Improved Algorithms for Computing Worst VaR: Numerical Challenges and the ARA

Marius Hofert

(joint work with A. Memartoluie, D. Saunders, T. Wirjanto)

2015-10-02

>> Department of Statistics and Actuarial Science

Disclaimer:

- This is my first work around computing worst(/best) Value-at-Risk.
- I am not an expert on the theory for computing these bounds.
- I will address practical aspects (Reg grmtools, demo (VaR_bounds))

Recall: $H(x_1, \ldots, x_d) = C(F_1(x_1), \ldots, F_d(x_d))$ (Sklar's Theorem)

The problem: Computing worst(/best) VaR

We are given (one-period ahead) losses $L_1 \sim F_1, \ldots, L_d \sim F_d$ (e.g., based on fitted F_1, \ldots, F_d with known margins and unknown copula C. Consider А

$$L^{+} = \sum_{j=1}^{a} L_{j} \text{ and } \operatorname{VaR}_{\alpha}(L^{+}) = F_{L^{+}}^{-}(\alpha) = \inf\{x \in \mathbb{R} : F_{L^{+}}(x) \ge \alpha\}.$$

Question: How to compute bounds $\underline{\operatorname{VaR}}_{\alpha}(L^+)$, $\overline{\operatorname{VaR}}_{\alpha}(L^+)$ on $\operatorname{VaR}_{\alpha}(L^+)$? (i.e., the best and worst $\operatorname{VaR}_{\alpha}(L^+)$ over the set of all copulas) We will focus on $\operatorname{VaR}_{\alpha}(L^+)$. © 2015 Marius Hofert | University of Waterloo

We focus on two cases:

- 1) The homogeneous case (i.e., $F_1 = \cdots = F_d =: F$):
 - The dual bound approach (see Puccetti and Rüschendorf (2013), Embrechts et al. (2013, Prop. 4))
 - Wang's approach (see Embrechts et al. (2014, Prop. 1))
- 2) The inhomogeneous case: The Rearrangement Algorithm (RA; see Puccetti and Rüschendorf (2012), Embrechts et al. (2013))

Not discussed here are, e.g.:

- Bernard et al. (2013) and Bernard et al. (2014) (partial information known about C)
- Bernard and McLeish (2015), Jakobsons et al. (2015) (alternatives to the RA)
- Other references (quickly growing in this field).

 $\ensuremath{\mathbb{C}}$ 2015 Marius Hofert | University of Waterloo

1 Solutions in the homogeneous case

Wang's approach for computing $\overline{\operatorname{VaR}}_{\alpha}(L^+)$

• Assume that $F = F_1$ has a decreasing density on $[\beta, \infty)$.

• Let
$$a_c = \alpha + (d-1)c$$
, $b_c = 1 - c$ and

$$\bar{I}(c) := \frac{1}{b_c - a_c} \int_{a_c}^{b_c} F^-(y) \, dy, \quad c \in (0, (1 - \alpha)/d]$$

Embrechts et al. (2014, Prop. 1) and Wang et al. (2013, Cor. 3.7):

$$\begin{aligned} & \longrightarrow \quad \text{For } L \sim F \text{ and } \alpha \in [F(\beta), 1), \\ & \overline{\operatorname{VaR}}_{\alpha}(L^+) = d \operatorname{\mathbb{E}}[L \mid L \in [F^-(a_c), F^-(b_c)]] \underset{\text{Subs.}}{=} d\bar{I}(c), \\ & \text{where } c \text{ is the smallest number in } (0, (1-\alpha)/d] \text{ such that} \\ & \bar{I}(c) \geq \frac{d-1}{d} F^-(a_c) + \frac{1}{d} F^-(b_c). \end{aligned}$$

Algorithm (Computing $\overline{\text{VaR}}_{\alpha}(L^+)$ based on Wang's approach; worst_VaR_hom(..., method="Wang"))

- 1) Specify an initial interval $[c_l, c_u]$ with $0 \le c_l < c_u < (1 \alpha)/d$.
- 2) Root-finding in c: Iterate over $c \in [c_l, c_u]$ until a c^* is found for which

$$h(c^*) := \bar{I}(c^*) - \left(\frac{d-1}{d}F^-(a_{c^*}) + \frac{1}{d}F^-(b_{c^*})\right) = 0.$$

3) Then return
$$(d-1)F^{-}(a_{c^*}) + F^{-}(b_{c^*})$$
.

