VARs Motivation	Bayesian nonparametric methods	The Bayesian semiparametric VAR(1)	Computation	Empirical Examples
		0000 00		

Bayesian semiparametric vector autoregressive models

Dr Maria Kalli

(joint work with Professor Jim Griffin)

December 2013

VARs		Bayesian nonparametric methods	The Bayesian semiparametric VAR(1)	Computation	Empirical Examples
0	00	0 00	0000 00	0	0 0000000000

1 Vector autoregressive models (VARs)

- 2 Motivation for nonlinear VARs
- **3** Bayesian nonparametric methods
- **4** The Bayesian semiparametric VAR(1)
- **5** Computation
- 6 Empirical examples
- 7 Conclusion/Discussion

VARs		Bayesian nonparametric methods	The Bayesian semiparametric VAR(1)	Computation	Empirical Examples
0	00	0 00	0000 00	0	0 0000000000

1 Vector autoregressive models (VARs)

2 Motivation for nonlinear VARs

- **3** Bayesian nonparametric methods
- **4** The Bayesian semiparametric VAR(1)

5 Computation

- 6 Empirical examples
- 7 Conclusion/Discussion

VARs	Bayesian nonparametric methods	The Bayesian semiparametric VAR(1)	Computation	Empirical Examples
		0000 00		

- 1 Vector autoregressive models (VARs)
- 2 Motivation for nonlinear VARs
- **3** Bayesian nonparametric methods
- 4 The Bayesian semiparametric VAR(1)
- **5** Computation
- 6 Empirical examples
- 7 Conclusion/Discussion

VARs		Bayesian nonparametric methods	The Bayesian semiparametric VAR(1)	Computation	Empirical Examples
0	00	0 00	0000 00	0	0 0000000000

- 1 Vector autoregressive models (VARs)
- 2 Motivation for nonlinear VARs
- **3** Bayesian nonparametric methods
- **4** The Bayesian semiparametric VAR(1)
- **5** Computation
- 6 Empirical examples
- 7 Conclusion/Discussion

VARs		Bayesian nonparametric methods	The Bayesian semiparametric VAR(1)	Computation	Empirical Examples
0	00	0 00	0000 00	0	0 0000000000

- 1 Vector autoregressive models (VARs)
- 2 Motivation for nonlinear VARs
- **3** Bayesian nonparametric methods
- **4** The Bayesian semiparametric VAR(1)
- **5** Computation
- 6 Empirical examples
- 7 Conclusion/Discussion

VARs		Bayesian nonparametric methods	The Bayesian semiparametric VAR(1)	Computation	Empirical Examples
0	00	0 00	0000 00	0	0 0000000000

- 1 Vector autoregressive models (VARs)
- 2 Motivation for nonlinear VARs
- **3** Bayesian nonparametric methods
- **4** The Bayesian semiparametric VAR(1)
- **6** Computation
- 6 Empirical examples
- 7 Conclusion/Discussion

VARs		Bayesian nonparametric methods	The Bayesian semiparametric VAR(1)	Computation	Empirical Examples
0	00	0 00	0000 00	0	0 0000000000

- 1 Vector autoregressive models (VARs)
- 2 Motivation for nonlinear VARs
- **3** Bayesian nonparametric methods
- **4** The Bayesian semiparametric VAR(1)
- **6** Computation
- 6 Empirical examples
- 7 Conclusion/Discussion

- Introduced by Sims (1980), VAR is used by macroeconomists
 - to characterise the joint dynamic behaviour of a collection of variables, and
 - to forecast movements of macroeconomic variables based on potential future paths of specified variables.
- We focus on the 'reduced' form VAR, i.e. the stationary VAR model without restrictions,

$$\mathbf{y}_t = \mathbf{B}\mathbf{y}_{t-1} + \epsilon_t \tag{1}$$

 $\mathbf{y}_t = (y_{1,t}, y_{2,t}, \dots, y_{m,t})'$ is the $m \times 1$ vector of macroeconomic variables at time t,

