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High Frequency Data Based Volatility Estimation

Over the last decade, the availability of intra-daily high frequency
trade, quote and order book data has boosted research on the
construction of efficient ex-post measure of daily return variability

These estimator are typically called realized volatility estimators

Extensive literature on the topic:
Andersen, Bollerslev, Diebold and Labys (2003); Ait-Sahalia, Mykland and Zhang (2005);
Bandi and Russell (2006); Barndorff-Nielsen, Hansen, Lunde, and Shephard (2009);

and many many others
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Introduction

Two Challenges

The multivariate generalizations of these estimators, aka realized
covariance, have not not been as widely applied as their univariate
counterparts

Besides numerical challenges, realized covariance estimation
suffers from two challenges which are inherently linked to
covariance estimation for large number of assets:
(cf Ledoit and Wolf, 2004; Hautsch, Kyj and Oomen, 2012)

1 Precise estimation of the covariance

2 Interpretation of the dependence structure of the assets
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Introduction

Regularizing the Realized Covariance

In this work we introduce a regularization approach inspired by the
network literature

The approach consist of shrinking the inverse covariance matrix.
This turns out to have a natural interpretation in terms of a
partial correlation dependence structure among variables.

This regularization approach attempts to provide precise estimates
and enhance interpretation of the realized covariance
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Introduction

Roadmap

1 We propose a lasso–based regularization procedure for realized
covariance estimation.

It shrinks the off diagonal elements of the inverse realized covariance to zero

Regularized estimator can be interpreted as a partial correlation network

We call our estimator the Realized Network

2 We establish the large sample properties of the estimator.

Establish conditions of consistent covariance estimation and network selection

We consider the vanilla Realized Covariance estimators as well as extensions that

take into account for factor structure and market microstructure frictions

3 Advantages of the methodology are illustrated by means of a
simulation study and an empirical illustration
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Related Literature

Covariance Regularization
Ledoit and Wolf (2004), Fan, Liao, Mincheva (2011), Ledoit and Wolf (2012), ...

Realized Covariance Regularization:
Hautsch, Kyj and Oomen (2012); Corsi, Peluso, and Audrino (2015); Malec,

Hautsch, Kyj (2015); Wang and Zhou (2010); Tao, Wang and Zhou (2013);

Network Estimation in Econometrics and Statistics:
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Framework Assumptions Realized Covariance Estimator Realized Network Estimator

Covariance of the Efficient Price

y(t) is the efficient log–price of n assets at time t (y(0) = 0)

The dynamics of y(t) are given by

y(t) =

∫ t

0

b(u)du +

∫ t

0

Θ(u)dB(u) ,

where B(u) Brownian motion and Θ(u) is the spot covolatility

Integrated Covariance: the covariance matrix of daily return
y = y(1)

Var (y) =

∫ 1

0

Σ(t)dt = Σ?

where Σ(t) = Θ(t)Θ(t)′.
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Framework Assumptions Realized Covariance Estimator Realized Network Estimator

Partial Correlation Network
We are interested in the partial correlation network structure of
the daily return y

The network associated with the system is an undirected graph

y1

y2

y3y4

y5

1 the components of y denote vertices
2 the presence of an edge between i and j denotes that i and j are

partially correlated and the value of the partial correlation
measures the strength of the link.
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Framework Assumptions Realized Covariance Estimator Realized Network Estimator

Refresher on Partial Correlation

Partial Correlation measures (cross-sect.) linear conditional
dependence between yi and yj given on all other variables:

ρij = Cor(yi , yj |{yk : k 6= i , j}).

Partial Correlation is related to Linear Regression:
For instance, consider the model

y1 = c + β1 2y2 + β1 3y3 + β1 4y4 + β1 5y5 + u1

β13 is different from 0 ⇔ 1 and 3 are partially correlated

Partial Correlation is related to Correlation:
If there is exist a partial correlation path between nodes i and j ,
then i and j are correlated (and viceversa).
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Framework Assumptions Realized Covariance Estimator Realized Network Estimator

Refresher on Partial Correlation

Network is entirely characterized by the integrated concentration
matrix K? = (Σ∗)−1 = (k?ij ):

ρij =
−k?ij√
k?iik

?
jj

In particular, the nonzero entries of K∗ correspond to the linkages
of the network.

