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popularity - ‘reduced form’ VAR

• Introduced by Sims (1980), VAR is used by macroeconomists

• to characterise the joint dynamic behaviour of a collection
of variables, and

• to forecast movements of macroeconomic variables based
on potential future paths of specified variables.

• We focus on the ‘reduced’ form VAR, i.e. the stationary VAR
model without restrictions,

yt = By t−1 + εt (1)

for t = 1, . . . ,T , where

y t = (y1,t , y2,t , . . . , ym,t )
′ is the m × 1 vector of macroeconomic

variables at time t ,

B is the m ×m matrix of unknown regression coefficients,

εt = (ε1,t , ε2,t , . . . , εm,t )
′ is the m × 1 innovation vector at time t .
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Flexible models

• Past and current literature finds departures from the linear and
Gaussian VAR form. See Koop et al. (1996), Weise(1999), Favero
(2012), Wong (2013) to name a few.

• The main argument is that linear models cannot adequately
capture ‘asymmetries’ that may exist in business cycle
fluctuations.

• Another part of econometric literature, argues that the use
parametric methods to model financial time-series is
characterised by parameter instability and poor forecast
performance. See Pesaran and Timmermann (1992) and Härdel
et al. (1998).
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Flexible models

• We want to merge these two sides of literature, and
consider non-linear, semi-parametric VAR models.

• The model we propose uses Bayesian non-parametric
methods.

• To be more precise we use the Dirichlet process mixture to
construct non-linear first order stationary multivariate VAR
processes with non-Gaussian innovations.

Bayesian semiparametric vector autoregressive models 5/26



VARs Motivation Bayesian nonparametric methods The Bayesian semiparametric VAR(1) Computation Empirical Examples

Flexible models

• We want to merge these two sides of literature, and
consider non-linear, semi-parametric VAR models.

• The model we propose uses Bayesian non-parametric
methods.

• To be more precise we use the Dirichlet process mixture to
construct non-linear first order stationary multivariate VAR
processes with non-Gaussian innovations.

Bayesian semiparametric vector autoregressive models 5/26



VARs Motivation Bayesian nonparametric methods The Bayesian semiparametric VAR(1) Computation Empirical Examples

Flexible models

• We want to merge these two sides of literature, and
consider non-linear, semi-parametric VAR models.

• The model we propose uses Bayesian non-parametric
methods.

• To be more precise we use the Dirichlet process mixture to
construct non-linear first order stationary multivariate VAR
processes with non-Gaussian innovations.

Bayesian semiparametric vector autoregressive models 5/26



VARs Motivation Bayesian nonparametric methods The Bayesian semiparametric VAR(1) Computation Empirical Examples

Intro

• A nonparametric model has an infinite number of
parameters. For example, in density estimation the
parameters can consist of all densities.

• In Bayesian statistics, we need to define a prior for the
parameters. This is non trivial since we are working on an
infinite parameter space.

• The solution, is to define a stochastic process to be your
prior. The Dirichlet process (DP) introduced in Ferguson
(1973) is the popular Bayesian nonparametric prior, and
the one we will use for our VAR model.
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Dirichlet process mixture model (DPM)

• We the DPM to construct non-linear first order stationary
multivariate VAR processes with non-Gaussian innovations.
So what is the DPM?

• Introduced by Lo (1984) the DPM model, with Gaussian
kernel, is given by

fP(y) =

∫
N(y ;µ, σ2) dP(φ)

where P ∼ D(M,P0) - a DP with precision parameter
M > 0, and base measure, P0, a distribution on R× R+,

and φ = (µ, σ2) with µ to represent the mean and σ2 the
variance of the normal component.
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Dirichlet process mixture model (DPM)

• The DPM’s stick-breaking representation (see Sethuraman
(1992)), is :

P =
∞∑

j=1

wj δφj ,

φj
iid∼ P0, w1 = v1, wj = vj

∏
l<j(1− vl) with vj

iid∼ Be(1,M),
and we can write

fv ,φ(yi) =
∞∑

j=1

wj N(yi ;φj)

To facilitate computation auxiliary allocation variables
(d1, . . . ,dn) are introduced, so that p(di = j) = wj , and
w1,w2, . . . ⊥⊥ φ1, φ2 . . .
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Model construction

• Villalobos and Walker (2013), construct a Bayesian
nonparametric version of the AR(1) model, by expressing
both the joint and transition densities as DPM.

• We extend their idea to the multivariate case and model the
transition and joint densities using the DPM.