B is the $m \times m$ matrix of unknown regression coefficients,

- Introduced by Sims (1980), VAR is used by macroeconomists
 - to characterise the joint dynamic behaviour of a collection of variables, and
 - to forecast movements of macroeconomic variables based on potential future paths of specified variables.
- We focus on the 'reduced' form VAR, i.e. the stationary VAR model without restrictions,

$$\mathbf{y}_t = \mathbf{B}\mathbf{y}_{t-1} + \boldsymbol{\epsilon}_t \tag{1}$$

 $\mathbf{y}_t = (y_{1,t}, y_{2,t}, \dots, y_{m,t})'$ is the $m \times 1$ vector of macroeconomic variables at time t,

B is the $m \times m$ matrix of unknown regression coefficients,

- Introduced by Sims (1980), VAR is used by macroeconomists
 - to characterise the joint dynamic behaviour of a collection of variables, and
 - to forecast movements of macroeconomic variables based on potential future paths of specified variables.
- We focus on the 'reduced' form VAR, i.e. the stationary VAR model without restrictions,

$$\mathbf{y}_t = \mathbf{B}\mathbf{y}_{t-1} + \boldsymbol{\epsilon}_t \tag{1}$$

 $\mathbf{y}_t = (y_{1,t}, y_{2,t}, \dots, y_{m,t})'$ is the $m \times 1$ vector of macroeconomic variables at time t,

B is the $m \times m$ matrix of unknown regression coefficients,

- Introduced by Sims (1980), VAR is used by macroeconomists
 - to characterise the joint dynamic behaviour of a collection of variables, and
 - to forecast movements of macroeconomic variables based on potential future paths of specified variables.
- We focus on the 'reduced' form VAR, i.e. the stationary VAR model without restrictions,

$$\mathbf{y}_t = \mathbf{B}\mathbf{y}_{t-1} + \boldsymbol{\epsilon}_t \tag{1}$$

 $\mathbf{y}_t = (y_{1,t}, y_{2,t}, \dots, y_{m,t})'$ is the $m \times 1$ vector of macroeconomic variables at time t,

B is the $m \times m$ matrix of unknown regression coefficients,

- Introduced by Sims (1980), VAR is used by macroeconomists
 - to characterise the joint dynamic behaviour of a collection of variables, and
 - to forecast movements of macroeconomic variables based on potential future paths of specified variables.
- We focus on the 'reduced' form VAR, i.e. the stationary VAR model without restrictions,

$$\mathbf{y}_t = \mathbf{B}\mathbf{y}_{t-1} + \boldsymbol{\epsilon}_t \tag{1}$$

 $\mathbf{y}_t = (y_{1,t}, y_{2,t}, \dots, y_{m,t})'$ is the $m \times 1$ vector of macroeconomic variables at time t,

B is the $m \times m$ matrix of unknown regression coefficients,

VARs o	Motivation ●○	Bayesian nonparametric methods oo	The Bayesian semiparametric VAR(1)	Computation o	Empirical Examples o ooooooooooooooo
Flexibl	e models				

- Past and current literature finds departures from the linear and Gaussian VAR form. See Koop et al. (1996), Weise(1999), Favero (2012), Wong (2013) to name a few.
- The main argument is that linear models cannot adequately capture 'asymmetries' that may exist in business cycle fluctuations.
- Another part of econometric literature, argues that the use parametric methods to model financial time-series is characterised by parameter instability and poor forecast performance. See Pesaran and Timmermann (1992) and Härdel et al. (1998).

VARs o	Motivation ●○	Bayesian nonparametric methods oo	The Bayesian semiparametric VAR(1)	Computation o	Empirical Examples o ooooooooooooooo
Flexibl	e models				

- Past and current literature finds departures from the linear and Gaussian VAR form. See Koop et al. (1996), Weise(1999), Favero (2012), Wong (2013) to name a few.
- The main argument is that linear models cannot adequately capture 'asymmetries' that may exist in business cycle fluctuations.
- Another part of econometric literature, argues that the use parametric methods to model financial time-series is characterised by parameter instability and poor forecast performance. See Pesaran and Timmermann (1992) and Härdel et al. (1998).

