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First.

� Second order stochastic dominance
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Motivating example.

Second order stochastic dominance.

M1,1(IR,B) set of all (Borel) probability measures on IR
with finite mean

U set of all (strictly) increasing, (strictly) concave functions
u : IR→ IR

for µ, ν ∈M1,1(IR,B)

µ �SSD ν :⇔ ∀u ∈ U :

∫
uµ(dx) ≥

∫
u ν(dx),

i.e., every “rational” (= risk averse) decision maker prefers
µ over ν.
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Motivating example.

Stochastic dominance.

µ �SSD ν :⇔ ∀u ∈ U :

∫
uµ(dx) ≥

∫
u ν(dx),

a reflexive, transitive, antisymmetric order relation on
M1,1(IR,B), i.e. a partial order

defined through a family of real-valued functions on
M1,1(IR,B),

µ 7→
∫
uµ(dx).

“hard to maximize,” i.e. it is difficult to identify a “best”
element in a set N ⊆M1,1(IR,B) w.r.t. �SSD.
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Motivating example.

Stochastic dominance.

µ �SSD ν :⇔ ∀u ∈ U :

∫
uµ(dx) ≥

∫
u ν(dx),

kind of annoying on a random variable level: the relation

X �SSD Y :⇔ ∀u ∈ U :

∫
u(X) dP ≥

∫
u(Y ) dP

for X,Y ∈ L1(Ω,F , P ) is no longer antisymmetric, and it is
not a vector order on L1.

Questions. Improve the order structure? How to maximize
w.r.t. �SSD?
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Bacic question.

Note. Stochastic dominance of second order is just one
instance of an integral stochastic order; in turn, integral
stochastic orders are just examples for order relations defined
through families of scalar functions.

Note. Such orders are usually non-total, i.e. they do not
satisfy the vNM axioms.

Basic question. How to deal with non-total preferences, in
particular how to maximize/minimize w.r.t. such orders?
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Basic answer.

Today’s answer.

Turn the problem into a complete lattice-valued one and use set
optimization concepts.
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Next.

� Set relations via scalar families.
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Set relations via scalar families.

Preorders via extended real-valued functions.

(Z,�) a preordered set, i.e. � is reflexive and transitive

Ψ collection of functions ψ : Z → IR ∪ {±∞} satisfying

z1 � z2 ⇔ ∀ψ ∈ Ψ: ψ(z1) ≤ ψ(z2)

for z1, z2 ∈ Z.

Question.1 How can Ψ be used to define an order on

P (Z) = {A | A ⊆ Z}?

1
It is already a not-so-apparent idea to ask this question.
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Set relations via scalar families.

Inf-extension of ψ ∈ Ψ is ψM : P (Z)→ IR ∪ {±∞} defined by

ψM(D) = inf
z∈D

ψ(z).

Inf-extension of � to P (Z) is �Ψ defined by

D1 �Ψ D2 ⇔ ∀ψ ∈ Ψ: ψM(D1) ≤ ψM(D2).

The relation �Ψ is a preorder on P (Z), a new “set relation!” It
extends � from Z to P(Z) since by “⇔”

z1 � z2 ⇔ {z1} �Ψ {z2} .
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Set relations via scalar families.

A closure operator associated with �Ψ: For D ⊆ Z,

cl ΨD =
⋂
ψ∈Ψ

{
z ∈ Z | ψM(D) ≤ ψ(z)

}
.

Proposition

For all D ∈ P(Z),

(i) D ⊆ cl ΨD,

(ii) cl ΨD = cl Ψ(cl ΨD),

(iii) C ⊆ D ⇒ cl ΨC ⊆ cl ΨD.

Note. This means that D 7→ cl ΨD is a closure (hull) operator.
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Set relations via scalar families.

The previous proposition guarantees that the following set is
well-defined:

P(Z,Ψ) = {D ∈ P(Z) | D = cl ΨD}.

Proposition

On P(Z,Ψ), the relation �Ψ coincides with ⊇. The pair
(P(Z,Ψ),⊇) is a complete lattice, and for A ⊆ P(Z,Ψ)

inf A = cl Ψ

⋃
A∈A

A and supA =
⋂
A∈A

A

where inf A = ∅ and supA = Z whenever A = ∅. The greatest
element in (P (Z,Ψ) ,⊇) is ∅, the least element is Z.

Note. This is true without further assumptions to �.
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Set relations via scalar families.

Inf-stability.

Proposition

Let A ⊆ P(Z,Ψ). Then

∀ψ ∈ Ψ: inf
A∈A

ψM(A) = ψM
(

inf
A∈A

A

)
.

Note. “Inf on the left” in IR ∪ {±∞}, “inf on the right” in
(P(Z,Ψ),⊇).

Note. “Sup-stability” not true in general. But one can start
with

ψO(D) = sup
z∈D

ψ(z), cl ΨD =
⋂
ψ∈Ψ

{
z ∈ Z | ψ(z) ≤ ψO(D)

}
.
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Set relations via scalar families.

