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Disclaimer:
This is my first work around computing worst(/best) Value-at-Risk.
I am not an expert on the theory for computing these bounds.
I will address practical aspects ( : Pkg qrmtools, demo(VaR_bounds))

Recall: H(x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)) (Sklar’s Theorem)

The problem: Computing worst(/best) VaR
We are given (one-period ahead) losses L1 ∼ F1, . . . , Ld ∼ Fd (e.g., based
on fitted F1, . . . , Fd) with known margins and unknown copula C. Consider

L+ =
d∑
j=1

Lj and VaRα(L+) = F−
L+(α) = inf{x ∈ R : FL+(x) ≥ α}.

Question: How to compute bounds VaRα(L+), VaRα(L+) on VaRα(L+)?
(i.e., the best and worst VaRα(L+) over the set of all copulas)
We will focus on VaRα(L+).
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We focus on two cases:

1) The homogeneous case (i.e., F1 = · · · = Fd =: F ):

The dual bound approach (see Puccetti and Rüschendorf (2013),
Embrechts et al. (2013, Prop. 4))
Wang’s approach (see Embrechts et al. (2014, Prop. 1))

2) The inhomogeneous case: The Rearrangement Algorithm (RA; see
Puccetti and Rüschendorf (2012), Embrechts et al. (2013))

Not discussed here are, e.g.:

Bernard et al. (2013) and Bernard et al. (2014) (partial information
known about C)
Bernard and McLeish (2015), Jakobsons et al. (2015) (alternatives to
the RA)
Other references (quickly growing in this field).
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1 Solutions in the homogeneous case
Wang’s approach for computing VaRα(L+)

Assume that F = F1 has a decreasing density on [β,∞).
Let ac = α+ (d− 1)c, bc = 1− c and

Ī(c) := 1
bc − ac

∫ bc

ac
F−(y) dy, c ∈ (0, (1− α)/d]

Embrechts et al. (2014, Prop. 1) and Wang et al. (2013, Cor. 3.7):

For L ∼ F and α ∈ [F (β), 1),

VaRα(L+) = dE[L |L ∈ [F−(ac), F−(bc)]] =
Subs.

dĪ(c),

where c is the smallest number in (0, (1− α)/d] such that

Ī(c) ≥ d− 1
d

F−(ac) + 1
d
F−(bc).
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Algorithm (Computing VaRα(L+) based on Wang’s approach;
worst_VaR_hom(..., method="Wang"))

1) Specify an initial interval [cl, cu] with 0 ≤ cl < cu < (1− α)/d.
2) Root-finding in c: Iterate over c ∈ [cl, cu] until a c∗ is found for

which
h(c∗) := Ī(c∗)−

(d− 1
d

F−(ac∗) + 1
d
F−(bc∗)

)
= 0.

3) Then return (d− 1)F−(ac∗) + F−(bc∗).

We only need to know the quantile function F− to compute VaRα(L+).
The numerical integration (for Ī) is typically straightforward; explicit
for Par(θ) margins.
It remains unclear how to choose [cl, cu] (open problem in general):
I cl: h(0) = −∞ (fine) but also undefined (∞−∞; for Par(θ ∈ (0, 1]))
I cu: Numerically problematic: h((1− α)/d) =

l’H.
0
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How can we choose cl and cu for F = Par(θ)?

Proposition (cl, cu, worst_VaR_hom(..., method="Wang.Par"))
The initial interval end points cl and cu can be chosen as

cl =


(1−θ)(1−α)

d , if θ ∈ (0, 1),
1−α

(d+1)
e
e−1 +d−1

, if θ = 1,
1−α

(d/(θ−1)+1)θ+d−1 , if θ ∈ (1,∞),

cu =


(1−α)(d−1+θ)
(d−1)(2θ+d) , if θ 6= 1,
1−α

3d/2−1 , if θ = 1.

