》 Improved Algorithms for Computing Worst VaR: Numerical Challenges and the ARA

Marius Hofert
(joint work with A. Memartoluie, D. Saunders, T. Wirjanto)

2015-10-02

Disclaimer:

- This is my first work around computing worst(/best) Value-at-Risk.
- I am not an expert on the theory for computing these bounds.
- I will address practical aspects ($\mathbb{P}_{\mathbb{R}}$: Pkg qrmtools, demo(VaR_bounds))

Recall: $H\left(x_{1}, \ldots, x_{d}\right)=C\left(F_{1}\left(x_{1}\right), \ldots, F_{d}\left(x_{d}\right)\right)$ (Sklar's Theorem)

The problem: Computing worst(/best) VaR

We are given (one-period ahead) losses $L_{1} \sim F_{1}, \ldots, L_{d} \sim F_{d}$ (e.g., based on fitted F_{1}, \ldots, F_{d}) with known margins and unknown copula C. Consider

$$
L^{+}=\sum_{j=1}^{d} L_{j} \text { and } \operatorname{VaR}_{\alpha}\left(L^{+}\right)=F_{L^{+}}^{-}(\alpha)=\inf \left\{x \in \mathbb{R}: F_{L^{+}}(x) \geq \alpha\right\}
$$

Question: How to compute bounds $\operatorname{VaR}_{\alpha}\left(L^{+}\right), \overline{\operatorname{VaR}}_{\alpha}\left(L^{+}\right)$on $\operatorname{VaR}_{\alpha}\left(L^{+}\right)$? (i.e., the best and worst $\operatorname{VaR}_{\alpha}\left(L^{+}\right)$over the set of all copulas) We will focus on $\overline{\operatorname{VaR}}_{\alpha}\left(L^{+}\right)$.
© 2015 Marius Hofert | University of Waterloo

We focus on two cases:

1) The homogeneous case (i.e., $F_{1}=\cdots=F_{d}=: F$):

- The dual bound approach (see Puccetti and Rüschendorf (2013), Embrechts et al. (2013, Prop. 4))
- Wang's approach (see Embrechts et al. (2014, Prop. 1))

2) The inhomogeneous case: The Rearrangement Algorithm (RA; see Puccetti and Rüschendorf (2012), Embrechts et al. (2013))

Not discussed here are, e.g.:

- Bernard et al. (2013) and Bernard et al. (2014) (partial information known about C)
- Bernard and McLeish (2015), Jakobsons et al. (2015) (alternatives to the RA)
- Other references (quickly growing in this field).

1 Solutions in the homogeneous case

Wang's approach for computing $\operatorname{VaR}_{\alpha}\left(L^{+}\right)$

- Assume that $F=F_{1}$ has a decreasing density on $[\beta, \infty)$.
- Let $a_{c}=\alpha+(d-1) c, b_{c}=1-c$ and

$$
\bar{I}(c):=\frac{1}{b_{c}-a_{c}} \int_{a_{c}}^{b_{c}} F^{-}(y) d y, \quad c \in(0,(1-\alpha) / d]
$$

Embrechts et al. (2014, Prop. 1) and Wang et al. (2013, Cor. 3.7):
For $L \sim F$ and $\alpha \in[F(\beta), 1)$,

$$
\overline{\operatorname{VaR}}_{\alpha}\left(L^{+}\right)=d \mathbb{E}\left[L \mid L \in\left[F^{-}\left(a_{c}\right), F^{-}\left(b_{c}\right)\right]\right] \text { Subs. } d \bar{I}(c),
$$

where c is the smallest number in $(0,(1-\alpha) / d]$ such that

$$
\bar{I}(c) \geq \frac{d-1}{d} F^{-}\left(a_{c}\right)+\frac{1}{d} F^{-}\left(b_{c}\right) .
$$

Algorithm (Computing $\overline{\operatorname{VaR}}_{\alpha}\left(L^{+}\right)$based on Wang's approach; worst_VaR_hom(..., method="Wang"))

1) Specify an initial interval $\left[c_{l}, c_{u}\right]$ with $0 \leq c_{l}<c_{u}<(1-\alpha) / d$.
2) Root-finding in c : Iterate over $c \in\left[c_{l}, c_{u}\right]$ until a c^{*} is found for which

$$
h\left(c^{*}\right):=\bar{I}\left(c^{*}\right)-\left(\frac{d-1}{d} F^{-}\left(a_{c^{*}}\right)+\frac{1}{d} F^{-}\left(b_{c^{*}}\right)\right)=0 .
$$

3) Then return $(d-1) F^{-}\left(a_{c^{*}}\right)+F^{-}\left(b_{c^{*}}\right)$.

