Stochastic Orders, Multi-Utility Representations and Central Regions.

A Set Optimization Perspective.

ANDREAS H. HAMEL Free University Bozen

WU Wien, October 2015

- A motivating example: second order stochastic dominance
- \blacklozenge A general framework: set relations via scalar families
- Examples
- \blacklozenge The set optimization approach to preference optimization

\blacklozenge Second order stochastic dominance

Second order stochastic dominance.

• $\mathcal{M}_{1,1}(\mathbb{R},\mathcal{B})$ set of all (Borel) probability measures on \mathbb{R} with finite mean

Second order stochastic dominance.

- $\mathcal{M}_{1,1}(\mathbb{R}, \mathcal{B})$ set of all (Borel) probability measures on \mathbb{R} with finite mean
- \mathcal{U} set of all (strictly) increasing, (strictly) concave functions $u \colon \mathbb{R} \to \mathbb{R}$

Second order stochastic dominance.

- $\mathcal{M}_{1,1}(\mathbb{R}, \mathcal{B})$ set of all (Borel) probability measures on \mathbb{R} with finite mean
- \mathcal{U} set of all (strictly) increasing, (strictly) concave functions $u \colon \mathbb{R} \to \mathbb{R}$

• for
$$\mu, \nu \in \mathcal{M}_{1,1}(\mathbb{R}, \mathcal{B})$$

$$\mu \succeq_{SSD} \nu \quad :\Leftrightarrow \quad \forall u \in \mathcal{U} \colon \int u \, \mu(dx) \geq \int u \, \nu(dx),$$

i.e., every "rational" (= risk averse) decision maker prefers μ over $\nu.$

$$\mu \succeq_{SSD} \nu \quad :\Leftrightarrow \quad \forall u \in \mathcal{U} \colon \int u \, \mu(dx) \geq \int u \, \nu(dx),$$

• a reflexive, transitive, antisymmetric order relation on $\mathcal{M}_{1,1}(\mathbb{R},\mathcal{B})$, i.e. a partial order

$$\mu \succeq_{SSD} \nu \quad :\Leftrightarrow \quad \forall u \in \mathcal{U} \colon \int u \, \mu(dx) \geq \int u \, \nu(dx),$$

- a reflexive, transitive, antisymmetric order relation on $\mathcal{M}_{1,1}(\mathbb{R},\mathcal{B})$, i.e. a partial order
- defined through a family of real-valued functions on $\mathcal{M}_{1,1}(\mathbb{R},\mathcal{B}),$

$$\mu \mapsto \int u \, \mu(dx).$$

$$\mu \succeq_{SSD} \nu \quad :\Leftrightarrow \quad \forall u \in \mathcal{U} \colon \int u \, \mu(dx) \geq \int u \, \nu(dx),$$

- a reflexive, transitive, antisymmetric order relation on $\mathcal{M}_{1,1}(\mathbb{R},\mathcal{B})$, i.e. a partial order
- defined through a family of real-valued functions on $\mathcal{M}_{1,1}(\mathbb{R},\mathcal{B}),$

$$\mu \mapsto \int u \, \mu(dx).$$

• "hard to maximize," i.e. it is difficult to identify a "best" element in a set $\mathcal{N} \subseteq \mathcal{M}_{1,1}(\mathbb{R}, \mathcal{B})$ w.r.t. \succeq_{SSD} .

$$\mu \succeq_{SSD} \nu \quad :\Leftrightarrow \quad \forall u \in \mathcal{U} \colon \int u \, \mu(dx) \ge \int u \, \nu(dx),$$

• kind of annoying on a random variable level: the relation

$$X \succeq_{SSD} Y \quad :\Leftrightarrow \quad \forall u \in \mathcal{U} \colon \int u(X) \, dP \ge \int u(Y) \, dP$$

for $X, Y \in L^1(\Omega, \mathcal{F}, P)$ is no longer antisymmetric, and it is not a vector order on L^1 .

$$\mu \succeq_{SSD} \nu \quad :\Leftrightarrow \quad \forall u \in \mathcal{U} \colon \int u \, \mu(dx) \ge \int u \, \nu(dx),$$

• kind of annoying on a random variable level: the relation

$$X \succeq_{SSD} Y \quad :\Leftrightarrow \quad \forall u \in \mathcal{U} \colon \int u(X) \, dP \ge \int u(Y) \, dP$$

for $X, Y \in L^1(\Omega, \mathcal{F}, P)$ is no longer antisymmetric, and it is not a vector order on L^1 .

Questions. Improve the order structure? How to maximize w.r.t. \succeq_{SSD} ?

Note. Stochastic dominance of second order is just one instance of an *integral stochastic order*; in turn, integral stochastic orders are just examples for order relations defined through *families of scalar functions*.

Note. Stochastic dominance of second order is just one instance of an *integral stochastic order*; in turn, integral stochastic orders are just examples for order relations defined through *families of scalar functions*.

Note. Such orders are usually **non-total**, i.e. they do not satisfy the vNM axioms.

Note. Stochastic dominance of second order is just one instance of an *integral stochastic order*; in turn, integral stochastic orders are just examples for order relations defined through *families of scalar functions*.

Note. Such orders are usually **non-total**, i.e. they do not satisfy the vNM axioms.

Basic question. How to deal with non-total preferences, in particular how to maximize/minimize w.r.t. such orders?

Today's answer.

Turn the problem into a complete lattice-valued one and use set optimization concepts.