VARs ○	Motivation ●○	Bayesian nonparametric methods	The Bayesian semiparametric VAR(1)	Computation o	Empirical Examples o ooooooooooooooo
Flexible	models				

- Past and current literature finds departures from the linear and Gaussian VAR form. See Koop et al. (1996), Weise(1999), Favero (2012), Wong (2013) to name a few.
- The main argument is that linear models cannot adequately capture 'asymmetries' that may exist in business cycle fluctuations.
- Another part of econometric literature, argues that the use parametric methods to model financial time-series is characterised by parameter instability and poor forecast performance. See Pesaran and Timmermann (1992) and Härdel et al. (1998).

VARs ○	Motivation ●○	Bayesian nonparametric methods oo	The Bayesian semiparametric VAR(1)	Computation o	Empirical Examples o ooooooooooooooo
Flexible	e models				

- Past and current literature finds departures from the linear and Gaussian VAR form. See Koop et al. (1996), Weise(1999), Favero (2012), Wong (2013) to name a few.
- The main argument is that linear models cannot adequately capture 'asymmetries' that may exist in business cycle fluctuations.
- Another part of econometric literature, argues that the use parametric methods to model financial time-series is characterised by parameter instability and poor forecast performance. See Pesaran and Timmermann (1992) and Härdel et al. (1998).

VARs o	Motivation ●○	Bayesian nonparametric methods oo	The Bayesian semiparametric VAR(1)	Computation o	Empirical Examples o ooooooooooooooo
Flexibl	e models				

- Past and current literature finds departures from the linear and Gaussian VAR form. See Koop et al. (1996), Weise(1999), Favero (2012), Wong (2013) to name a few.
- The main argument is that linear models cannot adequately capture 'asymmetries' that may exist in business cycle fluctuations.
- Another part of econometric literature, argues that the use parametric methods to model financial time-series is characterised by parameter instability and poor forecast performance. See Pesaran and Timmermann (1992) and Härdel et al. (1998).

VARs o	Motivation ○●	Bayesian nonparametric methods oo	The Bayesian semiparametric VAR(1)	Computation o	Empirical Examples o ooooooooooooooo
Flexibl	e models				

- We want to merge these two sides of literature, and consider non-linear, semi-parametric VAR models.
- The model we propose uses Bayesian non-parametric methods.
- To be more precise we use the Dirichlet process mixture to construct non-linear first order stationary multivariate VAR processes with non-Gaussian innovations.

VARs o	Motivation ○●	Bayesian nonparametric methods o	The Bayesian semiparametric VAR(1)	Computation o	Empirical Examples o ooooooooooooooo
Flexibl	e models				

- We want to merge these two sides of literature, and consider non-linear, semi-parametric VAR models.
- The model we propose uses Bayesian non-parametric methods.
- To be more precise we use the Dirichlet process mixture to construct non-linear first order stationary multivariate VAR processes with non-Gaussian innovations.

VARs o	Motivation ○●	Bayesian nonparametric methods oo	The Bayesian semiparametric VAR(1)	Computation o	Empirical Examples o ooooooooooooooo	
Flexible models						

- We want to merge these two sides of literature, and consider non-linear, semi-parametric VAR models.
- The model we propose uses Bayesian non-parametric methods.
- To be more precise we use the Dirichlet process mixture to construct non-linear first order stationary multivariate VAR processes with non-Gaussian innovations.

VARs o	Bayesian nonparametric methods	The Bayesian semiparametric VAR(1)	Computation o	Empirical Examples o oooooooooooooo
Intro				

- A nonparametric model has an infinite number of parameters. For example, in density estimation the parameters can consist of all densities.
- In Bayesian statistics, we need to define a prior for the parameters. This is non trivial since we are working on an infinite parameter space.
- The solution, is to define a stochastic process to be your prior. The Dirichlet process (DP) introduced in Ferguson (1973) is the popular Bayesian nonparametric prior, and the one we will use for our VAR model.