If volatility is deterministic, then absence of partial correlation
implies that daily returns are conditionally independent. Thus
network expresses conditional dependence relations.

Brownlees, Nualart & Sun (2015) 9/36
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Framework Assumptions Realized Covariance Estimator Realized Network Estimator

Estimation Strategy

Assumption:

1 We assume that the underlying (idiosyncratic) partial correlation
network is sparse

Objectives:

1 Estimate the integrated covariance
2 Detect the nonzero linkages of the network,

equivalent to detecting the nonzero entries of the integrated
concentration matrix.

Strategy: We are going to tackle both objectives simultaneously
by introducing a sparse integrated concentration matrix estimator

1 We are going to introduce an appropriate estimator of the
integrated covariance

2 and we are then going to regularize it by shrinking the
off–diagonal entries of its inverse to zero via the LASSO
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Framework Assumptions Realized Covariance Estimator Realized Network Estimator

Realized Covariance

Assume the log prices yi(t) of all assets are observed at the same
grid t0, t1, t2, t3, ..., tM

The RC estimator is denoted by ΣRC = (σRC,ij) ,

σRC,ij =
M∑
k=1

(yi k − yi k−1) (yj k − yj k−1)

where yi k = yi(tk)
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Framework Assumptions Realized Covariance Estimator Realized Network Estimator

Realized Network Estimator

The Realized Network Estimator is defined as

K̂ = arg min
K∈Sn

{
tr(ΣK)− log det(K) + λ

∑
i 6=j

|kij |

}

The optimization problem of can be reformulated as a sequence of
lasso regression. Optimization is straightforward in large
dimensional applications (e.g. 500 assets)

Brownlees, Nualart & Sun (2015) 12/36
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Theory

Preliminaries

Key ingredient to establish results is a concentration inequality of the
realized volatility estimator.

Let M denote the number of intra–daily returns used to compute
the realized covariance

Assume that the realized covariance estimator satisfies

P
(∣∣σij − σ?ij

∣∣ > x
)
≤ a1M

α exp
{
−a2

(
Mβx

)γ}
.

for some positive exponents α, β, γ
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Theory

Remarks

In particular, (in the absence of microstructure noise) the classic
realized volatility estimator satisfies

P
(∣∣σij − σ?ij

∣∣ > x
)
≤ a1 exp

{
−a2Mx2

}
that is the realized volatility estimator has sub-Gaussian tails

Different concentration inequalities have been established in the
literature for realized volatility estimators.
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Theory

Realized Network Estimator Properties

There are two main results that is interesting to establish for the
Realized Network estimator:

1 Consistent Estimation

2 Consistent Selection

Theory builds up on general results established by
Ravikumar et al. (2012)
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Theory

Consistent Estimation

Theorem: Consistent Concentration Estimation

Let λ = 8
α
M−β

(
log(a1nτ )

a2

) 1
γ

for some τ > 2.

Let

M > C

(
log

(
a2(a

1
βγ

1 C0(d)
1
β )nτ

)) 1
βγ

C0(d)
1
β ,

where C0 is a function of the max vertex degree d

Then, for n sufficiently large

P

(
||K̂−K?||∞ ≤ 2CΓ∗

(
1 +

8

α

)
M−β

[
log (a1M

αnτ )

a2

] 1
a0

)
≥ 1− 1

nτ−2

where CΓ? is a constant that depends on Σ.
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Theory

Consistent Selection

Theorem: Consistent Network Selection

Let λ = 8
α
M−β

(
log(a1nτ )

a2

) 1
γ

for some τ > 2.