\blacklozenge Set relations via scalar families.

Preorders via extended real-valued functions.

• (Z, \preceq) a preordered set, i.e. \preceq is reflexive and transitive

 $^{^{1}}$ It is already a not-so-apparent idea to ask this question.

Preorders via extended real-valued functions.

- (Z, \preceq) a preordered set, i.e. \preceq is reflexive and transitive
- Ψ collection of functions $\psi \colon Z \to \mathbb{R} \cup \{\pm \infty\}$ satisfying

 $z_1 \leq z_2 \quad \Leftrightarrow \quad \forall \psi \in \Psi \colon \psi(z_1) \leq \psi(z_2)$

for $z_1, z_2 \in Z$.

¹It is already a not-so-apparent idea to ask this question.

Preorders via extended real-valued functions.

- (Z, \preceq) a preordered set, i.e. \preceq is reflexive and transitive
- Ψ collection of functions $\psi \colon Z \to \mathbb{R} \cup \{\pm \infty\}$ satisfying

 $z_1 \leq z_2 \quad \Leftrightarrow \quad \forall \psi \in \Psi \colon \psi(z_1) \leq \psi(z_2)$

for $z_1, z_2 \in Z$.

Question.¹ How can Ψ be used to define an order on

$$\mathcal{P}\left(Z\right) = \{A \mid A \subseteq Z\}?$$

¹It is already a not-so-apparent idea to ask this question.

Inf-extension of $\psi \in \Psi$ is $\psi^{\Delta} : \mathcal{P}(Z) \to \mathbb{R} \cup \{\pm \infty\}$ defined by

 $\psi^{\scriptscriptstyle \Delta}(D) = \inf_{z \in D} \psi(z).$

Inf-extension of $\psi \in \Psi$ is $\psi^{\Delta} \colon \mathcal{P}(Z) \to \mathbb{R} \cup \{\pm \infty\}$ defined by

 $\psi^{\Delta}(D) = \inf_{z \in D} \psi(z).$

Inf-extension of \leq to $\mathcal{P}(Z)$ is \leq_{Ψ} defined by

 $D_1 \preceq_{\Psi} D_2 \quad \Leftrightarrow \quad \forall \psi \in \Psi \colon \psi^{\vartriangle}(D_1) \le \psi^{\vartriangle}(D_2).$

A. Hamel

Set Optimization for Decision Making

Inf-extension of $\psi \in \Psi$ is $\psi^{\Delta} \colon \mathcal{P}(Z) \to \mathbb{R} \cup \{\pm \infty\}$ defined by

$$\psi^{\Delta}(D) = \inf_{z \in D} \psi(z).$$

Inf-extension of \leq to $\mathcal{P}(Z)$ is \leq_{Ψ} defined by

 $D_1 \preceq_{\Psi} D_2 \quad \Leftrightarrow \quad \forall \psi \in \Psi \colon \psi^{\vartriangle}(D_1) \le \psi^{\circlearrowright}(D_2).$

The relation \leq_{Ψ} is a preorder on $\mathcal{P}(Z)$, a new "set relation!" It extends \leq from Z to $\mathcal{P}(Z)$ since by " \Leftrightarrow "

$$z_1 \preceq z_2 \quad \Leftrightarrow \quad \{z_1\} \preceq_{\Psi} \{z_2\}.$$

A closure operator associated with \leq_{Ψ} : For $D \subseteq Z$,

$$\operatorname{cl}_{\Psi} D = \bigcap_{\psi \in \Psi} \left\{ z \in Z \mid \psi^{\vartriangle}(D) \le \psi(z) \right\}.$$

A closure operator associated with \leq_{Ψ} : For $D \subseteq Z$,

$$\operatorname{cl}_{\Psi} D = \bigcap_{\psi \in \Psi} \big\{ z \in Z \mid \psi^{\vartriangle}(D) \le \psi(z) \big\}.$$

Proposition

For all $D \in \mathcal{P}(Z)$, (i) $D \subseteq \operatorname{cl}_{\Psi} D$, (ii) $\operatorname{cl}_{\Psi} D = \operatorname{cl}_{\Psi}(\operatorname{cl}_{\Psi} D)$, (iii) $C \subseteq D \Rightarrow \operatorname{cl}_{\Psi} C \subseteq \operatorname{cl}_{\Psi} D$. A closure operator associated with \preceq_{Ψ} : For $D \subseteq Z$,

$$\operatorname{cl}_{\Psi} D = \bigcap_{\psi \in \Psi} \big\{ z \in Z \mid \psi^{\vartriangle}(D) \le \psi(z) \big\}.$$

Proposition

For all $D \in \mathcal{P}(Z)$, (i) $D \subseteq \operatorname{cl}_{\Psi} D$, (ii) $\operatorname{cl}_{\Psi} D = \operatorname{cl}_{\Psi} (\operatorname{cl}_{\Psi} D)$, (iii) $C \subseteq D \Rightarrow \operatorname{cl}_{\Psi} C \subseteq \operatorname{cl}_{\Psi} D$.

Note. This means that $D \mapsto \operatorname{cl}_{\Psi} D$ is a closure (hull) operator.