- We only need to know the quartile function F^{-}to compute $\overline{\operatorname{VaR}}_{\alpha}\left(L^{+}\right)$.
- The numerical integration (for \bar{I}) is typically straightforward; explicit for $\operatorname{Par}(\theta)$ margins.
- It remains unclear how to choose $\left[c_{l}, c_{u}\right]$ (open problem in general):
- $c_{l}: h(0)=-\infty$ (fine) but also undefined $(\infty-\infty$; for $\operatorname{Par}(\theta \in(0,1]))$
- c_{u} : Numerically problematic: $h((1-\alpha) / d) \underset{\left.\right|^{\prime} \mathrm{H} .}{ }=0$

How can we choose c_{l} and c_{u} for $F=\operatorname{Par}(\theta)$?
Proposition (c_{l}, c_{u}, worst_VaR_hom(..., method="Wang.Par"))
The initial interval end points c_{l} and c_{u} can be chosen as
$c_{l}=\left\{\begin{array}{ll}\frac{(1-\theta)(1-\alpha)}{d}, & \text { if } \theta \in(0,1), \\ \frac{1-\alpha}{(d+1)^{\frac{e}{e-1}+d-1},} & \text { if } \theta=1, \quad c_{u}=\left\{\begin{array}{ll}\frac{(1-\alpha)(d-1+\theta)}{(d-1)(2 \theta+d)}, & \text { if } \theta \neq 1, \\ \frac{1-\alpha}{3 d / 2-1}, & \text { if } \theta=1 .\end{array} \text { if } \frac{1-\alpha}{(d /(\theta-1)+1)^{\theta}+d-1},\right.\end{array}\right.$ if $\theta \in(1, \infty), \quad . \quad$.

Proof (idea).

- c_{l} : Rewrite $h(c)=0 \Leftrightarrow h_{2}\left(x_{c}\right)=0$ for $x_{c}=(1-\alpha) / c-(d-1)$ and $h_{2}(x)=\left(\frac{d}{1-\theta}-1\right) x^{-\frac{1}{\theta}+1}-(d-1) x^{-\frac{1}{\theta}}+x-\left(d \frac{\theta}{1-\theta}+1\right), x \in[1, \infty)$. Separately for $\theta \in(0,1), \theta=1$ and $\theta \in(1, \infty)$, approximate h_{2} from below by an invertible function with a root $x_{c}>1$; then solve for c.
- c_{u} : The inflection point of h_{2} is a lower bound x_{c} on the root of h_{2}; then solve for c.

Example $\left(\overline{\operatorname{VaR}}_{\alpha}\left(L^{+}\right)\right.$for $\operatorname{Par}(\theta)$ risks)

Consider $F=\operatorname{Par}(\theta)$ and $\alpha=0.99$ and plot the objective function $h(c)$ for $d=8$ (left) and $d=100$ (right):

(Values $h(c) \leq 0$ have been omitted due to log-scale)
$\overline{\operatorname{VaR}}_{\alpha}\left(L^{+}\right)$for various α, θ and $d=8$ (left) and $d=100$ (right):

- Nice, right?
- Anything else?

Example (Comparison for $\operatorname{Par}(\theta)$ risks)

- Wang's approach: with/without num. integration for \bar{I}; without num. integration and uniroot()'s default tolerance
- Dual bound approach: Numerically trickier... two nested root-findings
- Lower/upper bound RA bounds (results standardized by the h_{2} approach)

Remark/summary (Word of warning; may apply beyond $\operatorname{Par}(\theta)$)

1) As just seen, the tolerance of uniroot () is critical; see below (right)
2) Without c_{u} : see (left/right) for $h((1-\alpha) / d)=$. Machine\$double.xmin

\Rightarrow These are things that are not recognized unless thoroughly tested!