- A nonparametric model has an infinite number of parameters. For example, in density estimation the parameters can consist of all densities.
- In Bayesian statistics, we need to define a prior for the parameters. This is non trivial since we are working on an infinite parameter space.
- The solution, is to define a stochastic process to be your prior. The Dirichlet process (DP) introduced in Ferguson (1973) is the popular Bayesian nonparametric prior, and the one we will use for our VAR model.

- A nonparametric model has an infinite number of parameters. For example, in density estimation the parameters can consist of all densities.
- In Bayesian statistics, we need to define a prior for the parameters. This is non trivial since we are working on an infinite parameter space.
- The solution, is to define a stochastic process to be your prior. The Dirichlet process (DP) introduced in Ferguson (1973) is the popular Bayesian nonparametric prior, and the one we will use for our VAR model.

- A nonparametric model has an infinite number of parameters. For example, in density estimation the parameters can consist of all densities.
- In Bayesian statistics, we need to define a prior for the parameters. This is non trivial since we are working on an infinite parameter space.
- The solution, is to define a stochastic process to be your prior. The Dirichlet process (DP) introduced in Ferguson (1973) is the popular Bayesian nonparametric prior, and the one we will use for our VAR model.

- A nonparametric model has an infinite number of parameters. For example, in density estimation the parameters can consist of all densities.
- In Bayesian statistics, we need to define a prior for the parameters. This is non trivial since we are working on an infinite parameter space.
- The solution, is to define a stochastic process to be your prior. The Dirichlet process (DP) introduced in Ferguson (1973) is the popular Bayesian nonparametric prior, and the one we will use for our VAR model.

- A nonparametric model has an infinite number of parameters. For example, in density estimation the parameters can consist of all densities.
- In Bayesian statistics, we need to define a prior for the parameters. This is non trivial since we are working on an infinite parameter space.
- The solution, is to define a stochastic process to be your prior. The Dirichlet process (DP) introduced in Ferguson (1973) is the popular Bayesian nonparametric prior, and the one we will use for our VAR model.

- We the DPM to construct non-linear first order stationary multivariate VAR processes with non-Gaussian innovations. So what is the DPM?
- Introduced by Lo (1984) the DPM model, with Gaussian kernel, is given by

$$f_P(y) = \int \mathrm{N}(y; \mu, \sigma^2) \,\mathrm{d}P(\phi)$$

- We the DPM to construct non-linear first order stationary multivariate VAR processes with non-Gaussian innovations. So what is the DPM?
- Introduced by Lo (1984) the DPM model, with Gaussian kernel, is given by

$$f_P(y) = \int \mathrm{N}(y; \mu, \sigma^2) \,\mathrm{d}P(\phi)$$

- We the DPM to construct non-linear first order stationary multivariate VAR processes with non-Gaussian innovations. So what is the DPM?
- Introduced by Lo (1984) the DPM model, with Gaussian kernel, is given by

$$f_{P}(\mathbf{y}) = \int \mathrm{N}(\mathbf{y}; \mu, \sigma^{2}) \,\mathrm{d}\mathbf{P}(\phi)$$

- We the DPM to construct non-linear first order stationary multivariate VAR processes with non-Gaussian innovations. So what is the DPM?
- Introduced by Lo (1984) the DPM model, with Gaussian kernel, is given by

$$f_{\mathcal{P}}(\boldsymbol{y}) = \int \mathrm{N}(\boldsymbol{y}; \mu, \sigma^2) \,\mathrm{d}\boldsymbol{P}(\phi)$$

- We the DPM to construct non-linear first order stationary multivariate VAR processes with non-Gaussian innovations. So what is the DPM?
- Introduced by Lo (1984) the DPM model, with Gaussian kernel, is given by

$$f_{\mathcal{P}}(\boldsymbol{y}) = \int \mathrm{N}(\boldsymbol{y}; \mu, \sigma^2) \,\mathrm{d}\boldsymbol{P}(\phi)$$