Proof (idea).
cl: Rewrite h(c) = 0 ⇔ h2(xc) = 0 for xc = (1− α)/c− (d− 1) and
h2(x) = ( d

1−θ − 1)x− 1
θ

+1 − (d− 1)x− 1
θ + x− (d θ

1−θ + 1), x ∈ [1,∞).
Separately for θ ∈ (0, 1), θ = 1 and θ ∈ (1,∞), approximate h2 from
below by an invertible function with a root xc > 1; then solve for c.
cu: The inflection point of h2 is a lower bound xc on the root of h2;
then solve for c.
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Example (VaRα(L+) for Par(θ) risks)
Consider F = Par(θ) and α = 0.99 and plot the objective function h(c)
for d = 8 (left) and d = 100 (right):
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(Values h(c) ≤ 0 have been omitted due to log-scale)
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VaRα(L+) for various α, θ and d = 8 (left) and d = 100 (right):
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Nice, right?
Anything else?
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Example (Comparison for Par(θ) risks)

Wang’s approach: with/without num. integration for Ī; without num.
integration and uniroot()’s default tolerance
Dual bound approach: Numerically trickier. . . two nested root-findings
Lower/upper bound RA bounds (results standardized by the h2 approach)
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Remark/summary (Word of warning; may apply beyond Par(θ))
1) As just seen, the tolerance of uniroot() is critical; see below (right)
2) Without cu: see (left/right) for h((1−α)/d) = .Machine$double.xmin
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⇒ These are things that are not recognized unless thoroughly tested!
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2 The Rearrangement Algorithm
For the inhomogeneous case for computing (VaRα(L+) and) VaRα(L+)

The theoretical convergence of sN − sN → 0 is an open problem.
We focus on practical aspects, not the theory.

2.1 How the RA works
Two columns a, b are oppositely ordered if (ai − aj)(bi − bj) ≤ 0 ∀ i, j.
Row-sum operator s(X) = min1≤i≤N

∑
1≤j≤d xij

Algorithm (RA for computing VaRα(L+))
1) Fix α ∈ (0, 1), F−

1 , . . . , F
−
d , N ∈ N (# of discr. points), ε ≥ 0 (tol.)

2) Compute the lower bound sN :

2.1) Define the (N, d)-matrix Xα =
(
F−
j

(
α+ (1−α)(i−1)

N

))
i,j
.

2.2) Randomly permute each column of Xα (to avoid sN − sN 9 0)
© 2015 Marius Hofert | University of Waterloo 11



2.3) Iterate over each column of Xα and permute it so that it becomes
oppositely ordered to the sum of all others ⇒ Matrix Y α

2.4) Repeat Step 2.3) until s(Y α)− s(Xα) ≤ ε, then set sN = s(Y α).

3) Compute the upper bound sN : Similarly as in Step 2), but based on
X
α =

(
F−
j

(
α+ (1−α)i

N

))
i,j
, compute sN = s(Y α).

4) Return (sN , sN ) (rearrangement range; taken as VaRα(L+) bounds)

Goal: Solving the maximin problem (minimax for VaRα). This can fail,
though; see Haus (2014, Lemma 6) for a counter-example.

Intuition: Obtaining a completely mixable matrix (row sums constant).
This minimizes the variance of L+|L+ > F−

L+(α) to concentrate more
of the 1− α mass of FL+ in its tail. ⇒ VaRα(L+) ↑

A picture is worth a thousand words. . .
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VaRα(L+) ≤ ESα(L+) =
L+ cont.

E[L+ |L+ > VaRα(L+)]

fL+(x)

VaRα(L+) ESα(L+)

α

Ideally: F1, . . . , Fd jointly mixable ⇒ P(L1 + · · ·+Ld = c) = 1, c ∈ R
(in the tail).
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Example

1) Where it works (to compute the optimum of the maximin problem):
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2) Where it fails (to compute the optimum of the maximin problem):1 1 1
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Question (Toronto, 2014; Zurich 2015):
“How to choose N ∈ N and ε > 0?”

No real guidance given in papers. Embrechts et al. (2013, Table 3):
Chosen ε = 0.1 is roughly 0.000004% of the computed VaR0.99(L+).
Concerning ε, there are two problems:

1) It would be more natural to use relative tolerances, which guarantee
that the change in the minimal row sum from Xα (Xα) to Y α (Y α)
is of the right order.