A. Hamel

The previous proposition guarantees that the following set is well-defined:

$$\mathcal{P}(Z,\Psi) = \{ D \in \mathcal{P}(Z) \mid D = \operatorname{cl}_{\Psi} D \}.$$

The previous proposition guarantees that the following set is well-defined:

$$\mathcal{P}(Z,\Psi) = \{ D \in \mathcal{P}(Z) \mid D = \operatorname{cl}_{\Psi} D \}.$$

Proposition

On $\mathcal{P}(Z, \Psi)$, the relation \preceq_{Ψ} coincides with \supseteq . The pair $(\mathcal{P}(Z, \Psi), \supseteq)$ is a complete lattice, and for $\mathfrak{A} \subseteq \mathcal{P}(Z, \Psi)$

$$\inf \mathfrak{A} = \operatorname{cl}_{\Psi} \bigcup_{A \in \mathfrak{A}} A \quad and \quad \sup \mathfrak{A} = \bigcap_{A \in \mathfrak{A}} A$$

where $\inf \mathfrak{A} = \emptyset$ and $\sup \mathfrak{A} = Z$ whenever $\mathfrak{A} = \emptyset$. The greatest element in $(\mathcal{P}(Z, \Psi), \supseteq)$ is \emptyset , the least element is Z.

The previous proposition guarantees that the following set is well-defined:

$$\mathcal{P}(Z,\Psi) = \{ D \in \mathcal{P}(Z) \mid D = \operatorname{cl}_{\Psi} D \}.$$

Proposition

On $\mathcal{P}(Z, \Psi)$, the relation \preceq_{Ψ} coincides with \supseteq . The pair $(\mathcal{P}(Z, \Psi), \supseteq)$ is a complete lattice, and for $\mathfrak{A} \subseteq \mathcal{P}(Z, \Psi)$

$$\inf \mathfrak{A} = \operatorname{cl}_{\Psi} \bigcup_{A \in \mathfrak{A}} A \quad and \quad \sup \mathfrak{A} = \bigcap_{A \in \mathfrak{A}} A$$

where $\inf \mathfrak{A} = \emptyset$ and $\sup \mathfrak{A} = Z$ whenever $\mathfrak{A} = \emptyset$. The greatest element in $(\mathcal{P}(Z, \Psi), \supseteq)$ is \emptyset , the least element is Z.

Note. This is true without further assumptions to \leq .

Inf-stability.

Proposition

Let $\mathfrak{A} \subseteq \mathcal{P}(Z, \Psi)$. Then

$$\forall \psi \in \Psi \colon \inf_{A \in \mathfrak{A}} \psi^{\vartriangle}(A) = \psi^{\vartriangle} \left(\inf_{A \in \mathfrak{A}} A \right).$$

Inf-stability.

Proposition

Let $\mathfrak{A} \subseteq \mathcal{P}(Z, \Psi)$. Then

$$orall \psi \in \Psi \colon \inf_{A \in \mathfrak{A}} \psi^{\scriptscriptstyle riangle}(A) = \psi^{\scriptscriptstyle riangle} \left(\inf_{A \in \mathfrak{A}} A
ight).$$

Note. "Inf on the left" in $\mathbb{R} \cup \{\pm \infty\}$, "inf on the right" in $(\mathcal{P}(Z, \Psi), \supseteq)$.

Inf-stability.

Proposition

Let $\mathfrak{A} \subseteq \mathcal{P}(Z, \Psi)$. Then $\forall \psi \in \Psi \colon \inf_{A \in \mathfrak{A}} \psi^{\vartriangle}(A) = \psi^{\vartriangle} \left(\inf_{A \in \mathfrak{A}} A \right).$

Note. "Inf on the left" in $\mathbb{R} \cup \{\pm \infty\}$, "inf on the right" in $(\mathcal{P}(Z, \Psi), \supseteq)$.

Note. "Sup-stability" not true in general. But one can start with

$$\psi^{\nabla}(D) = \sup_{z \in D} \psi(z), \quad \operatorname{cl}^{\Psi} D = \bigcap_{\psi \in \Psi} \big\{ z \in Z \mid \psi(z) \le \psi^{\nabla}(D) \big\}.$$

Embedding $(Z, \preceq) \hookrightarrow (\mathcal{P}(Z, \Psi), \supseteq)$. Define $a \colon Z \to \mathcal{P}(Z, \Psi)$ by

$$a(z) = \operatorname{cl}_{\Psi} \{z\} = \bigcap_{\psi \in \Psi} \{y \in Z \mid \psi(z) \le \psi(y)\}.$$

A. Hamel

Embedding $(Z, \preceq) \hookrightarrow (\mathcal{P}(Z, \Psi), \supseteq)$. Define $a: Z \to \mathcal{P}(Z, \Psi)$ by

$$a(z) = \operatorname{cl}_{\Psi} \{z\} = \bigcap_{\psi \in \Psi} \{y \in Z \mid \psi(z) \le \psi(y)\}.$$

Then, for all
$$z \in Z$$

(i) $z \in a(z)$,
(ii) $a(z) \in \mathcal{P}(Z, \Psi)$ and

$$z_1 \preceq z_2 \iff \{z_1\} \preceq_{\Psi} \{z_2\} \iff a(z_1) \supseteq a(z_2),$$

(iii) $\psi(z) = \psi^{\triangle}(a(z)).$

Set optimization. Let $F: X \to Z$ be a function. Instead of

minimize F(x) over X w.r.t. \preceq

solve the complete lattice-valued problem

minimize $(a \circ F)(x) = a(F(x))$ over X w.r.t. \supseteq with $a \circ F \colon X \to \mathcal{P}(Z, \Psi)$.