2 The Rearrangement Algorithm

- For the inhomogeneous case for computing $\left(\mathrm{VaR}_{\alpha}\left(L^{+}\right)\right.$and $) \overline{\mathrm{VaR}}_{\alpha}\left(L^{+}\right)$
- The theoretical convergence of $\bar{s}_{N}-\underline{s}_{N} \rightarrow 0$ is an open problem.
- We focus on practical aspects, not the theory.

2.1 How the RA works

- Two columns $\boldsymbol{a}, \boldsymbol{b}$ are oppositely ordered if $\left(a_{i}-a_{j}\right)\left(b_{i}-b_{j}\right) \leq 0 \forall i, j$.
- Row-sum operator $s(X)=\min _{1 \leq i \leq N} \sum_{1 \leq j \leq d} x_{i j}$

Algorithm (RA for computing $\overline{\mathrm{VaR}}_{\alpha}\left(L^{+}\right)$)

1) Fix $\alpha \in(0,1), F_{1}^{-}, \ldots, F_{d}^{-}, N \in \mathbb{N}$ (\# of discr. points), $\varepsilon \geq 0$ (tol.)
2) Compute the lower bound \underline{s}_{N} :
2.1) Define the (N, d)-matrix $\underline{X}^{\alpha}=\left(F_{j}^{-}\left(\alpha+\frac{(1-\alpha)(i-1)}{N}\right)\right)_{i, j}$.
2.2) Randomly permute each column of \underline{X}^{α} (to avoid $\bar{s}_{N}-\underline{s}_{N} \nrightarrow 0$)
2.3) Iterate over each column of \underline{X}^{α} and permute it so that it becomes oppositely ordered to the sum of all others \Rightarrow Matrix \underline{Y}^{α}
2.4) Repeat Step 2.3) until $s\left(\underline{Y}^{\alpha}\right)-s\left(\underline{X}^{\alpha}\right) \leq \varepsilon$, then set $\underline{s}_{N}=s\left(\underline{Y}^{\alpha}\right)$.
3) Compute the upper bound \bar{s}_{N} : Similarly as in Step 2), but based on $\bar{X}^{\alpha}=\left(F_{j}^{-}\left(\alpha+\frac{(1-\alpha) i}{N}\right)\right)_{i, j^{\prime}}$, compute $\bar{s}_{N}=s\left(\bar{Y}^{\alpha}\right)$.
4) Return $\left(\underline{s}_{N}, \bar{s}_{N}\right)$ (rearrangement range; taken as $\overline{\operatorname{VaR}}_{\alpha}\left(L^{+}\right)$bounds)

- Goal: Solving the maximin problem (minimax for $\underline{\mathrm{VaR}}_{\alpha}$). This can fail, though; see Haus (2014, Lemma 6) for a counter-example.
- Intuition: Obtaining a completely mixable matrix (row sums constant). This minimizes the variance of $L^{+} \mid L^{+}>F_{L^{+}}^{-}(\alpha)$ to concentrate more of the $1-\alpha$ mass of $F_{L^{+}}$in its tail. $\Rightarrow \operatorname{VaR}_{\alpha}\left(L^{+}\right) \uparrow$

A picture is worth a thousand words...
$\operatorname{VaR}_{\alpha}\left(L^{+}\right) \leq \operatorname{ES}_{\alpha}\left(L^{+}\right) \underset{L^{+} \text {cont. }}{=} \mathbb{E}\left[L^{+} \mid L^{+}>\operatorname{VaR}_{\alpha}\left(L^{+}\right)\right]$

Ideally: F_{1}, \ldots, F_{d} jointly mixable $\Rightarrow \mathbb{P}\left(L_{1}+\cdots+L_{d}=c\right)=1, c \in \mathbb{R}$
(in the tail).

Example

1) Where it works (to compute the optimum of the maximin problem):