- We only need to know the quantile function F^- to compute $\overline{\text{VaR}}_{\alpha}(L^+)$.
- The numerical integration (for *I*) is typically straightforward; explicit for Par(θ) margins.
- It remains unclear how to choose $[c_l, c_u]$ (open problem in general):
 - $c_l: h(0) = -\infty$ (fine) but also undefined $(\infty \infty; \text{ for } Par(\theta \in (0, 1]))$
 - c_u : Numerically problematic: $h((1-\alpha)/d) = 0$

How can we choose c_l and c_u for $F = Par(\theta)$?

>> **Proposition** $(c_l, c_u, \text{worst_VaR_hom}(..., method="Wang.Par"))$ The initial interval end points c_l and c_u can be chosen as

$$c_l = \begin{cases} \frac{(1-\theta)(1-\alpha)}{d}, & \text{if } \theta \in (0,1), \\ \frac{1-\alpha}{(d+1)^{\frac{e}{e-1}}+d-1}, & \text{if } \theta = 1, \\ \frac{1-\alpha}{(d/(\theta-1)+1)^{\theta}+d-1}, & \text{if } \theta \in (1,\infty), \end{cases} c_u = \begin{cases} \frac{(1-\alpha)(d-1+\theta)}{(d-1)(2\theta+d)}, & \text{if } \theta \neq 1, \\ \frac{1-\alpha}{3d/2-1}, & \text{if } \theta = 1. \end{cases}$$

Proof (idea).

- c_l : Rewrite $h(c) = 0 \Leftrightarrow h_2(x_c) = 0$ for $x_c = (1 \alpha)/c (d 1)$ and $h_2(x) = (\frac{d}{1-\theta} 1)x^{-\frac{1}{\theta}+1} (d-1)x^{-\frac{1}{\theta}} + x (d\frac{\theta}{1-\theta} + 1), x \in [1,\infty)$. Separately for $\theta \in (0,1), \ \theta = 1$ and $\theta \in (1,\infty)$, approximate h_2 from below by an invertible function with a root $x_c > 1$; then solve for c.
- c_u: The inflection point of h₂ is a lower bound x_c on the root of h₂; then solve for c.

Example ($\overline{\text{VaR}}_{\alpha}(L^+)$ for $Par(\theta)$ risks) Consider $F = Par(\theta)$ and $\alpha = 0.99$ and plot the objective function h(c) for d = 8 (left) and d = 100 (right):

(Values $h(c) \leq 0$ have been omitted due to log-scale)

- Nice, right?
- Anything else?

 $\ensuremath{^{\odot}}$ 2015 Marius Hofert | University of Waterloo

Example (Comparison for $Par(\theta)$ risks)

- Wang's approach: with/without num. integration for I
 ; without num. integration and uniroot()'s default tolerance
- Dual bound approach: Numerically trickier... two nested root-findings
- Lower/upper bound RA bounds (results standardized by the h₂ approach)

© 2015 Marius Hofert | University of Waterloo

Remark/summary (Word of warning; may apply beyond $Par(\theta)$) 1) As just seen, the tolerance of uniroot() is critical; see below (right) 2) Without c_u : see (left/right) for $h((1-\alpha)/d) = .Machine double.xmin$

 \Rightarrow These are things that are not recognized unless thoroughly tested!