Set optimization. Let $F: X \to Z$ be a function. Instead of

minimize F(x) over X w.r.t. \leq

solve the complete lattice-valued problem

minimize $(a \circ F)(x) = a(F(x))$ over X w.r.t. \supseteq with $a \circ F \colon X \to \mathcal{P}(Z, \Psi)$.

Questions. How can we do this? Optimality, (Lagrange) duality, algorithms? And why should we do this?

Summary:

• "Set relations" can be defined as (canonical) extensions of preorders given by a family of scalar functions.
Summary:

- "Set relations" can be defined as (canonical) extensions of preorders given by a family of scalar functions.
- Finding "best" decisions/alternatives becomes a complete lattice-valued set optimization problem: a new paradigm.

Summary:

- "Set relations" can be defined as (canonical) extensions of preorders given by a family of scalar functions.
- Finding "best" decisions/alternatives becomes a complete lattice-valued set optimization problem: a new paradigm.
- All depends on tractability of

$$\operatorname{cl}_{\Psi} D = \bigcap_{\psi \in \Psi} \left\{ z \in Z \mid \psi^{\vartriangle}(D) \leq \psi(z) \right\}$$

as $(\mathcal{P}(Z, \Psi) = \{D \in \mathcal{P}(Z) \mid D = \operatorname{cl}_{\Psi}D\}, \supseteq)$ is a complete lattice, and on the properties of $\psi^{\Delta}(D) = \inf_{z \in D} \psi(z)$.

A. Hamel

Set Optimization for Decision Making

Multi-utility representations. Let (Z, \preceq) be a preordered set.

Multi-utility representations. Let (Z, \preceq) be a preordered set.

A multi-loss representation of \leq on Z is a family $\Psi = \mathcal{L}$ of functions $\ell \colon Z \to \mathbb{R}$ satisfying

 $z_1 \leq z_2 \quad \Leftrightarrow \quad \forall \ell \in \mathcal{L} \colon \ell(z_1) \leq \ell(z_2).$

Multi-utility representations. Let (Z, \preceq) be a preordered set.

A multi-loss representation of \leq on Z is a family $\Psi = \mathcal{L}$ of functions $\ell \colon Z \to \mathbb{R}$ satisfying

$$z_1 \leq z_2 \quad \Leftrightarrow \quad \forall \ell \in \mathcal{L} \colon \ell(z_1) \leq \ell(z_2).$$

Of course. Negative loss = utility.

Question. Does a given preorder have a multi-loss representation? \longrightarrow Evren, Ok etc.

Indicator functions of level sets. For $z \in Z$, denote

 $L(z) = \{ y \in Z \mid y \preceq z \} \quad \text{and} \quad U(z) = \{ y \in Z \mid z \preceq y \}.$

Indicator functions of level sets. For $z \in Z$, denote

 $L(z) = \{ y \in Z \mid y \preceq z \} \quad \text{and} \quad U(z) = \{ y \in Z \mid z \preceq y \}.$

For $A \subseteq Z$, let $I_A: Z \to \mathbb{R} \cup \{+\infty\}$ be the function defined by

$$I_A(z) = \begin{cases} 0 & : z \in A \\ +\infty & : z \notin A \end{cases}$$

Indicator functions of level sets. For $z \in Z$, denote

 $L(z) = \{ y \in Z \mid y \preceq z \} \text{ and } U(z) = \{ y \in Z \mid z \preceq y \}.$

For $A \subseteq Z$, let $I_A \colon Z \to \mathbb{R} \cup \{+\infty\}$ be the function defined by

$$I_A(z) = \begin{cases} 0 & : z \in A \\ +\infty & : z \notin A \end{cases}$$

Result 1. $\mathcal{I} = \{I_L(z)\}_{z \in \mathbb{Z}}$ represents \leq , i.e. for $z_1, z_2 \in \mathbb{Z}$,

 $z_1 \leq z_2 \quad \Leftrightarrow \quad \forall z \in Z \colon I_{L(z)}(z_1) \leq I_{L(z)}(z_2).$

A. Hamel

Indicator functions of level sets. For $z \in Z$, denote

 $L(z) = \{ y \in Z \mid y \preceq z \} \quad \text{and} \quad U(z) = \{ y \in Z \mid z \preceq y \}.$

For $A \subseteq Z$, let $I_A \colon Z \to \mathbb{R} \cup \{+\infty\}$ be the function defined by

$$I_A(z) = \begin{cases} 0 & : z \in A \\ +\infty & : z \notin A \end{cases}$$

Result 1. $\mathcal{I} = \{I_L(z)\}_{z \in Z}$ represents \leq , i.e. for $z_1, z_2 \in Z$,

 $z_1 \leq z_2 \quad \Leftrightarrow \quad \forall z \in Z \colon I_{L(z)}(z_1) \leq I_{L(z)}(z_2).$

Result 2. For $D \subseteq Z$, a(z) = U(z) and

 $\operatorname{cl}_{\mathcal{I}} D = \{y \in Z \mid \exists d \in D \colon d \preceq y\} = \{y \in Z \mid D \cap L(y) \neq \emptyset\}.$

Second order stochastic dominance re-visited.

• (Ω, \mathcal{F}, P) a probability space, $Z = L^1 = L^1(\Omega, \mathcal{F}, P)$

Second order stochastic dominance re-visited.

