y, v) = 1?
A: Yes!

(a) U equipped with a multiplication operator, ·, is a locally
compact topological group and the left and right Haar
measures associated to it have Lebesgue densities mL and mR

respectively.

(b) The transformation T takes the following generic form:

T (x,u) = (S(x,u),u−1)

where S is continuously differentiable function, and u−1 is the
inverse of u according to the group.

(c) For any u, v
S(S(x,u), v) = S(x, v · u) .

Note that this assumption, together with (b)-(c) above make T an
involution and also imply that T (x, e) = (x, e) for all x.



Haar densities

The topological group structure implies the existence of densities

mL(u ·w)

∣∣∣∣det∂(u ·w)

∂w

∣∣∣∣ = mL(w) ∀ w,u ∈ U

mR(w · u)

∣∣∣∣det∂(w · u)

∂w

∣∣∣∣ = mR(w) ∀ w,u ∈ U

with

mL(u−1)

∣∣∣∣detdu−1

du

∣∣∣∣ = mR(u)

Effectively, in the spaces weighted by these densities the transfor-
mations w→ u ·w and w→ w · u are volume preserving



Example: scale transformations

X = IRd , x = (x (1), . . . , x (d)), A ⊆ {1, 2, . . . , d}; U ∈ IRm
+, for

m = |A|, and for convenience take the elements of u to be indexed
by the indices in A

Element-wise multiplication and u·v is an m-dimensional vector with
elements u(j) × v (j) for j ∈ A.

In this group, e = 1 and u−1 has elements 1/u(j) for j ∈ A.

T (x,u) = (y,u−1), with y (j) = x (j) × u(j) if j ∈ A and y (j) = x (j)

otherwise. Left and right Haar densities can be taken to be the
same, mL(u) = mR(u) =

∏
j∈A(1/u(j))



Example: scale-affine transformations

Let X ∈ IR+× IR, x = (x (1), x (2)), U = IR+× IR equipped with the
assortative multiplication:

u · v = (u(1) × v (1), u(1) × u(2) + v (2)) ,

where e = (1, 0), and u−1 = (1/u(1),−u(2)/u(1)).

Then, the transformation is

T (x,u) = (u(1) × x (1), u(1) × x (2) + u(2),u−1) .

In this example left and Haar densities differ; we can take mL(u) =(
1/u(1)

)2
and mR(u) = 1/u(1).



Theorem

Suppose that Assumptions (a)-(c) hold, and that

c(x) :=

∫
π(S(x,u)) |det S1(x,u)|mL(u)du

is such that 0 < c(x) <∞ for all x. Then, by choosing

πx(u) = c(x)−1π(S(x,u)) |detS1(x,u)|mL(u)

the acceptance probability of the proposed move (x,u)→ T (x,u)
is 1.
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Auxiliary expansions

“Purposely constructing unobserved/unobservable variables offers
an extraordinarily flexible and powerful framework for both scien-
tific modeling and computation and is one of the central statistical
contributions to natural, engineering, and social sciences.”8.

8
Meng, X.-L. (2000). Missing data: dial M for ???

J. Amer. Statist. Assoc., 95(452):1325–1330



A taxonomy

1 Missing data/data augmentation

2 Vertical expansion: if

(X ,Z ) ∼ U ({(x , z) : x ∈ X, z ≤ π(x)})

then marginally X ∼ π(dx) (related to slice sampling)

3 Expansion using simulation variables: expand state-space to
include random variables used in simulation algorithms that
target π(dx) or its conditionals; & then use the
Hastings-Peskun framework

• Boost efficiency (particles)
• Widen applicability (intractable)

Demonstrate the idea using two poplar algorithms: Multiple
Try Metropolis, and Pseudo-marginal



Algorithm 1 Multiple-try Metropolis-Hastings algorithm

Initialisation: Choose X0; Choose M; Choose N; Set n = 0
while n < N + 1 do

Sample Y
(m)
n+1 ∼ Q(Xn, ·), m = 1, . . . ,M

Set Ln+1 = m with probability proportional to w(Xn,Y
(m)
n+1)

Sample K uniformly in the set {1, . . . ,M}
Set X

(K)
n+1 = Xn

Sample X
(m)
n+1 ∼ Q(Y

(Ln+1)
n+1 , ·), m ∈ {1, 2, . . . ,N} − {K}

Draw Un+1 ∼ U(0, 1)
if Un+1 < α then

Xn+1 ← Y
(Ln+1)
n+1

else
Xn+1 ← Xn

end if
n← n + 1

end while



Define auxiliary expansion

π(dx , dy∗, `) = π(dx)
M∏

m=1

Q(x , dy (m))
w(x , y (`))∑
m w(x , y (m))

.

Consider now (among various alternatives) the proposed move:

(x , y∗, `)→ (y (`),X∗,K )

with X
(K)
∗ = x , X

(m)
∗ ∼ Q(y (`), ·) for m 6= K , and K drawn uni-

formly between 1 and M.



joint measure of current, say (x , y∗, `), and proposed, say (y , x∗, k),

π(dx)
∏
k

Q(x , dy (k))
w(x , y (`))∑
n w(x , y (k))

× δy (`)(dy)
∏
m 6=k

Q(y , dx (m))δx(dx (k))
1

M
.