$$
\begin{aligned}
& \left(\begin{array}{lll}
1 & 1 & 1 \\
2 & 3 & 2 \\
3 & 5 & 4 \\
4 & 7 & 8
\end{array}\right) \underset{\sum_{-1}=\left(\begin{array}{c}
2 \\
5 \\
9 \\
15
\end{array}\right)}{\Longrightarrow}\left(\begin{array}{lll}
4 & 1 & 1 \\
3 & 3 & 2 \\
2 & 5 & 4 \\
1 & 7 & 8
\end{array}\right) \underset{\sum_{-2}=\left(\begin{array}{c}
5 \\
5 \\
6 \\
9
\end{array}\right)}{\Longrightarrow}\left(\begin{array}{lll}
4 & 7 & 1 \\
3 & 5 & 2 \\
2 & 3 & 4 \\
1 & 1 & 8
\end{array}\right) \underset{\sum_{-3}=\left(\begin{array}{c}
11 \\
8 \\
5 \\
2
\end{array}\right)}{\Longrightarrow} \\
& \left(\begin{array}{lll}
4 & 7 & 1 \\
3 & 5 & 2 \\
2 & 3 & 4 \\
1 & 1 & 8
\end{array}\right) \underset{\sum_{-1}=\left(\begin{array}{l}
8 \\
7 \\
7 \\
9
\end{array}\right)}{\Longrightarrow}\left(\begin{array}{lll}
2 & 7 & 1 \\
4 & 5 & 2 \\
3 & 3 & 4 \\
1 & 1 & 8
\end{array}\right) \underset{\sum_{-2}=\left(\begin{array}{l}
3 \\
6 \\
7 \\
9
\end{array}\right)}{\Longrightarrow}\left(\begin{array}{lll}
2 & 7 & 1 \\
4 & 5 & 2 \\
3 & 3 & 4 \\
1 & 1 & 8
\end{array}\right) \underset{\sum_{-3}=\left(\begin{array}{l}
9 \\
9 \\
6
\end{array}\right)}{\Longrightarrow} \\
& \left(\begin{array}{lll}
2 & 7 & 2 \\
4 & 5 & 1 \\
3 & 3 & 4 \\
1 & 1 & 8
\end{array}\right) \quad \checkmark \underset{\substack{ \\
\sum=\left(\begin{array}{l}
11 \\
10 \\
10 \\
10
\end{array}\right)}}{\Longrightarrow} \widehat{\operatorname{VaR}}_{\alpha}\left(L^{+}\right) \approx 10
\end{aligned}
$$

2) Where it fails (to compute the optimum of the maximin problem):

$$
\begin{aligned}
& \left(\begin{array}{lll}
1 & 1 & 1 \\
2 & 2 & 2 \\
3 & 3 & 3
\end{array}\right) \underset{\sum_{-1}=\left(\begin{array}{l}
2 \\
4 \\
6
\end{array}\right)}{\Longrightarrow}\left(\begin{array}{lll}
3 & 1 & 1 \\
2 & 2 & 2 \\
1 & 3 & 3
\end{array}\right) \underset{\sum_{-2}=\left(\begin{array}{l}
4 \\
4 \\
4
\end{array}\right)}{\Longrightarrow}\left(\begin{array}{lll}
3 & 3 & 1 \\
2 & 2 & 2 \\
1 & 1 & 3
\end{array}\right) \\
& \underset{\sum=\left(\begin{array}{l}
7 \\
6 \\
5
\end{array}\right)}{\Longrightarrow} \widehat{\mathrm{VaR}}_{\alpha}\left(L^{+}\right) \approx 5<6 \underset{\sum=\left(\begin{array}{l}
5 \\
6 \\
7
\end{array}\right)}{\Longrightarrow} \text { for }\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1 \\
3 & 1 & 2
\end{array}\right)
\end{aligned}
$$

Question (Toronto, 2014; Zurich 2015):

"How to choose $N \in \mathbb{N}$ and $\varepsilon>0$?"

- No real guidance given in papers. Embrechts et al. (2013, Table 3): Chosen $\varepsilon=0.1$ is roughly 0.000004% of the computed $\overline{\operatorname{VaR}}_{0.99}\left(L^{+}\right)$.
- Concerning ε, there are two problems:

1) It would be more natural to use relative tolerances, which guarantee that the change in the minimal row sum from $\underline{X}^{\alpha}\left(\bar{X}^{\alpha}\right)$ to $\underline{Y}^{\alpha}\left(\bar{Y}^{\alpha}\right)$ is of the right order.
2) ε is only used for checking individual "convergence" of \underline{s}_{N} and of \bar{s}_{N}. There is no guarantee that \underline{s}_{N} and \bar{s}_{N} are jointly close.