• (Ω, \mathcal{F}, P) a probability space, $Z = L^1 = L^1(\Omega, \mathcal{F}, P)$

• $X, Y \in L^1$ are in relation w.r.t. 2nd order stochastic dominance, i.e. $X \succeq_{SSD} Y$ if, and only if,

 $\forall \alpha \in (0,1] \colon AV@R_{\alpha}(X) \le AV@R_{\alpha}(Y).$

Second order stochastic dominance re-visited.

- (Ω, \mathcal{F}, P) a probability space, $Z = L^1 = L^1(\Omega, \mathcal{F}, P)$
- $X, Y \in L^1$ are in relation w.r.t. 2nd order stochastic dominance, i.e. $X \succeq_{SSD} Y$ if, and only if,

$$\forall \alpha \in (0,1] \colon AV@R_{\alpha}(X) \le AV@R_{\alpha}(Y).$$

• The function $X \mapsto AV@R_{\alpha}(X)$ is called the average value at risk defined by either one of:

$$AV@R_{\alpha}(X) = \frac{1}{\alpha} \int_0^{\alpha} V@R_{\beta}(X) d\beta = \inf_{r \in \mathbb{R}} \left\{ \frac{1}{\alpha} E[(r-x)^+] - r \right\}.$$

Second order stochastic dominance re-visited.

- (Ω, \mathcal{F}, P) a probability space, $Z = L^1 = L^1(\Omega, \mathcal{F}, P)$
- $X, Y \in L^1$ are in relation w.r.t. 2nd order stochastic dominance, i.e. $X \succeq_{SSD} Y$ if, and only if,

$$\forall \alpha \in (0,1] \colon AV@R_{\alpha}(X) \le AV@R_{\alpha}(Y).$$

• The function $X \mapsto AV@R_{\alpha}(X)$ is called the average value at risk defined by either one of:

$$AV@R_{\alpha}(X) = \frac{1}{\alpha} \int_0^{\alpha} V@R_{\beta}(X) d\beta = \inf_{r \in \mathbb{R}} \left\{ \frac{1}{\alpha} E[(r-x)^+] - r \right\}.$$

• So,
$$\Psi = \{AV@R_{\alpha}\}_{\alpha \in (0,1]}$$
 on $Z = L^1$ works as well for SSD.

Second order stochastic dominance re-visited.

- (Ω, \mathcal{F}, P) a probability space, $Z = L^1 = L^1(\Omega, \mathcal{F}, P)$
- $X, Y \in L^1$ are in relation w.r.t. 2nd order stochastic dominance, i.e. $X \succeq_{SSD} Y$ if, and only if,

$$\forall \alpha \in (0,1] \colon AV@R_{\alpha}(X) \le AV@R_{\alpha}(Y).$$

• The function $X \mapsto AV@R_{\alpha}(X)$ is called the average value at risk defined by either one of:

$$AV@R_{\alpha}(X) = \frac{1}{\alpha} \int_0^{\alpha} V@R_{\beta}(X) d\beta = \inf_{r \in \mathbb{R}} \left\{ \frac{1}{\alpha} E[(r-x)^+] - r \right\}.$$

• So, $\Psi = \{AV@R_{\alpha}\}_{\alpha \in (0,1]}$ on $Z = L^1$ works as well for SSD.

Question. cl_{Ψ} and $\mathcal{P}(Z, \Psi)$?

A. Hamel

Set Optimization for Decision Making

• Z a locally convex, real linear space, $C \subseteq Z$ a convex cone with $0 \in C$, $\operatorname{cl} C \neq Z$;

$$z_1 \leq_C z_2 \quad \Leftrightarrow \quad z_2 - z_1 \in C \quad \Leftrightarrow \quad z_1 + C \supseteq z_2 + C$$

defines a vector preorder \leq_C on Z.

• Z a locally convex, real linear space, $C \subseteq Z$ a convex cone with $0 \in C$, $\operatorname{cl} C \neq Z$;

 $z_1 \leq_C z_2 \quad \Leftrightarrow \quad z_2 - z_1 \in C \quad \Leftrightarrow \quad z_1 + C \supseteq z_2 + C$

defines a vector preorder \leq_C on Z.

•
$$\Psi = C^+$$
 where

$$C^{+} = \{ z^{*} \in Z^{*} \mid \forall z \in C \colon z^{*}(z) \ge 0 \}$$

• Z a locally convex, real linear space, $C \subseteq Z$ a convex cone with $0 \in C$, $\operatorname{cl} C \neq Z$;

$$z_1 \leq_C z_2 \quad \Leftrightarrow \quad z_2 - z_1 \in C \quad \Leftrightarrow \quad z_1 + C \supseteq z_2 + C$$

defines a vector preorder \leq_C on Z.

•
$$\Psi = C^+$$
 where

$$C^{+} = \{ z^{*} \in Z^{*} \mid \forall z \in C \colon z^{*}(z) \ge 0 \}$$

• for
$$D \subseteq Z, \ \psi \in C^+$$

$$\psi^{\Delta}(D) = \inf_{z \in D} z^*(z)$$

is just the negative of the support function of D at $-z^*$.

• Z a locally convex, real linear space, $C \subseteq Z$ a convex cone with $0 \in C$, $\operatorname{cl} C \neq Z$;

$$z_1 \leq_C z_2 \quad \Leftrightarrow \quad z_2 - z_1 \in C \quad \Leftrightarrow \quad z_1 + C \supseteq z_2 + C$$

defines a vector preorder \leq_C on Z.