2 The Rearrangement Algorithm

- For the inhomogeneous case for computing $(\underline{\operatorname{VaR}}_{\alpha}(L^+) \operatorname{and}) \overline{\operatorname{VaR}}_{\alpha}(L^+)$
- The theoretical convergence of $\overline{s}_N \underline{s}_N \to 0$ is an open problem.
- We focus on practical aspects, not the theory.

2.1 How the RA works

- Two columns a, b are oppositely ordered if $(a_i a_j)(b_i b_j) \le 0 \ \forall i, j$.
- Row-sum operator $s(X) = \min_{1 \le i \le N} \sum_{1 \le j \le d} x_{ij}$

Algorithm (RA for computing $\overline{\operatorname{VaR}}_{\alpha}(L^+)$)

- 1) Fix $\alpha \in (0,1)$, F_1^-, \dots, F_d^- , $N \in \mathbb{N}$ (# of discr. points), $\varepsilon \ge 0$ (tol.)
- 2) Compute the lower bound \underline{s}_N :
 - 2.1) Define the (N, d)-matrix $\underline{X}^{\alpha} = \left(F_j^-\left(\alpha + \frac{(1-\alpha)(i-1)}{N}\right)\right)_{i,i}$.

2.2) Randomly permute each column of \underline{X}^{α} (to avoid $\overline{s}_N - \underline{s}_N \neq 0$) © 2015 Marius Hofert | University of Waterloo 1

- 2.3) Iterate over each column of \underline{X}^{α} and permute it so that it becomes oppositely ordered to the sum of all others \Rightarrow Matrix \underline{Y}^{α}
- 2.4) Repeat Step 2.3) until $s(\underline{Y}^{\alpha}) s(\underline{X}^{\alpha}) \leq \varepsilon$, then set $\underline{s}_N = s(\underline{Y}^{\alpha})$.
- 3) Compute the upper bound \overline{s}_N : Similarly as in Step 2), but based on $\overline{X}^{\alpha} = \left(F_j^-\left(\alpha + \frac{(1-\alpha)i}{N}\right)\right)_{i,j}$, compute $\overline{s}_N = s(\overline{Y}^{\alpha})$.
- 4) Return $(\underline{s}_N, \overline{s}_N)$ (rearrangement range; taken as $\overline{\text{VaR}}_{\alpha}(L^+)$ bounds)
- Goal: Solving the *maximin problem* (minimax for <u>VaR</u>_α). This can fail, though; see Haus (2014, Lemma 6) for a counter-example.
- Intuition: Obtaining a *completely mixable matrix* (row sums constant). This minimizes the variance of L⁺|L⁺ > F⁻_{L⁺}(α) to concentrate more of the 1 − α mass of F_{L⁺} in its tail. ⇒ VaR_α(L⁺) ↑

A picture is worth a thousand words...

$$\operatorname{VaR}_{\alpha}(L^{+}) \leq \operatorname{ES}_{\alpha}(L^{+})_{L^{+} \operatorname{cont.}} = \mathbb{E}[L^{+} \mid L^{+} > \operatorname{VaR}_{\alpha}(L^{+})]$$

$$\left[\begin{array}{c} & & \\$$

Ideally: F_1, \ldots, F_d jointly mixable $\Rightarrow \mathbb{P}(L_1 + \cdots + L_d = c) = 1, c \in \mathbb{R}$ (in the tail).

Example

1) Where it works (to compute the optimum of the maximin problem):

$$\begin{pmatrix} 1 & 1 & 1 \\ 2 & 3 & 2 \\ 3 & 5 & 4 \\ 4 & 7 & 8 \end{pmatrix} \xrightarrow{\longrightarrow} \sum_{-1} = \begin{pmatrix} 2 \\ 5 \\ 9 \\ 15 \end{pmatrix} \begin{pmatrix} 4 & 1 & 1 \\ 3 & 3 & 2 \\ 2 & 5 & 4 \\ 1 & 7 & 8 \end{pmatrix} \xrightarrow{\longrightarrow} \sum_{-2} = \begin{pmatrix} 4 & 7 & 1 \\ 3 & 5 & 2 \\ 2 & 3 & 4 \\ 1 & 1 & 8 \end{pmatrix} \xrightarrow{\longrightarrow} \sum_{-3} = \begin{pmatrix} 11 \\ 8 \\ 5 \\ 2 \end{pmatrix}$$