2) ε is only used for checking individual “convergence” of sN and of
sN . There is no guarantee that sN and sN are jointly close.

Also, the algorithm should return more useful information, e.g., 1)
|(sN − sN )/sN |; 2) the individual tolerances reached for sN , sN ; 3) the
number of iterations used; 4) the row sums after each iteration; or 5)
the number of oppositely ordered columns; see RA() and ARA().
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2.2 Empirical performance under various scenarios
As studies, we consider the following:

Study 1: N ∈ {27, 28, . . . , 217} and d = 20

Study 2: N = 256 and d ∈ {22, 23, . . . , 210} (not considered further)

In each study we investigate the following cases (based on α = 0.99,
ε = 0.001 and Pareto Fj(x) = 1− (1 + x)−θj margins):

Case HH : θ1, . . . , θd equidistant in [0.6, 0.4] (all heavy-tailed)
Case LH : θ1, . . . , θd equidistant in [1.5, 0.5] (light- to heavy-tailed)
Case LL : θ1, . . . , θd equidistant in [1.6, 1.4] (all light-tailed)
Case H1L: θ2, . . . , θd as in Case LL and θ1 = 0.5 (only first heavy-tailed)

We consider B = 200 replicated simulation runs (⇒ empirical 95%
confidence intervals); this allows us to study the effect of randomization.
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Results of Study 1 (N running, d fixed)
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⇒ The means over all B computed sN and sN converge as N increases.
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⇒ As N increases, run time (in s) increases (≈ linearly).

© 2015 Marius Hofert | University of Waterloo 18



0 30000 60000 90000 120000

0
2

4
6

8
10

12
14

N

N
um

be
r 

of
 it

er
at

io
ns

Mean (upper bound)
Bootstrapped 95% CIs
Mean (lower bound)
Bootstrapped 95% CIs

C
as

e 
H

H
0 30000 60000 90000 120000

0
2

4
6

8
10

12
14

N
N

um
be

r 
of

 it
er

at
io

ns

Mean (upper bound)
Bootstrapped 95% CIs
Mean (lower bound)
Bootstrapped 95% CIs

C
as

e 
LH

0 30000 60000 90000 120000

0
2

4
6

8
10

12
14

N

N
um

be
r 

of
 it

er
at

io
ns

Mean (upper bound)
Bootstrapped 95% CIs
Mean (lower bound)
Bootstrapped 95% CIs

C
as

e 
LL

0 30000 60000 90000 120000

0
2

4
6

8
10

12
14

N

N
um

be
r 

of
 it

er
at

io
ns

Mean (upper bound)
Bootstrapped 95% CIs
Mean (lower bound)
Bootstrapped 95% CIs

C
as

e 
H

1L

⇒ The number of iterations rarely exceeds 12 as N increases.
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⇒ The rate of decrease (# of opp. ordered columns) depends on the Fj ’s
(especially small for Case LL); ε = NULL not useful
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3 The Adaptive Rearrangement Algorithm
Algorithmically improved RA for computing sN and sN ; see ARA().
Improvements:

1) Chooses more meaningful relative tolerances (and two!)
2) Adaptively chooses N

3.1 How the ARA works
Algorithm (ARA for computing VaRα(L+))
1) Fix α ∈ (0, 1), F−

1 , . . . , F
−
d , a vector N and relative tol. ε = (ε1, ε2).

2) For N ∈N , do:

2.1) Compute the lower bound sN :

2.1.1) Define the (N, d)-matrix Xα =
(
F−
j

(
α+ (1−α)(i−1)

N

))
.

2.1.2) Randomly permute each column of Xα.
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2.1.3) Iterate over each column of Xα so that it becomes oppo-
sitely ordered to the sum of all others ⇒ Matrix Y α.

2.1.4) Repeat Step 2.1.3) until
∣∣∣ s(Y α)−s(Xα)

s(Xα)

∣∣∣ ≤ ε1 or until maxiter
is reached. Then set sN = s(Y α).

2.2) Compute the upper bound sN : Similarly as in Step 2.1), but based
on Xα =

(
F−
j

(
α+ (1−α)i

N

))
, compute sN = s(Y α).