Let

M > C

(
log

(
a2(a

1
βγ

1 C1(d)
1
β )nτ

)) 1
βγ

C1(d)
1
β ,

where C1 is a function of the max vertex degree d .
Then, for n sufficiently large

P
(
sign(k̂ij) = sign(k?ij ),∀i , j ∈ {1, . . . , n}

)
≥ 1− 1

nτ−2
.
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Theory

Estimator Precision and Sparsity

It is useful to analyse how the expression simplify depending on
the degree of sparsity of the networks for the realized volatility
estimator without noise and asynchronicity

1 If the max degree d is zero, then the sample size M has to be at
least O((log n))

2 If the max degree d is O(n), then the sample size M has to be at
least O((log n)n2)
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Extensions

Factors

In finance, it is customary to assume that returns have a factor
structure. In practice, it is more interesting to analyse the partial
correlation structure of assets conditional on the factors

To this extent we assume factors to be observed and we augment
our system y(t) with their corresponding efficient price processes

The covariance matrix of the augmented system can be expressed
as

Σ? =

[
Σ?

AA Σ?
FA

Σ?
AF Σ?

FF

]
,

where A and F denote blocks of assets and factors.
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Extensions

Factors

Then the covariance of the assets can be expressed as

Σ?
AA = BΣ?

FFB′ + Σ?
I ,

where

B = Σ?
AF [Σ?

FF ]−1 and Σ?
I = Σ?

AA −Σ?
AF [Σ?

FF ]−1 Σ?
FA.

Notice, that if the factor is pervasive (i.e. B is not sparse), then
the concentration matrix of the assets is not sparse

In this case it is natural to define the network on the basis of the
idiosyncratic covariance matrix Σ?

I . We call this the idiosyncratic
partial correlation network.
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Extensions

Factors: Estimation Strategy

We estimate the idiosyncratic realized network applying GLASSO
to

ΣI = ΣAA −ΣAF

[
ΣFF

]−1
ΣFA

(We show that if Σ satisfies our concentration assumption, then
ΣI also does.)

We estimate the covariance of the assets by

Σ̂AA = BΣFF B
′
+ Σ̂I λ,

(cf. Fan, Liao and Mincheva, 2011)
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Extensions

Microstructure Noise & Asynchronous Trading

It is customary to assume that the econometrician does not
observe the efficient price y but a contaminated version x defined
as

xi(ti k) = yi(ti k) + ui(ti k)

where

ti k (asset specific) timestamp of a trade/midquote
ui (ti k) noise of the ti k -th trade/midquote

Thus rather than the efficient price we asynchronously observe
noisy prices
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Extensions

Microstructure Robust Covariance Estimators

Our estimation strategy in case of microstructure noise consist of
regularizing a Robust RC estimator.

Many estimators are available in the setting we are working on.
In this work we focus on the Two Scales Realized Covariance
(TSRC) and Multivariate Realized Kernel (MRK) estimators based
on Pairwise–Refresh Time.

Fan et al. (2012) establish a concentration inequality for the
TSRC estimator that allow us to use our theorem for this
estimator. For the MRK estimator we develop a novel
concentration inequality which allows us to apply the theory.
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Extensions

Two–Scale Realized Covariance (TSRC)

Let (x ri k , x
r
j k) denote the “pairwise refresh time” adjusted

observed prices for stock i and j

The TSRC estimator is denoted by ΣTS = (σTS,ij) ,

σTS,ij =
1

K

m∑
k=K+1

(
x ri k − x ri k−K

) (
x rj k − x rj k−K

)
− mK

mJ

1

J

m∑
k=J+1

(
x ri k − x ri k−J

) (
x rj k − x rj k−J

)
where mK = m−K+1

K
and mJ = m−J+1

J
.
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Simulation Study

Simulation Study

Simulation study used to analyse the finite sample properties of
the procedure agains a number of benchmarks using different
specifications for the covariance matrix.