$$\begin{pmatrix} 4 & 7 & 1 \\ 3 & 5 & 2 \\ 2 & 3 & 4 \\ 1 & 1 & 8 \end{pmatrix} \xrightarrow{\longrightarrow} \sum_{-1} = \begin{pmatrix} 2 & 7 & 1 \\ 4 & 5 & 2 \\ 3 & 3 & 4 \\ 1 & 1 & 8 \end{pmatrix} \xrightarrow{\longrightarrow} \sum_{-2} = \begin{pmatrix} 2 & 7 & 1 \\ 4 & 5 & 2 \\ 3 & 3 & 4 \\ 1 & 1 & 8 \end{pmatrix} \xrightarrow{\longrightarrow} \sum_{-3} = \begin{pmatrix} 9 \\ 9 \\ 6 \\ 2 \end{pmatrix}$$

$$\begin{pmatrix} 2 & 7 & 2 \\ 4 & 5 & 1 \\ 3 & 3 & 4 \\ 1 & 1 & 8 \end{pmatrix} \xrightarrow{\swarrow} \sum_{-2} = \begin{pmatrix} 11 \\ 10 \\ 10 \\ 1 \end{pmatrix} \xrightarrow{\longrightarrow} 10$$

2) Where it fails (to compute the optimum of the maximin problem):

$$\begin{pmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3 \end{pmatrix} \xrightarrow{\simeq} \begin{pmatrix} 2 \\ 4 \\ 6 \end{pmatrix} \begin{pmatrix} 3 & 1 & 1 \\ 2 & 2 & 2 \\ 1 & 3 & 3 \end{pmatrix} \xrightarrow{\simeq} \begin{pmatrix} 3 & 3 & 1 \\ 2 & 2 & 2 \\ 1 & -2 & 2 \\ 1 & 1 & 3 \end{pmatrix} \checkmark \checkmark$$
$$\xrightarrow{\simeq} \sum_{l=1}^{7} \widehat{\operatorname{VaR}}_{\alpha}(L^{+}) \approx 5 < 6 \qquad \Longrightarrow \sum_{l=1}^{7} \widehat{\operatorname{for}} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2 \end{pmatrix}$$

>> Question (Toronto, 2014; Zurich 2015): "How to choose $N \in \mathbb{N}$ and $\varepsilon > 0$?"

- No real guidance given in papers. Embrechts et al. (2013, Table 3): Chosen ε = 0.1 is roughly 0.000004% of the computed VaR_{0.99}(L⁺).
- Concerning ε, there are two problems:
 - 1) It would be more natural to use relative tolerances, which guarantee that the change in the minimal row sum from $\underline{X}^{\alpha}(\overline{X}^{\alpha})$ to $\underline{Y}^{\alpha}(\overline{Y}^{\alpha})$ is of the right order.
 - 2) ε is only used for checking *individual* "convergence" of \underline{s}_N and of \overline{s}_N . There is no guarantee that \underline{s}_N and \overline{s}_N are *jointly* close.
- Also, the algorithm should return more useful information, e.g., 1) |(\$\overline{s}_N - \$\overline{s}_N\$)/\$\overline{s}_N\$; 2) the individual tolerances reached for \$\overline{s}_N\$, \$\overline{s}_N\$; 3) the number of iterations used; 4) the row sums after each iteration; or 5) the number of oppositely ordered columns; see RA() and ARA().
 © 2015 Marius Hofert | University of Waterloo

2.2 Empirical performance under various scenarios

• As studies, we consider the following:

Study 1: $N \in \{2^7, 2^8, \dots, 2^{17}\}$ and d = 20

Study 2: N = 256 and $d \in \{2^2, 2^3, \dots, 2^{10}\}$ (not considered further)

• In each study we investigate the following cases (based on $\alpha = 0.99$, $\varepsilon = 0.001$ and Pareto $F_j(x) = 1 - (1+x)^{-\theta_j}$ margins):

Case HH : $\theta_1, \ldots, \theta_d$ equidistant in [0.6, 0.4] (all heavy-tailed)

Case LH : $\theta_1, \ldots, \theta_d$ equidistant in [1.5, 0.5] (light- to heavy-tailed)

Case LL : $\theta_1, \ldots, \theta_d$ equidistant in [1.6, 1.4] (all light-tailed)

Case H₁L: $\theta_2, \ldots, \theta_d$ as in Case LL and $\theta_1 = 0.5$ (only first heavy-tailed)

• We consider B = 200 replicated simulation runs (\Rightarrow empirical 95% confidence intervals); this allows us to study the effect of randomization.

Results of Study 1 (N running, d fixed)

 \Rightarrow The means over all B computed <u>s</u>_N and <u>s</u>_N converge as N increases.

 \Rightarrow As N increases, run time (in s) increases (\approx linearly).

 \Rightarrow The number of iterations rarely exceeds 12 as N increases.

⇒ The rate of decrease (# of opp. ordered columns) depends on the F_j 's (especially small for Case LL); $\varepsilon = \text{NULL}$ not useful

3 The Adaptive Rearrangement Algorithm

- Algorithmically improved RA for computing \underline{s}_N and \overline{s}_N ; see ARA().
- Improvements:
 - 1) Chooses more meaningful relative tolerances (and two!)
 - 2) Adaptively chooses N

3.1 How the ARA works

Algorithm (ARA for computing $\overline{\operatorname{VaR}}_{\alpha}(L^+)$) 1) Fix $\alpha \in (0,1)$, F_1^-, \ldots, F_d^- , a vector N and relative tol. $\varepsilon = (\varepsilon_1, \varepsilon_2)$. 2) For $N \in \mathbb{N}$, do:

2.1) Compute the lower bound \underline{s}_N :

2.1.1) Define the (N, d)-matrix $\underline{X}^{\alpha} = \left(F_{i}^{-}\left(\alpha + \frac{(1-\alpha)(i-1)}{N}\right)\right)$.

2.1.2) Randomly permute each column of \underline{X}^{α} .

 $\ensuremath{\mathbb{C}}$ 2015 Marius Hofert | University of Waterloo

- 2.1.3) Iterate over each column of \underline{X}^{α} so that it becomes oppositely ordered to the sum of all others \Rightarrow Matrix \underline{Y}^{α} .
- 2.1.4) Repeat Step 2.1.3) until $\left|\frac{s(\underline{Y}^{\alpha}) s(\underline{X}^{\alpha})}{s(\underline{X}^{\alpha})}\right| \leq \varepsilon_1$ or until maxiter is reached. Then set $\underline{s}_N = s(\underline{Y}^{\alpha})$.
- 2.2) Compute the upper bound \overline{s}_N : Similarly as in Step 2.1), but based on $\overline{X}^{\alpha} = \left(F_j^-(\alpha + \frac{(1-\alpha)i}{N})\right)$, compute $\overline{s}_N = s(\overline{Y}^{\alpha})$.

2.3) If both ε_1 tolerances hold and $\left|\frac{\overline{s}_N - \underline{s}_N}{\overline{s}_N}\right| \le \varepsilon_2$, break.

- 3) Return $(\underline{s}_N, \overline{s}_N)$ (rearrangement range; taken as $\overline{\operatorname{VaR}}_{\alpha}(L^+)$ bounds)
- If N = (N), the ARA reduces to the RA but uses *relative* individual *tolerances and joint convergence* is checked.
- Defaults (from simulations): $oldsymbol{N}=(2^8,2^9,\ldots,2^{20})$, maxiter =12
- A useful choice for ε may be $\varepsilon=(0.001,\ 0.01);$ can be freely chosen in ARA().