2.3) If both ε1 tolerances hold and
∣∣∣ sN−sN

sN

∣∣∣ ≤ ε2, break.

3) Return (sN , sN ) (rearrangement range; taken as VaRα(L+) bounds)

If N = (N), the ARA reduces to the RA but uses relative individual
tolerances and joint convergence is checked.
Defaults (from simulations): N = (28, 29, . . . , 220), maxiter = 12

A useful choice for ε may be ε = (0.001, 0.01); can be freely chosen in
ARA().
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3.2 Empirical performance under various scenarios
As before: d ∈ {20, 100}, the Cases HH, LH, LL, H1L and B = 200
ε = (ε1 = 0.1%, ε2 ∈ {0.5%, 1%, 2%})
We investigate 1) sN , sN ; 2) the N used in the final iteration; 3) the
run time (in s); 4) the number of oppositely ordered columns; and 5)
the number of iterations over all columns (for the last N used).

Boxplots of the VaR0.99(L+) bounds sN (left) and sN (right):
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⇒ CIs are close; sN , sN also close (as expected).
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⇒ The N used differs for sN (left) and sN (right); but small for both.
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⇒ Doubling ε2 reduces run time by ≈ 50%; good choice of ε2 is important.
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⇒ Only 1 or 2 are oppositely ordered (not worth spending more time...).
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⇒ The number of iterations consistently remains below 5 (over all B runs).
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Outlook
DCARA (Dimension Reduction Adaptive Rearrangement Algorithm)
DRARA (Divide and Conquer Adaptive Rearrangement Algorithm)
How to use the reordering from the last N used before doubling N?
How to apply the (A)RA without fitting the margins if the columns have
different lengths?
How to incorporate some information about the underlying copula C?
Fast C/C++ version

© 2015 Marius Hofert | University of Waterloo 25



References
Bernard, C. and McLeish, D. (2015), Algorithms for Finding Copulas

Minimizing Convex Functions of Sums, http://arxiv.org/abs/1502.
02130 (2015-02-24).

Bernard, C., Rüschendorf, L., and Vanduffel, S. (2013), Value-at-Risk
bounds with variance constraints, http://papers.ssrn.com/sol3/
papers.cfm?abstract_id=2342068 (2015-02-20).

Bernard, C., Denuit, M., and Vanduffel, S. (2014), Measuring Portfolio Risk
under Partial Dependence Information, http://papers.ssrn.com/
sol3/papers.cfm?abstract_id=2406377 (2015-02-20).

Embrechts, P., Puccetti, G., and Rüschendorf, L. (2013), Model uncertainty
and VaR aggregation, Journal of Banking and Finance, 37(8), 2750–
2764.

Embrechts, P., Puccetti, G., Rüschendorf, L., Wang, R., and Beleraj, A.
(2014), An academic response to Basel 3.5, Risks, 2(1), 25–48.

© 2015 Marius Hofert | University of Waterloo 26

http://arxiv.org/abs/1502.02130
http://arxiv.org/abs/1502.02130
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2342068
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2342068
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2406377
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2406377


Haus, U.-U. (2014), Bounding stochastic dependence, complete mixabil-
ity of matrices, and multidimensional bottleneck assignment problems,
http://arxiv.org/abs/1407.6475.

Jakobsons, E., Han, X., and Wang, R. (2015), General Convex Order on
Risk Aggregation, Scandinavian Actuarial Journal.

Puccetti, G. and Rüschendorf, L. (2012), Computation of sharp bounds on
the distribution of a function of dependent risks, Journal of Computa-
tional and Applied Mathematics, 236(7), 1833–1840.

Puccetti, G. and Rüschendorf, L. (2013), Sharp bounds for sums of depen-
dent risks, Journal of Applied Probability, 50(1), 42–53.

Wang, R., Peng, L., and Yang, J. (2013), Bounds for the sum of dependent
risks and worst Value-at-Risk with monotone marginal densities, Finance
and Stochastics, 17(2), 395–417.

© 2015 Marius Hofert | University of Waterloo 27


	1 Solutions in the homogeneous case
	2 The Rearrangement Algorithm
	3 The Adaptive Rearrangement Algorithm
	References