• The DPM's stick-breaking representation (see Sethuraman (1992)), is :

$$\boldsymbol{P} = \sum_{j=1}^{\infty} \boldsymbol{w}_j \, \delta_{\phi_j},$$

 $\phi_j \stackrel{\text{iid}}{\sim} P_0$, $w_1 = v_1$, $w_j = v_j \prod_{l < j} (1 - v_l)$ with $v_j \stackrel{\text{iid}}{\sim} \text{Be}(1, M)$, and we can write

$$f_{\mathbf{v},\phi}(\mathbf{y}_i) = \sum_{j=1}^{\infty} \mathbf{w}_j \operatorname{N}(\mathbf{y}_i; \phi_j)$$

To facilitate computation auxiliary allocation variables (d_1, \ldots, d_n) are introduced, so that $p(d_i = j) = w_j$, and $w_1, w_2, \ldots \perp \phi_1, \phi_2 \ldots$

• The DPM's stick-breaking representation (see Sethuraman (1992)), is :

$$\boldsymbol{P} = \sum_{j=1}^{\infty} \boldsymbol{w}_j \, \delta_{\phi_j},$$

 $\phi_j \stackrel{\text{iid}}{\sim} P_0$, $w_1 = v_1$, $w_j = v_j \prod_{l < j} (1 - v_l)$ with $v_j \stackrel{\text{iid}}{\sim} \text{Be}(1, M)$, and we can write

$$f_{\mathbf{v},\phi}(\mathbf{y}_i) = \sum_{j=1}^{\infty} \mathbf{w}_j \operatorname{N}(\mathbf{y}_i;\phi_j)$$

To facilitate computation auxiliary allocation variables (d_1, \ldots, d_n) are introduced, so that $p(d_i = j) = w_j$, and $w_1, w_2, \ldots \perp \phi_1, \phi_2 \ldots$

VARs		Bayesian nonparametric methods	The Bayesian semiparametric VAR(1)	Computation	Empirical Examples		
			•000 00				
Model construction							

- Villalobos and Walker (2013), construct a Bayesian nonparametric version of the AR(1) model, by expressing both the joint and transition densities as DPM.
- We extend their idea to the multivariate case and model the transition and joint densities using the DPM.
- The joint density will therefore be:

$$f\left(\begin{array}{c} y_{t-1} \\ y_t \end{array}\right) = \sum_{j=1}^{\infty} w_j \operatorname{N}\left(\left(\begin{array}{c} y_{t-1} \\ y_t \end{array}\right) \middle| \left(\begin{array}{c} \mu_j \\ \mu_j \end{array}\right) \left(\begin{array}{c} \Sigma_j & \Omega_j \\ \Omega_j & \Sigma_j \end{array}\right)\right)$$

for j = 1, 2, ..., t = 1, ..., T, and i = 1, ..., m.

• The stationary distribution is then $f(y_t) = \sum_{i=1}^{\infty} N(y_t | \mu_j, \Sigma_j)$

VARs		Bayesian nonparametric methods	The Bayesian semiparametric VAR(1)	Computation	Empirical Examples		
			•000 00				
Model construction							

- Villalobos and Walker (2013), construct a Bayesian nonparametric version of the AR(1) model, by expressing both the joint and transition densities as DPM.
- We extend their idea to the multivariate case and model the transition and joint densities using the DPM.
- The joint density will therefore be:

$$f\left(\begin{array}{c} y_{t-1} \\ y_t \end{array}\right) = \sum_{j=1}^{\infty} w_j \operatorname{N}\left(\left(\begin{array}{c} y_{t-1} \\ y_t \end{array}\right) \middle| \left(\begin{array}{c} \mu_j \\ \mu_j \end{array}\right) \left(\begin{array}{c} \Sigma_j & \Omega_j \\ \Omega_j & \Sigma_j \end{array}\right)\right)$$

for j = 1, 2, ..., t = 1, ..., T, and i = 1, ..., m.