Embedding (Z,�) ↪→ (P(Z,Ψ),⊇). Define a : Z → P(Z,Ψ)
by

a(z) = cl Ψ {z} =
⋂
ψ∈Ψ

{y ∈ Z | ψ(z) ≤ ψ(y)}.

Then, for all z ∈ Z
(i) z ∈ a(z),
(ii) a(z) ∈ P(Z,Ψ) and

z1 � z2 ⇔ {z1} �Ψ {z2} ⇔ a(z1) ⊇ a(z2),

(iii) ψ(z) = ψM(a(z)).
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Set relations via scalar families.

Set optimization. Let F : X → Z be a function. Instead of

minimize F (x) over X w.r.t. �

solve the complete lattice-valued problem

minimize (a ◦ F )(x) = a(F (x)) over X w.r.t. ⊇

with a ◦ F : X → P(Z,Ψ).

Questions. How can we do this? Optimality, (Lagrange)
Questions. duality, algorithms? And why should we do this?
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Set relations via scalar families.

Summary:

“Set relations” can be defined as (canonical) extensions of
preorders given by a family of scalar functions.

Finding “best” decisions/alternatives becomes a complete
lattice-valued set optimization problem: a new paradigm.

All depends on tractability of

cl ΨD =
⋂
ψ∈Ψ

{
z ∈ Z | ψM(D) ≤ ψ(z)

}
as (P(Z,Ψ) = {D ∈ P(Z) | D = cl ΨD} ,⊇) is a complete
lattice, and on the properties of ψM(D) = infz∈D ψ(z).
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Next.

� Examples
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Examples.

Multi-utility representations. Let (Z,�) be a preordered
set.

A multi-loss representation of � on Z is a family Ψ = L of
functions ` : Z → IR satisfying

z1 � z2 ⇔ ∀` ∈ L : `(z1) ≤ `(z2).

Of course. Negative loss = utility.

Question. Does a given preorder have a multi-loss
representation? −→ Evren, Ok etc.
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Examples.

Indicator functions of level sets. For z ∈ Z, denote

L(z) = {y ∈ Z | y � z} and U(z) = {y ∈ Z | z � y}.

For A ⊆ Z, let IA : Z → IR ∪ {+∞} be the function defined by

IA(z) =

{
0 : z ∈ A

+∞ : z 6∈ A

Result 1. I = {IL(z)}z∈Z represents �, i.e. for z1, z2 ∈ Z,

z1 � z2 ⇔ ∀z ∈ Z : IL(z)(z1) ≤ IL(z)(z2).

Result 2. For D ⊆ Z, a(z) = U(z) and

cl ID = {y ∈ Z | ∃d ∈ D : d � y} = {y ∈ Z | D ∩ L(y) 6= ∅}.
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Examples.

Second order stochastic dominance re-visited.

(Ω,F , P ) a probability space, Z = L1 = L1(Ω,F , P )

X,Y ∈ L1 are in relation w.r.t. 2nd order stochastic
dominance, i.e. X �SSD Y if, and only if,

∀α ∈ (0, 1] : AV@Rα(X) ≤ AV@Rα(Y ).

The function X 7→ AV@Rα(X) is called the average value
at risk defined by either one of:

AV@Rα(X) =
1

α

∫ α

0
V@Rβ(X)dβ = inf

r∈IR

{
1

α
E[(r − x)+]− r

}
.

So, Ψ = {AV@Rα}α∈(0,1] on Z = L1 works as well for SSD.

Question. cl Ψ and P(Z,Ψ)?
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Examples.

Vector orders.

Z a locally convex, real linear space, C ⊆ Z a convex cone
with 0 ∈ C, clC 6= Z;

z1 ≤C z2 ⇔ z2 − z1 ∈ C ⇔ z1 + C ⊇ z2 + C

defines a vector preorder ≤C on Z.

Ψ = C+ where

C+ = {z∗ ∈ Z∗ | ∀z ∈ C : z∗(z) ≥ 0}

for D ⊆ Z, ψ ∈ C+

ψM(D) = inf
z∈D

z∗(z)

is just the negative of the support function of D at −z∗.
By separation,

cl C+D= cl co (D + C),

P(Z,C+)= {D ∈ P(Z) | D = cl co (D + C)} = G(Z,C).

.
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Examples.

Conclusion. (G(Z,C),⊇) is a complete lattice with

inf A = cl co
⋃
A∈A

A and supA =
⋂
A∈A

A

for A ⊆ G(Z,C).

The embedding function a : Z → G(Z,C) is given by
a(z) = z + clC.

For C = {0} the class of all closed convex sets is obtained with
Ψ = C+ = Z∗.

See Hamel et al. (70+ pp., 230+ references):
Set Optimization - A Rather Short Introduction, ArXiv, 2014.
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Examples.

Multi-probability representations. (Bewley preferences)

(Ω,F) measureable space, L0 = L0(Ω,F) linear space of
measurable functions X : Ω→ IR, Π set of probability
measures on (Ω,F).

u : IR→ IR ∪ {−∞} upper semicontinuous, concave, strictly
increasing and bounded (from above).