- Also, the algorithm should return more useful information, e.g., 1) $\left.\left|\left(\bar{s}_{N}-\underline{s}_{N}\right) / \bar{s}_{N}\right| ; 2\right)$ the individual tolerances reached for $\underline{s}_{N}, \bar{s}_{N}$; 3) the number of iterations used; 4) the row sums after each iteration; or 5) the number of oppositely ordered columns; see RA() and ARA().

2.2 Empirical performance under various scenarios

- As studies, we consider the following:

Study 1: $N \in\left\{2^{7}, 2^{8}, \ldots, 2^{17}\right\}$ and $d=20$
Study 2: $N=256$ and $d \in\left\{2^{2}, 2^{3}, \ldots, 2^{10}\right\}$ (not considered further)

- In each study we investigate the following cases (based on $\alpha=0.99$, $\varepsilon=0.001$ and Pareto $F_{j}(x)=1-(1+x)^{-\theta_{j}}$ margins):

Case $\mathrm{HH}: \theta_{1}, \ldots, \theta_{d}$ equidistant in $[0.6,0.4]$ (all heavy-tailed)
Case LH: $\theta_{1}, \ldots, \theta_{d}$ equidistant in $[1.5,0.5]$ (light- to heavy-tailed)
Case LL : $\theta_{1}, \ldots, \theta_{d}$ equidistant in $[1.6,1.4]$ (all light-tailed)
Case $\mathrm{H}_{1} \mathrm{~L}: \theta_{2}, \ldots, \theta_{d}$ as in Case LL and $\theta_{1}=0.5$ (only first heavy-tailed)

- We consider $B=200$ replicated simulation runs (\Rightarrow empirical 95\% confidence intervals); this allows us to study the effect of randomization.

Results of Study 1 (N running, d fixed)

\Rightarrow The means over all B computed \underline{s}_{N} and \bar{s}_{N} converge as N increases.

\Rightarrow As N increases, run time (in s) increases (\approx linearly).

\Rightarrow The number of iterations rarely exceeds 12 as N increases.

\Rightarrow The rate of decrease (\# of opp. ordered columns) depends on the F_{j} 's (especially small for Case LL); $\varepsilon=$ NULL not useful

3 The Adaptive Rearrangement Algorithm

- Algorithmically improved RA for computing \underline{s}_{N} and \bar{s}_{N}; see ARA().
- Improvements:

1) Chooses more meaningful relative tolerances (and two!)
2) Adaptively chooses N

3.1 How the ARA works

Algorithm (ARA for computing $\overline{\operatorname{VaR}}_{\alpha}\left(L^{+}\right)$)

1) Fix $\alpha \in(0,1), F_{1}^{-}, \ldots, F_{d}^{-}$, a vector \boldsymbol{N} and relative tol. $\boldsymbol{\varepsilon}=\left(\varepsilon_{1}, \varepsilon_{2}\right)$.
2) For $N \in N$, do:
2.1) Compute the lower bound \underline{s}_{N} :
2.1.1) Define the (N, d)-matrix $\underline{X}^{\alpha}=\left(F_{j}^{-}\left(\alpha+\frac{(1-\alpha)(i-1)}{N}\right)\right)$.
2.1.2) Randomly permute each column of \underline{X}^{α}.
2.1.3) Iterate over each column of \underline{X}^{α} so that it becomes oppositely ordered to the sum of all others \Rightarrow Matrix \underline{Y}^{α}.
2.1.4) Repeat Step 2.1.3) until $\left|\frac{s\left(Y^{\alpha}\right)-s\left(X^{\alpha}\right)}{s\left(\underline{X}^{\alpha}\right)}\right| \leq \varepsilon_{1}$ or until maxiter is reached. Then set $\underline{s}_{N}=s\left(\underline{Y}^{\alpha}\right)$.
2.2) Compute the upper bound \bar{s}_{N} : Similarly as in Step 2.1), but based on $\bar{X}^{\alpha}=\left(F_{j}^{-}\left(\alpha+\frac{(1-\alpha) i}{N}\right)\right)$, compute $\bar{s}_{N}=s\left(\bar{Y}^{\alpha}\right)$.
2.3) If both ε_{1} tolerances hold and $\left|\frac{\bar{s}_{N}-\underline{s}_{N}}{\bar{s}_{N}}\right| \leq \varepsilon_{2}$, break.
3) Return $\left(\underline{s}_{N}, \bar{s}_{N}\right)$ (rearrangement range; taken as $\overline{\operatorname{VaR}}_{\alpha}\left(L^{+}\right)$bounds)

- If $\boldsymbol{N}=(N)$, the ARA reduces to the RA but uses relative individual tolerances and joint convergence is checked.
- Defaults (from simulations): $\boldsymbol{N}=\left(2^{8}, 2^{9}, \ldots, 2^{20}\right)$, maxiter $=12$
- A useful choice for ε may be $\varepsilon=(0.001,0.01)$; can be freely chosen in ARA().