• The joint density will therefore be:

f
(

yt−1
yt

)
=
∞∑

j=1

wj N
((

yt−1
yt

)(
µj
µj

)(
Σj Ωj
Ωj Σj

))

for j = 1,2, . . ., t = 1, . . . ,T , and i = 1, . . . ,m.

• The stationary distribution is then f (yt ) =
∑∞

j=1 N(yt |µj ,Σj)
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Model construction

• The yt and yt−1 are m dimensional vectors,

• the µj ’s are also m dimensional vectors, and we have an
infinite number of them,

• the Σj ’s are m ×m positive definite matrices, and we have
an infinite number of them,

• and the Ωj ’s are m ×m matrices, and we also have an
infinite number of them.
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Model construction

• The transition density will then be

f (yt |yt−1) =

∑∞
j=1 wj N

((
yt−1
yt

)(
µj
µj

)(
Σj Ωj
Ωj Σj

))
∑∞

j=1 wj N(yt−1|µj ,Σj)

• We can then re-write it as locally weighted mixture of
VAR(1)’s as follows,

f (yt |yt−1) =
∞∑

j=1

pj(yt−1) N(yt |θj(yt−1),Λj(yt−1))

Bayesian semiparametric vector autoregressive models 11/26
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Model construction

where,

• pj(yt−1) =
wj N(yt−1|µj ,Σj)∑∞
k=1 N(yt−1|µk ,Σk )

,

• θj(yt−1) = µj + Ω
′

j Σ
−1
j (yt−1 − µj),

and

• Λj(yt−1) = Σj − Ω
′

j Σ
−1
j Ωj
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Priors

• When selecting the priors, we must ensure that the Σj
matrices are positive definite. For this reason rather than
placing priors on the variance covariance matrices, we
decompose them in terms of correlation matrices.

• We follow Karlsson (2012), and write Σj , Ωj as follows:
Σj = SjPjSj and Ωj = SjRjSj

• where, Sj is an m ×m diagonal matrix , with σ1,j , . . . , σm,j ,
in the diagonal.

• Pj is the m ×m correlation matrix at time t of the VAR(1)
variables. Its elements are the correlations between yt,k and
yt,l in the j th component.

• Rj is the cross-correlation matrix at times t and t − 1. Its
elements are the correlations between yt−1,k and yt,l in the
j th component.
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Priors

• This means that the mean vector and variance matrix for
the transition probability can be written as:

• θj (yt−1) = µj + SjR
′

j P
−1
j S−1

j (yt−1 − µj )

• Λj (yt−1) = Sj (Pj − R
′

j P
−1
j Rj )Sj

• We then place priors on Rj , Pj , Sj , and µj . )
• Rk,j ∼ U(−1,1),
• Pk,j ∼ U(−1,1) for k 6= j , with diagonal matrix Pj,j = I
• Sj ∼ IG(Sa, (Sa − 1)Sµj ), where Sµj ∼ Ga(1,5), so that

Sµj = E(Sj ), and Sa = 4.
• µj ∼ N(µ0,Σ0). µ0 is set equal to the sample mean of the

data and Σ0,j,j = 1.52Var(yj ) and Σ0,k,j = 0
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key points

• Standard MCMC methods for infinite mixture models
cannot be used here.

• We use the adaptive truncation method of Griffin(2013).
• We sample a sequence of posteriors for truncated versions

of the model, with different levels of truncation.
• The algorithm provides a method for choosing when to stop

sampling this sequence, in such a way so that large
truncation errors are avoided. The final posterior provides
an approximation to the posterior of the infinite
dimensional model.
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What and why?

• The preliminary results are based on a Var(1) with three
variables. They include:

• heat plots of f (yt,k |yt−1,j ), and
• plots of the median E(yt,k |yt−1,j ) together with the 95%

credible interval.
Recall that at each iteration of the sampler we have
different E(yt,k |yt−1,j ) and that’s why we choose the median
as our point estimate.

• The purpose of this analysis is to gain insight on the
co-movements of macroeconomic variables, and how
changes in previous lags of the same variables, as well as
other variables affect their expected value.
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data

• We constracted our data set using data series obtained from
FRED, the economic database of the Federal Reserve Bank
of St Louis.

• The sample period is from the second quarter of 1965 to
the first quarter of 2011.

• The three variables are:
• GDP deflator,
• GDP growth (difference in logs of real GDP), and
• Employment growth (differences in logs of non farm

payroll).
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data

GDP growth at t and t − 1
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data

GDP growth at t and Employment growth at t − 1
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GDP growth at t and GDP deflator at t − 1
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GDP deflator at t and Employment growth at t − 1
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GDP deflator at t and t − 1
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Employment growth at t and GDP growth at t − 1
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