•
$$\Psi = C^+$$
 where

$$C^{+} = \{ z^{*} \in Z^{*} \mid \forall z \in C \colon z^{*}(z) \ge 0 \}$$

• for
$$D \subseteq Z, \ \psi \in C^+$$

$$\psi^{\Delta}(D) = \inf_{z \in D} z^*(z)$$

is just the negative of the support function of D at $-z^*$. • By separation,

 $cl_{C^+}D = cl co (D + C),$ $\mathcal{P}(Z, C^+) = \{D \in \mathcal{P}(Z) \mid D = cl co (D + C)\} = \mathcal{G}(Z, C).$

$$\inf \mathfrak{A} = \operatorname{cl} \operatorname{co} \bigcup_{A \in \mathfrak{A}} A \quad \text{and} \quad \sup \mathfrak{A} = \bigcap_{A \in \mathfrak{A}} A$$

for $\mathfrak{A} \subseteq \mathcal{G}(Z, C)$.

$$\inf \mathfrak{A} = \operatorname{cl} \operatorname{co} \bigcup_{A \in \mathfrak{A}} A \quad \text{and} \quad \sup \mathfrak{A} = \bigcap_{A \in \mathfrak{A}} A$$

for $\mathfrak{A} \subseteq \mathcal{G}(Z, C)$.

The embedding function $a: Z \to \mathcal{G}(Z, C)$ is given by $a(z) = z + \operatorname{cl} C$.

$$\inf \mathfrak{A} = \operatorname{cl} \operatorname{co} \bigcup_{A \in \mathfrak{A}} A \quad \text{and} \quad \sup \mathfrak{A} = \bigcap_{A \in \mathfrak{A}} A$$

for $\mathfrak{A} \subseteq \mathcal{G}(Z, C)$.

The embedding function $a: Z \to \mathcal{G}(Z, C)$ is given by $a(z) = z + \operatorname{cl} C$.

For $C = \{0\}$ the class of all closed convex sets is obtained with $\Psi = C^+ = Z^*$.

$$\inf \mathfrak{A} = \operatorname{cl} \operatorname{co} \bigcup_{A \in \mathfrak{A}} A \quad \text{and} \quad \sup \mathfrak{A} = \bigcap_{A \in \mathfrak{A}} A$$

for $\mathfrak{A} \subseteq \mathcal{G}(Z, C)$.

The embedding function $a: Z \to \mathcal{G}(Z, C)$ is given by $a(z) = z + \operatorname{cl} C$.

For $C = \{0\}$ the class of all closed convex sets is obtained with $\Psi = C^+ = Z^*$.

See Hamel et al. (70+ pp., 230+ references): Set Optimization - A Rather Short Introduction, ArXiv, 2014.

Multi-probability representations. (Bewley preferences)

• (Ω, \mathcal{F}) measureable space, $\mathcal{L}^0 = \mathcal{L}^0(\Omega, \mathcal{F})$ linear space of measurable functions $X : \Omega \to \mathbb{R}$, Π set of probability measures on (Ω, \mathcal{F}) .

Multi-probability representations. (Bewley preferences)

- (Ω, \mathcal{F}) measureable space, $\mathcal{L}^0 = \mathcal{L}^0(\Omega, \mathcal{F})$ linear space of measurable functions $X : \Omega \to \mathbb{R}$, Π set of probability measures on (Ω, \mathcal{F}) .
- $u: \mathbb{R} \to \mathbb{R} \cup \{-\infty\}$ upper semicontinuous, concave, strictly increasing and bounded (from above).

Multi-probability representations. (Bewley preferences)

- (Ω, \mathcal{F}) measureable space, $\mathcal{L}^0 = \mathcal{L}^0(\Omega, \mathcal{F})$ linear space of measurable functions $X : \Omega \to \mathbb{R}$, Π set of probability measures on (Ω, \mathcal{F}) .
- $u: \mathbb{R} \to \mathbb{R} \cup \{-\infty\}$ upper semicontinuous, concave, strictly increasing and bounded (from above).
- Define $\psi \colon \mathcal{L}^0 \to \mathbb{R} \cup \{-\infty\}$ by

$$\psi(Z) = \mathbb{E}^P \left[u(Z) \right] =: (\mathbb{E}^P \circ u)(Z).$$

Multi-probability representations. (Bewley preferences)

- (Ω, \mathcal{F}) measureable space, $\mathcal{L}^0 = \mathcal{L}^0(\Omega, \mathcal{F})$ linear space of measurable functions $X : \Omega \to \mathbb{R}$, Π set of probability measures on (Ω, \mathcal{F}) .
- $u: \mathbb{R} \to \mathbb{R} \cup \{-\infty\}$ upper semicontinuous, concave, strictly increasing and bounded (from above).
- Define $\psi \colon \mathcal{L}^0 \to \mathbb{R} \cup \{-\infty\}$ by

$$\psi(Z) = \mathbb{E}^P \left[u(Z) \right] =: (\mathbb{E}^P \circ u)(Z).$$

• A preorder is defined via

$$Z_1 \preceq Z_2 \quad \Leftrightarrow \quad \forall P \in \Pi \colon \mathbb{E}^P \left[u(Z_1) \right] \le \mathbb{E}^P \left[u(Z_2) \right].$$

The preorder here is defined via

 $Z_1 \preceq Z_2 \quad \Leftrightarrow \quad \forall P \in \Pi \colon \mathbb{E}^P \left[u(Z_1) \right] \leq \mathbb{E}^P \left[u(Z_2) \right],$

and one wants to maximize!