3.2 Empirical performance under various scenarios

- As before: $d \in\{20,100\}$, the Cases $\mathrm{HH}, \mathrm{LH}, \mathrm{LL}, \mathrm{H}_{1} \mathrm{~L}$ and $B=200$
- $\varepsilon=\left(\varepsilon_{1}=0.1 \%, \varepsilon_{2} \in\{0.5 \%, 1 \%, 2 \%\}\right)$
- We investigate 1) $\underline{s}_{N}, \bar{s}_{N} ; 2$) the N used in the final iteration; 3) the run time (in s); 4) the number of oppositely ordered columns; and 5) the number of iterations over all columns (for the last N used).

Boxplots of the $\overline{\operatorname{VaR}}_{0.99}\left(L^{+}\right)$bounds \underline{s}_{N} (left) and \bar{s}_{N} (right):

$\Rightarrow \mathrm{Cl}$ are close; $\underline{s}_{N}, \bar{s}_{N}$ also close (as expected).
© 2015 Marius Hofert | University of Waterloo

\Rightarrow The N used differs for \underline{s}_{N} (left) and \bar{s}_{N} (right); but small for both.

\Rightarrow Doubling ε_{2} reduces run time by $\approx 50 \%$; good choice of ε_{2} is important.

\Rightarrow Only 1 or 2 are oppositely ordered (not worth spending more time...).

\Rightarrow The number of iterations consistently remains below 5 (over all B runs).

Outlook

- DCARA (Dimension Reduction Adaptive Rearrangement Algorithm)
- DRARA (Divide and Conquer Adaptive Rearrangement Algorithm)
- How to use the reordering from the last N used before doubling N ?
- How to apply the (A)RA without fitting the margins if the columns have different lengths?
- How to incorporate some information about the underlying copula C ?
- Fast $\mathrm{C} / \mathrm{C}++$ version

References

Bernard, C. and McLeish, D. (2015), Algorithms for Finding Copulas Minimizing Convex Functions of Sums, http://arxiv.org/abs/1502. 02130 (2015-02-24).
Bernard, C., Rüschendorf, L., and Vanduffel, S. (2013), Value-at-Risk bounds with variance constraints, http://papers.ssrn.com/sol3/ papers.cfm?abstract_id=2342068 (2015-02-20).
Bernard, C., Denuit, M., and Vanduffel, S. (2014), Measuring Portfolio Risk under Partial Dependence Information, http://papers.ssrn.com/ sol3/papers.cfm?abstract_id=2406377 (2015-02-20).
Embrechts, P., Puccetti, G., and Rüschendorf, L. (2013), Model uncertainty and VaR aggregation, Journal of Banking and Finance, 37(8), 27502764.

Embrechts, P., Puccetti, G., Rüschendorf, L., Wang, R., and Beleraj, A. (2014), An academic response to Basel 3.5, Risks, 2(1), 25-48.

Haus, U.-U. (2014), Bounding stochastic dependence, complete mixability of matrices, and multidimensional bottleneck assignment problems, http://arxiv.org/abs/1407.6475.
Jakobsons, E., Han, X., and Wang, R. (2015), General Convex Order on Risk Aggregation, Scandinavian Actuarial Journal.
Puccetti, G. and Rüschendorf, L. (2012), Computation of sharp bounds on the distribution of a function of dependent risks, Journal of Computational and Applied Mathematics, 236(7), 1833-1840.
Puccetti, G. and Rüschendorf, L. (2013), Sharp bounds for sums of dependent risks, Journal of Applied Probability, 50(1), 42-53.
Wang, R., Peng, L., and Yang, J. (2013), Bounds for the sum of dependent risks and worst Value-at-Risk with monotone marginal densities, Finance and Stochastics, 17(2), 395-417.