• The stationary distribution is then $f(y_t) = \sum_{i=1}^{\infty} N(y_t | \mu_j, \Sigma_j)$
vARs o		Bayesian nonparametric methods o	The Bayesian semiparametric VAR(1) ● ○ ○ ○	Computation o	Empirical Examples			
Model construction								

- Villalobos and Walker (2013), construct a Bayesian nonparametric version of the AR(1) model, by expressing both the joint and transition densities as DPM.
- We extend their idea to the multivariate case and model the transition and joint densities using the DPM.
- The joint density will therefore be:

$$f\left(\begin{array}{c} y_{t-1} \\ y_t \end{array}\right) = \sum_{j=1}^{\infty} w_j \operatorname{N}\left(\left(\begin{array}{c} y_{t-1} \\ y_t \end{array}\right) \middle| \left(\begin{array}{c} \mu_j \\ \mu_j \end{array}\right) \left(\begin{array}{c} \Sigma_j & \Omega_j \\ \Omega_j & \Sigma_j \end{array}\right)\right)$$

for j = 1, 2, ..., t = 1, ..., T, and i = 1, ..., m.

• The stationary distribution is then $f(y_t) = \sum_{i=1}^{\infty} N(y_t | \mu_j, \Sigma_j)$

vARs o		Bayesian nonparametric methods o	The Bayesian semiparametric VAR(1) ● ○ ○ ○	Computation o	Empirical Examples			
Model construction								

- Villalobos and Walker (2013), construct a Bayesian nonparametric version of the AR(1) model, by expressing both the joint and transition densities as DPM.
- We extend their idea to the multivariate case and model the transition and joint densities using the DPM.
- The joint density will therefore be:

$$f\left(\begin{array}{c} y_{t-1} \\ y_t \end{array}\right) = \sum_{j=1}^{\infty} w_j \operatorname{N}\left(\left(\begin{array}{c} y_{t-1} \\ y_t \end{array}\right) \middle| \left(\begin{array}{c} \mu_j \\ \mu_j \end{array}\right) \left(\begin{array}{c} \Sigma_j & \Omega_j \\ \Omega_j & \Sigma_j \end{array}\right)\right)$$

for
$$j = 1, 2, ..., t = 1, ..., T$$
, and $i = 1, ..., m$.

• The stationary distribution is then $f(y_t) = \sum_{i=1}^{\infty} N(y_t | \mu_j, \Sigma_j)$

VARs o		Bayesian nonparametric methods oo	The Bayesian semiparametric VAR(1) ●○○○ ○○	Computation o	Empirical Examples			
Model construction								

- Villalobos and Walker (2013), construct a Bayesian nonparametric version of the AR(1) model, by expressing both the joint and transition densities as DPM.
- We extend their idea to the multivariate case and model the transition and joint densities using the DPM.
- The joint density will therefore be:

$$f\left(\begin{array}{c} y_{t-1} \\ y_t \end{array}\right) = \sum_{j=1}^{\infty} w_j \operatorname{N}\left(\left(\begin{array}{c} y_{t-1} \\ y_t \end{array}\right) \middle| \left(\begin{array}{c} \mu_j \\ \mu_j \end{array}\right) \left(\begin{array}{c} \Sigma_j & \Omega_j \\ \Omega_j & \Sigma_j \end{array}\right)\right)$$

for j = 1, 2, ..., t = 1, ..., T, and i = 1, ..., m.

• The stationary distribution is then $f(y_t) = \sum_{j=1}^{\infty} N(y_t | \mu_j, \Sigma_j)$

VARs ○		Bayesian nonparametric methods o	The Bayesian semiparametric VAR(1)	Computation o	Empirical Examples o ooooooooooooooo			
Model	Model construction							

• The y_t and y_{t-1} are *m* dimensional vectors,

- the μ_j's are also *m* dimensional vectors, and we have an infinite number of them,
- the Σ_j 's are $m \times m$ positive definite matrices, and we have an infinite number of them,
- and the Ω_j 's are $m \times m$ matrices, and we also have an infinite number of them.