Define ψ : L0 → IR ∪ {−∞} by

ψ(Z) = EP [u(Z)] =: (EP ◦ u)(Z).

A preorder is defined via

Z1 � Z2 ⇔ ∀P ∈ Π: EP [u(Z1)] ≤ EP [u(Z2)] .
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Examples.

The preorder here is defined via

Z1 � Z2 ⇔ ∀P ∈ Π: EP [u(Z1)] ≤ EP [u(Z2)],

and one wants to maximize!

Therefore, the sup-extension is needed:

ψO(D) = sup
Z∈D

EP [u(Z)]

as well as the corresponding closure operator.
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Examples.

The family
E =

{
EP ◦ u

}
P∈Π

represents �; for D ⊆ L0(Ω,F)

cl ED =
⋂
P∈Π

{
Y ∈ L0 | EP [u(Y )] ≤ sup

Z∈D
EP [u(Z)]

}
.

In particular, b(Z) = cl E {Z} is

b(Z) =
⋂
P∈Π

{
Y ∈ L0 | EP [u(Y )] ≤ EP [u(Z)]

}
=

{
Y ∈ L0 | sup

P∈Π

{
EP [u(Y )]− EP [u(Z)]

}
≤ 0

}
.
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Examples.

The utility maximization problem under uncertainty. In(
P(L0,⊆)

)
solve

maximize b(Z) over Z ⊆ L0

where

b(Z) =

{
Y ∈ L0 | sup

P∈Π

{
EP [u(Y )]− EP [u(Z)]

}
≤ 0

}
,

and Z is a set of admissible elements.

Note. A totally new problem.
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Finally.

� The set optimization approach to preference optimization.
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The set optimization approach.

Problem. Given (Z,�,Ψ), F : X → Z and X ⊆ X, find

‘best’ {F (x) | x ∈ X} .

Set-valued extension. Define f : X → P(Z,Ψ) by

f(x) = (a ◦ F )(x) = a(F (x)) = cl Ψ {F (x)}

and look for
inf {f(x) | x ∈ X}

along with appropriate “solutions.”
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The set optimization approach.

Question.

What is a solution of a set optimization problem? In particular,
of a P(Z,Ψ)-valued problem?
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The set optimization approach.

Definition

Let (L,≤) be a complete lattice, X 6= ∅ a set and f : X → L.

A set M ⊆ L is called an infimizer for f if

inf {f(x) | x ∈M} = inf {f(x) | x ∈ X} .

An element x̄ ∈ X is called a minimizer for f if

x ∈ X, f(x) ≤ f(x̄) ⇒ f(x) = f(x̄).

A set M ⊆ X is called a solution for the problem

minimize f over X

if M is an infimizer and each m ∈M is a minimizer for f .
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The set optimization approach.

Comments.

Due to Heyde/Löhne 2011 with precursor Hamel 2004.

Infimum attainment and minimality do not coincide
(anymore).

Clear-cut concept with no further assumptions to �.

Different from (and more general than) ‘vector
optimization’ and ‘multi-criteria decision making’
approaches.

However, no link to Ψ. Not even if the complete lattice is
(L,≤) = (P(Z,Ψ),⊇). Another definition is required.
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The set optimization approach.

Definition (Hamel, Schrage 2015)

(Z,�,Ψ) as before, f : X → (P(Z,Ψ),⊇).

A set M ⊆ X is called a Ψ-infimizer for f if

∀ψ ∈ Ψ: ψM
(

inf
x∈M

f(x)

)
= ψM

(
inf
x∈X

f(x)

)
.

An element x̄ ∈ X is called a Ψ-minimizer for f if

∃ψ ∈ Ψ: ψM(f(x̄)) = ψM
(

inf
x∈X

f(x)

)
.

A set M ⊆ X is called a Ψ-solution for the problem

minimize f over X

if M is a Ψ-infimizer and each m ∈M is a Ψ-minimizer for f .
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The set optimization approach.

Comments.

Need to know infx∈X f(x)–this is a new feature.

Ψ-minimizers can be found by solving scalar problems:

minimize ψM(f(x)) over X.

So, it is important to study functions of the type

(ψ ◦ f)(x) = inf
z∈f(x)

ψ(z) = ψM(f(x)).

If ψ = z∗ is continuous linear, this is a version of the
support function of the set f(x).
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The set optimization approach.

Another comment. The mathematical fun starts here:

Existence (and uniqueness) of solutions,

optimality conditions,

duality,

numerical representation of set-valued functions and
algorithms etc.

Good news. In a “linear space set-up,” most of the above
already exists.
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The set optimization approach.

Program. Do this (= ψM, cl Ψ, a, optimization) for

a) stochastic orders,

b) multi-utility representations,

c) Bewley preferences,

d) a merge of b) and c)

e) for multi-variate random variables, vector lotteries etc.
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Last slide.

Thank you for the dance.
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