The preorder here is defined via

 $Z_1 \preceq Z_2 \quad \Leftrightarrow \quad \forall P \in \Pi \colon \mathbb{E}^P \left[u(Z_1) \right] \leq \mathbb{E}^P \left[u(Z_2) \right],$

and one wants to maximize!

Therefore, the *sup-extension* is needed:

 $\psi^{\nabla}(D) = \sup_{Z \in D} \mathbb{E}^{P} \left[u(Z) \right]$

as well as the corresponding closure operator.

• The family

$$\mathcal{E} = \left\{ \mathbb{E}^P \circ u \right\}_{P \in \Pi}$$

represents \preceq ; for $D \subseteq \mathcal{L}^0(\Omega, \mathcal{F})$

$$\operatorname{cl}^{\mathcal{E}} D = \bigcap_{P \in \Pi} \left\{ Y \in \mathcal{L}^0 \mid \mathbb{E}^P \left[u(Y) \right] \le \sup_{Z \in D} \mathbb{E}^P \left[u(Z) \right] \right\}.$$

• The family

$$\mathcal{E} = \left\{ \mathbb{E}^P \circ u \right\}_{P \in \Pi}$$

represents \leq ; for $D \subseteq \mathcal{L}^0(\Omega, \mathcal{F})$

$$\operatorname{cl}^{\mathcal{E}} D = \bigcap_{P \in \Pi} \left\{ Y \in \mathcal{L}^0 \mid \mathbb{E}^P \left[u(Y) \right] \le \sup_{Z \in D} \mathbb{E}^P \left[u(Z) \right] \right\}.$$

• In particular, $b(Z) = \operatorname{cl}^{\mathcal{E}} \{Z\}$ is

$$b(Z) = \bigcap_{P \in \Pi} \left\{ Y \in \mathcal{L}^0 \mid \mathbb{E}^P \left[u(Y) \right] \le \mathbb{E}^P \left[u(Z) \right] \right\}$$
$$= \left\{ Y \in \mathcal{L}^0 \mid \sup_{P \in \Pi} \left\{ \mathbb{E}^P \left[u(Y) \right] - \mathbb{E}^P \left[u(Z) \right] \right\} \le 0 \right\}.$$

The utility maximization problem under uncertainty. In $(\mathcal{P}(\mathcal{L}^0,\subseteq))$ solve

maximize b(Z) over $\mathcal{Z} \subseteq \mathcal{L}^0$

where

$$b(Z) = \left\{ Y \in \mathcal{L}^0 \mid \sup_{P \in \Pi} \left\{ \mathbb{E}^P \left[u(Y) \right] - \mathbb{E}^P \left[u(Z) \right] \right\} \le 0 \right\},\$$

and \mathcal{Z} is a set of admissible elements.

The utility maximization problem under uncertainty. In $(\mathcal{P}(\mathcal{L}^0,\subseteq))$ solve

maximize b(Z) over $\mathcal{Z} \subseteq \mathcal{L}^0$

where

$$b(Z) = \left\{ Y \in \mathcal{L}^0 \mid \sup_{P \in \Pi} \left\{ \mathbb{E}^P \left[u(Y) \right] - \mathbb{E}^P \left[u(Z) \right] \right\} \le 0 \right\},\$$

and \mathcal{Z} is a set of admissible elements.

Note. A totally new problem.

♦ The set optimization approach to preference optimization.

Problem. Given (Z, \preceq, Ψ) , $F: X \to Z$ and $\mathcal{X} \subseteq X$, find

 $best' \{ F(x) \mid x \in \mathcal{X} \}.$

Problem. Given (Z, \preceq, Ψ) , $F: X \to Z$ and $\mathcal{X} \subseteq X$, find 'best' $\{F(x) \mid x \in \mathcal{X}\}$.

Set-valued extension. Define $f: X \to \mathcal{P}(Z, \Psi)$ by

$$f(x) = (a \circ F)(x) = a(F(x)) = \operatorname{cl}_{\Psi} \{F(x)\}$$

and look for

 $\inf \left\{ f(x) \mid x \in \mathcal{X} \right\}$

along with appropriate "solutions."
Question.

What is a solution of a set optimization problem? In particular, of a $\mathcal{P}(Z, \Psi)$ -valued problem?

A. Hamel

Set Optimization for Decision Making

Definition

Let (L, \leq) be a complete lattice, $X \neq \emptyset$ a set and $f \colon X \to L$.

Definition

Let (L, \leq) be a complete lattice, $X \neq \emptyset$ a set and $f: X \to L$. A set $M \subseteq L$ is called an *infimizer* for f if

 $\inf \left\{ f(x) \mid x \in \mathbf{M} \right\} = \inf \left\{ f(x) \mid x \in \mathbf{X} \right\}.$

Definition

Let (L, \leq) be a complete lattice, $X \neq \emptyset$ a set and $f: X \to L$. A set $M \subseteq L$ is called an *infimizer* for f if

$$\inf \left\{ f(x) \mid x \in \mathbf{M} \right\} = \inf \left\{ f(x) \mid x \in \mathbf{X} \right\}.$$

An element $\bar{x} \in X$ is called a *minimizer* for f if

$$x \in X, \ f(x) \le f(\bar{x}) \ \Rightarrow \ f(x) = f(\bar{x}).$$

Definition

Let (L, \leq) be a complete lattice, $X \neq \emptyset$ a set and $f: X \to L$. A set $M \subseteq L$ is called an *infimizer* for f if

$$\inf \left\{ f(x) \mid x \in \mathbf{M} \right\} = \inf \left\{ f(x) \mid x \in \mathbf{X} \right\}.$$

An element $\bar{x} \in X$ is called a *minimizer* for f if

$$x\in X,\;f(x)\leq f(\bar{x})\;\Rightarrow\;f(x)=f(\bar{x}).$$

A set $M \subseteq X$ is called a *solution* for the problem

minimize f over X

if M is an infimizer and each $m \in M$ is a minimizer for f.