We simulate a n = 50 dimensional system with the following
features:

1 Price process follows a diffusion with constant covariance Σ
2 Price process is asynchronous and is contaminated by noise

Estimators are assessed on the basis of the RMSE (Frobenius) and
Stein’s Kullback–Leibler (KL) Loss
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Simulation Study

Simulation Study
In particular

Three simulation settings:
1 Design 1: Covariance Matrix with Network Structure
2 Design 2: Covariance Matrix with Factor Structure
3 Design 3: Covariance Matrix with Spatial Structure

Three estimators
1 Realized Covariance
2 Two Scales Realized Covariance
3 Multivariate Realized Kernel

Four regularization procedures
1 No Regularization
2 Shrinkage Regularization (Ledoit & Wolf, 2004)
3 Factor Regularization (POET, Fan, Liao and Mincheva, 2012)
4 Network Regularization

(Notice that eigenvalue cleaning has to be applied in some instances too)
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Simulation Study

Simulation Study

No regular. Shrinkage Factor Network
Design 1

RC KL 65.89 55.13 48.04 46.06
RMSE 55.77 44.98 57.15 40.43

TSRC KL 51.95 48.72 30.32 28.32
RMSE 29.97 29.56 29.13 19.35

MRK KL 53.44 48.64 36.95 30.93
RMSE 32.50 29.56 29.38 16.94

Design 2
RC KL 73.54 52.07 27.85 46.65

RMSE 68.65 54.59 51.98 45.55
TSRC KL 52.30 10.99 3.94 36.67

RMSE 30.09 20.84 19.02 20.11
MRK KL 60.67 46.32 6.19 38.45

RMSE 31.03 22.33 23.43 26.69
Design 3

RC KL 36.29 15.53 17.61 31.16
RMSE 39.46 19.28 37.69 37.28

TSRC KL 40.26 4.64 3.35 9.36
RMSE 15.95 10.65 12.01 12.09

MRK KL 28.34 4.59 5.43 7.10
RMSE 19.38 10.52 19.49 18.38
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Simulation Study

RMSE vs Shrinkage Parameter

RMSE as a function of the tuning parameter λ for the realized
volatility (square), realized kernel (triangle) and two scales (circle)
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Empirical Application

Empirical Application

We consider a panel of 96 NYSE Bluechips
(≈ constituents of the S&P 100)

We estimate realized covariance for each week of 2009
using the the last weekday of data available

Realized covariance is estimated using the
Realized Network estimator based on TSRC.
(tuning parameter λ chosen via the BIC)

Estimators are computed using trade prices from the NYSE–TAQ
Standard procedures are applied to clean and filter the data

We focus on the idiosyncratic covariance matrix
We analyse interdependence conditional on the market factor.
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Empirical Application

Realized Network Estimates

Realized Correlation Heatmap on 2009-07-02

Brownlees, Nualart & Sun (2015) 30/36



Empirical Application

Realized Network Estimates
Realized Network on 2009-07-02
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Empirical Application

Realized Network Estimates
Realized Network on 2009-07-02
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Empirical Application

Degree and Partial Correlation Distribution

Degree Partial Correlation

Brownlees, Nualart & Sun (2015) 33/36



Empirical Application

Predictive Analysis

GMV portfolio prediction exercise:
1 Construct the GMV portfolio weights using the MRK

Competitors: Unconstrained, Constrained, Shrinkage and Realized Network

2 Use the weights to construct daily GMV portfolio for the following week.

3 Compute the variance of the daily portfolios over the full year

More precise covariance estimators deliver GMV portfolio weights
that generate smaller out-of–sample portfolio variances
(cf Engle and Colacito, 2006)
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Empirical Application

Predictive Analysis: GMV Comparison

No regular Diagonal Network Shrinkange Factor Block-Factor
RC 39.10 40.53 26.16 31.86 31.38 32.68
TSRC 37.22 41.41 26.22 29.38 30.60 31.58
MRK 32.83 35.51 24.52 27.81 28.49 28.02
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Conclusions

Propose a lasso regularization procedure for realized covariance
estimators. We call the regularized estimator Realized Network.

Highlights:

1 The procedure delivers more precise estimates of the covariance
when the partial correlation structure of the assets is sparse.

2 Regularized estimator can be represented as a network.

Empirical application shows that regularization significantly
improves the estimator. In a GMV portfolio forecasting exercise,
substantial gains in prediction accuracy
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Conclusions

Questions?

Thanks!
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