VARs o		Bayesian nonparametric methods oo	The Bayesian semiparametric VAR(1)	Computation o	Empirical Examples o oooooooooooooooooooooooooooooooooo			
Model construction								

- The y_t and y_{t-1} are *m* dimensional vectors,
- the *μ_j*'s are also *m* dimensional vectors, and we have an infinite number of them,
- the Σ_j 's are $m \times m$ positive definite matrices, and we have an infinite number of them,
- and the Ω_j 's are $m \times m$ matrices, and we also have an infinite number of them.

VARs o		Bayesian nonparametric methods o	The Bayesian semiparametric VAR(1)	Computation o	Empirical Examples o ooooooooooooooo			
Model construction								

- The y_t and y_{t-1} are *m* dimensional vectors,
- the *μ_j*'s are also *m* dimensional vectors, and we have an infinite number of them,
- the Σ_j 's are $m \times m$ positive definite matrices, and we have an infinite number of them,
- and the Ω_j 's are $m \times m$ matrices, and we also have an infinite number of them.

VARs o		Bayesian nonparametric methods	The Bayesian semiparametric VAR(1)	Computation o	Empirical Examples o ooooooooooooooo		
Model construction							

- The y_t and y_{t-1} are *m* dimensional vectors,
- the *μ_j*'s are also *m* dimensional vectors, and we have an infinite number of them,
- the Σ_j 's are $m \times m$ positive definite matrices, and we have an infinite number of them,
- and the Ω_j 's are $m \times m$ matrices, and we also have an infinite number of them.

• The transition density will then be

$$f(\mathbf{y}_t|\mathbf{y}_{t-1}) = \frac{\sum_{j=1}^{\infty} \mathbf{w}_j \operatorname{N}\left(\begin{pmatrix} \mathbf{y}_{t-1} \\ \mathbf{y}_t \end{pmatrix} \middle| \begin{pmatrix} \mu_j \\ \mu_j \end{pmatrix} \begin{pmatrix} \boldsymbol{\Sigma}_j & \boldsymbol{\Omega}_j \\ \boldsymbol{\Omega}_j & \boldsymbol{\Sigma}_j \end{pmatrix} \right)}{\sum_{j=1}^{\infty} \mathbf{w}_j \operatorname{N}(\mathbf{y}_{t-1}|\mu_j, \boldsymbol{\Sigma}_j)}$$

• We can then re-write it as locally weighted mixture of VAR(1)'s as follows,

$$f(y_t|y_{t-1}) = \sum_{j=1}^{\infty} p_j(y_{t-1}) \operatorname{N}(y_t|\theta_j(y_{t-1}), \Lambda_j(y_{t-1}))$$

VARs		Bayesian nonparametric methods	The Bayesian semiparametric VAR(1)	Computation	Empirical Examples		
		0			0		
Model construction							

where,

•
$$p_j(y_{t-1}) = \frac{W_j \operatorname{N}(y_{t-1}|\mu_j, \Sigma_j)}{\sum_{k=1}^{\infty} \operatorname{N}(y_{t-1}|\mu_k, \Sigma_k)}$$
,

•
$$\theta_j(y_{t-1}) = \mu_j + \Omega'_j \Sigma_j^{-1}(y_{t-1} - \mu_j),$$

•
$$\Lambda_j(y_{t-1}) = \Sigma_j - \Omega'_j \Sigma_j^{-1} \Omega_j$$

VARs		Bayesian nonparametric methods	The Bayesian semiparametric VAR(1)	Computation	Empirical Examples			
Model construction								

where, • $p_j(y_{t-1}) = \frac{w_j \operatorname{N}(y_{t-1}|\mu_j, \Sigma_j)}{\sum_{k=1}^{\infty} \operatorname{N}(y_{t-1}|\mu_k, \Sigma_k)}$,

•
$$\theta_j(y_{t-1}) = \mu_j + \Omega'_j \Sigma_j^{-1}(y_{t-1} - \mu_j),$$

•
$$\Lambda_j(y_{t-1}) = \Sigma_j - \Omega'_j \Sigma_j^{-1} \Omega_j$$

VARs		Bayesian nonparametric methods	The Bayesian semiparametric VAR(1)	Computation	Empirical Examples			
Model construction								

where, • $p_j(y_{t-1}) = \frac{w_j \operatorname{N}(y_{t-1}|\mu_j, \Sigma_j)}{\sum_{k=1}^{\infty} \operatorname{N}(y_{t-1}|\mu_k, \Sigma_k)}$,