• Due to Heyde/Löhne 2011 with precursor Hamel 2004.

- Due to Heyde/Löhne 2011 with precursor Hamel 2004.
- Infimum attainment and minimality do not coincide (anymore).

- Due to Heyde/Löhne 2011 with precursor Hamel 2004.
- Infimum attainment and minimality do not coincide (anymore).
- Clear-cut concept with no further assumptions to \leq .

- Due to Heyde/Löhne 2011 with precursor Hamel 2004.
- Infimum attainment and minimality do not coincide (anymore).
- Clear-cut concept with no further assumptions to \leq .
- Different from (and more general than) 'vector optimization' and 'multi-criteria decision making' approaches.

- Due to Heyde/Löhne 2011 with precursor Hamel 2004.
- Infimum attainment and minimality do not coincide (anymore).
- Clear-cut concept with no further assumptions to \leq .
- Different from (and more general than) 'vector optimization' and 'multi-criteria decision making' approaches.

However, no link to Ψ . Not even if the complete lattice is $(L, \leq) = (\mathcal{P}(Z, \Psi), \supseteq)$. Another definition is required.

Definition (Hamel, Schrage 2015)

 (Z, \preceq, Ψ) as before, $f \colon X \to (\mathcal{P}(Z, \Psi), \supseteq)$.

A. Hamel

Definition (Hamel, Schrage 2015)

 (Z, \preceq, Ψ) as before, $f: X \to (\mathcal{P}(Z, \Psi), \supseteq)$. A set $M \subseteq X$ is called a Ψ -infimizer for f if

$$\forall \psi \in \Psi \colon \psi^{\vartriangle} \left(\inf_{x \in \mathcal{M}} f(x) \right) = \psi^{\vartriangle} \left(\inf_{x \in \mathcal{X}} f(x) \right)$$

Definition (Hamel, Schrage 2015)

 (Z, \preceq, Ψ) as before, $f: X \to (\mathcal{P}(Z, \Psi), \supseteq)$. A set $M \subseteq X$ is called a Ψ -infimizer for f if

$$\forall \psi \in \Psi \colon \psi^{\vartriangle} \left(\inf_{x \in \mathcal{M}} f(x) \right) = \psi^{\vartriangle} \left(\inf_{x \in \mathcal{X}} f(x) \right)$$

An element $\bar{x} \in X$ is called a Ψ -minimizer for f if

$$\exists \psi \in \Psi \colon \psi^{\vartriangle}(f(\bar{x})) = \psi^{\vartriangle}\left(\inf_{x \in X} f(x)\right).$$

Definition (Hamel, Schrage 2015)

 (Z, \preceq, Ψ) as before, $f: X \to (\mathcal{P}(Z, \Psi), \supseteq)$. A set $M \subseteq X$ is called a Ψ -infimizer for f if

$$\forall \psi \in \Psi \colon \psi^{\vartriangle} \left(\inf_{x \in \mathcal{M}} f(x) \right) = \psi^{\vartriangle} \left(\inf_{x \in \mathcal{X}} f(x) \right)$$

An element $\bar{x} \in X$ is called a Ψ -minimizer for f if

$$\exists \psi \in \Psi \colon \psi^{\vartriangle}(f(\bar{x})) = \psi^{\vartriangle}\left(\inf_{x \in X} f(x)\right).$$

A set $M \subseteq X$ is called a Ψ -solution for the problem

minimize f over X

if M is a Ψ -infimizer and each $m \in M$ is a Ψ -minimizer for f.

Comments.

• Need to know $\inf_{x \in X} f(x)$ -this is a new feature.

Comments.

- Need to know $\inf_{x \in X} f(x)$ -this is a new feature.
- Ψ -minimizers can be found by solving scalar problems:

minimize $\psi^{\Delta}(f(x))$ over X.

Comments.

- Need to know $\inf_{x \in X} f(x)$ -this is a new feature.
- Ψ -minimizers can be found by solving scalar problems:

minimize $\psi^{\Delta}(f(x))$ over X.

• So, it is important to study functions of the type

$$(\psi \circ f)(x) = \inf_{z \in f(x)} \psi(z) = \psi^{\Delta}(f(x)).$$

If $\psi = z^*$ is continuous linear, this is a version of the support function of the set f(x).

Another comment. The mathematical fun starts here:

- Existence (and uniqueness) of solutions,
- optimality conditions,
- duality,
- numerical representation of set-valued functions and algorithms etc.

Another comment. The mathematical fun starts here:

- Existence (and uniqueness) of solutions,
- optimality conditions,
- duality,
- numerical representation of set-valued functions and algorithms etc.

Good news. In a "linear space set-up," most of the above already exists.

Program. Do this $(= \psi^{\Delta}, \operatorname{cl}_{\Psi}, a, \operatorname{optimization})$ for

- a) stochastic orders,
- b) multi-utility representations,
- c) Bewley preferences,
- d) a merge of b) and c)
- e) for multi-variate random variables, vector lotteries etc.

Thank you for the dance.