3.2 Empirical performance under various scenarios

- As before: $d \in \{20, 100\}$, the Cases HH, LH, LL, H₁L and B = 200
- $\boldsymbol{\varepsilon} = (\varepsilon_1 = 0.1\%, \ \varepsilon_2 \in \{0.5\%, 1\%, 2\%\})$
- We investigate 1) s_N, s_N; 2) the N used in the final iteration; 3) the run time (in s); 4) the number of oppositely ordered columns; and 5) the number of iterations over all columns (for the last N used).

Boxplots of the $\overline{\text{VaR}}_{0.99}(L^+)$ bounds \underline{s}_N (left) and \overline{s}_N (right):

 \Rightarrow Cls are close; \underline{s}_N , \overline{s}_N also close (as expected).

 \Rightarrow The N used differs for \underline{s}_N (left) and \overline{s}_N (right); but small for both.

⇒ Doubling ε_2 reduces run time by $\approx 50\%$; good choice of ε_2 is important. © 2015 Marius Hofert | University of Waterloo 23

 \Rightarrow Only 1 or 2 are oppositely ordered (not worth spending more time...).

 \Rightarrow The number of iterations consistently remains below 5 (over all B runs).

Outlook

- DCARA (Dimension Reduction Adaptive Rearrangement Algorithm)
- DRARA (Divide and Conquer Adaptive Rearrangement Algorithm)
- How to use the reordering from the last N used before doubling N?
- How to apply the (A)RA without fitting the margins if the columns have different lengths?
- How to incorporate some information about the underlying copula C?
- Fast C/C++ version

References

- Bernard, C. and McLeish, D. (2015), Algorithms for Finding Copulas Minimizing Convex Functions of Sums, http://arxiv.org/abs/1502. 02130 (2015-02-24).
- Bernard, C., Rüschendorf, L., and Vanduffel, S. (2013), Value-at-Risk bounds with variance constraints, http://papers.ssrn.com/sol3/ papers.cfm?abstract_id=2342068 (2015-02-20).
- Bernard, C., Denuit, M., and Vanduffel, S. (2014), Measuring Portfolio Risk under Partial Dependence Information, http://papers.ssrn.com/ sol3/papers.cfm?abstract_id=2406377 (2015-02-20).
- Embrechts, P., Puccetti, G., and Rüschendorf, L. (2013), Model uncertainty and VaR aggregation, *Journal of Banking and Finance*, 37(8), 2750– 2764.
- Embrechts, P., Puccetti, G., Rüschendorf, L., Wang, R., and Beleraj, A. (2014), An academic response to Basel 3.5, *Risks*, 2(1), 25–48.

 $\ensuremath{\mathbb{C}}$ 2015 Marius Hofert | University of Waterloo

- Haus, U.-U. (2014), Bounding stochastic dependence, complete mixability of matrices, and multidimensional bottleneck assignment problems, *http://arxiv.org/abs/1407.6475*.
- Jakobsons, E., Han, X., and Wang, R. (2015), General Convex Order on Risk Aggregation, *Scandinavian Actuarial Journal*.
- Puccetti, G. and Rüschendorf, L. (2012), Computation of sharp bounds on the distribution of a function of dependent risks, *Journal of Computational and Applied Mathematics*, 236(7), 1833–1840.
- Puccetti, G. and Rüschendorf, L. (2013), Sharp bounds for sums of dependent risks, *Journal of Applied Probability*, 50(1), 42–53.
- Wang, R., Peng, L., and Yang, J. (2013), Bounds for the sum of dependent risks and worst Value-at-Risk with monotone marginal densities, *Finance* and Stochastics, 17(2), 395–417.