Hence:

t((x , y∗, `), (y , x∗, k)) =
π(dx)Q(x , dy)

π(dy)Q(y , dx)

w(x , y)

w(y , x)

∑
m w(y , x (m))∑
m w(x (m), y)



Pseudo-marginal algorithm

π(dx) = κπu(dx) = κπu(x)ν(dx)

• κ is a normalising constant

• ν(dx) a dominating measure

Assume

∃ h(x , z) ≥ 0 ∀x , z ,
∫

h(x , z)qx(dz) = πu(x)

Then, auxiliary expansion

π(dx , dz) = h(x , z)qx(dz)ν(dx) ,



Apply the Hastings-Peskun machinery; e.g. (among others)

(x , z)→ (Y ,W ) , Y ∼ Q(x , dy) ,W |Y = y ∼ qy (dw)

Thus, joint measure of current and proposed state is:

h(x , z)qx(dz)ν(dx)× Q(x , dy)qy (dw) ,

hence:

t(x , y) =
h(x , z)ν(dx)Q(x , dy)

h(y ,w)ν(dy)Q(y , dx)
=
π̂(dx)Q(x , dy)

π̂(dy)Q(y , dx)
.



The name originates from a particular instance of this framework,
with target π(dθ) as a marginal to π(dθ, dx) = π(θ)ν(dθ)πθ(dx)

If
πθ(dx)

qθ(dx)
= h0(θ, x)

h(θ,Z ) :=
1

M

M∑
m=1

h0(θ,Z (m)) =: π̂(θ) , Z = (Z (1), . . . ,Z (M))

is a positive unbiased estimator of π(θ), provided the Z (m) are
marginally drawn from qθ(·), and resultant ratio is

t((θ, z), (φ,w)) =
π̂(dθ)Q(θ, dφ)

π̂(dφ)Q(φ, dθ)



Meta-algorithms

Algorithms built on top of simpler, potentially not too efficient in
isolation algorithms for sampling π. (weak learners)

New generation of the data augmentation paradigm within MCMC
and allows the MCMC toolbox, while using the same classical Hastings-
Peskun framework, to incorporate important developments in other
areas of Monte Carlo, such as particle filters9, exact simulation of
stochastic processes 10 or Bernoulli factories 11.

9
Andrieu, C., Doucet, A., and Holenstein, R. (2010). Particle Markov chain Monte Carlo methods.

J. R. Stat. Soc. Ser. B Stat. Methodol., 72(3):269–342

10
Beskos, A., Papaspiliopoulos, O., Roberts, G. O., and Fearnhead, P. (2006). Exact and computationally

efficient likelihood-based estimation for discretely observed diffusion processes.
J. R. Stat. Soc. Ser. B Stat. Methodol., 68(3):333–382.
With discussions and a reply by the authors

11
 Latuszyński, K., Kosmidis, I., Papaspiliopoulos, O., and Roberts, G. O. (2011). Simulating events of

unknown probabilities via reverse time martingales.
Random Structures Algorithms, 38(4):441–452
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Adaptive direction sampling

This is another instance of hypo-dimensional MCMC and of Gen-
eralised Gibbs Sampling (although, again, not being conceived like
this in the past)

Possibilities for building adaptation in MCMC while perserving Marko-
vianity

Aim: sample from π on IRd

Ingredients: set of active particles Xn = {x1, . . . , xk}. Target in-
stead

π(x1)π(x2) . . . π(xk) .

p: dimensionality of proposed move



Algorithm 2 Adaptive Direction Sampling (ADS)

Initialisation: Choose X0; Choose N; Set n = 0
while n < N + 1 do

Choose x
(c)
n uniformly at random from Xn. Let Cn = Xn −

{x(c)
n }

Generate a from Dv (Cn), B from DM(Cn)
Sample u ∈ IRp according to the density

π
x

(c)
n ,b,A

(u) ∝ π(x
(c)
n (1 + aTu) + Bu)|1 + aTu|d−p

Let yn = x
(c)
n (1 + aTu) + Bu

Xn+1 = Xn − {x(c)
n } ∪ {yn}

n← n + 1
end while



An example: the snooker algorithm (p=1)



Justification: (population) Generalised Gibbs
sampling

The algorithm is based on a non-commutative group structure on
IRp with identity element 0 and group operation

u · v = u + v + aTu v

with

u−1 = − 1

1 + aTu
u .

Notice that the group structure does not depend on B chosen as
part of the algorithm. Finally, it is straightforward to check that

mL(u) = |1 + aTu|−p
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Summary

Highlighted 3 basic principles that underly the vast majority of de-
velopments in MCMC

• Hastings-Peskun framework: classic but increasingly relevant
in exchanging statistical for computational efficiency

• Hypo-dimensional MCMC: deterministic moves in
higher-dimensional spaces

• Common framework for developing and justifying algorithms:
auxiliary expansions