•
$$\theta_j(y_{t-1}) = \mu_j + \Omega'_j \Sigma_j^{-1}(y_{t-1} - \mu_j),$$

•
$$\Lambda_j(y_{t-1}) = \Sigma_j - \Omega'_j \Sigma_j^{-1} \Omega_j$$

VARs		Bayesian nonparametric methods	The Bayesian semiparametric VAR(1)	Computation	Empirical Examples			
Model construction								

where, • $p_j(y_{t-1}) = \frac{w_j \operatorname{N}(y_{t-1}|\mu_j, \Sigma_j)}{\sum_{k=1}^{\infty} \operatorname{N}(y_{t-1}|\mu_k, \Sigma_k)}$,

•
$$\theta_j(y_{t-1}) = \mu_j + \Omega'_j \Sigma_j^{-1}(y_{t-1} - \mu_j),$$

•
$$\Lambda_j(y_{t-1}) = \Sigma_j - \Omega'_j \Sigma_j^{-1} \Omega_j$$

VARs		Bayesian nonparametric methods	The Bayesian semiparametric VAR(1)	Computation	Empirical Examples			
Model construction								

where,
•
$$p_j(y_{t-1}) = \frac{w_j \operatorname{N}(y_{t-1}|\mu_j, \Sigma_j)}{\sum_{k=1}^{\infty} \operatorname{N}(y_{t-1}|\mu_k, \Sigma_k)}$$
,

•
$$\theta_j(\mathbf{y}_{t-1}) = \mu_j + \Omega'_j \Sigma_j^{-1}(\mathbf{y}_{t-1} - \mu_j),$$

•
$$\Lambda_j(y_{t-1}) = \Sigma_j - \Omega'_j \Sigma_j^{-1} \Omega_j$$

VARs	Bayesian nonparametric methods	The Bayesian semiparametric VAR(1)	Computation	Empirical Examples
Priors				

- When selecting the priors, we must ensure that the Σ_j matrices are positive definite. For this reason rather than placing priors on the variance covariance matrices, we decompose them in terms of correlation matrices.
- We follow Karlsson (2012), and write Σ_j , Ω_j as follows: $\Sigma_j = S_j P_j S_j$ and $\Omega_j = S_j R_j S_j$
 - where, S_j is an $m \times m$ diagonal matrix, with $\sigma_{1,j}, \ldots, \sigma_{m,j}$, in the diagonal.
 - P_j is the $m \times m$ correlation matrix at time t of the VAR(1) variables. Its elements are the correlations between $y_{t,k}$ and $y_{t,l}$ in the j^{th} component.
 - R_j is the cross-correlation matrix at times t and t 1. Its elements are the correlations between $y_{t-1,k}$ and $y_{t,l}$ in the j^{th} component.

VARs	Bayesian nonparametric methods	The Bayesian semiparametric VAR(1)	Computation	Empirical Examples
		0000		
Priors	00	•0		0000000000

- When selecting the priors, we must ensure that the Σ_j matrices are positive definite. For this reason rather than placing priors on the variance covariance matrices, we decompose them in terms of correlation matrices.
- We follow Karlsson (2012), and write Σ_j , Ω_j as follows: $\Sigma_j = S_j P_j S_j$ and $\Omega_j = S_j R_j S_j$
 - where, S_j is an $m \times m$ diagonal matrix, with $\sigma_{1,j}, \ldots, \sigma_{m,j}$, in the diagonal.
 - P_j is the $m \times m$ correlation matrix at time t of the VAR(1) variables. Its elements are the correlations between $y_{t,k}$ and $y_{t,l}$ in the j^{th} component.
 - R_j is the cross-correlation matrix at times t and t 1. Its elements are the correlations between $y_{t-1,k}$ and $y_{t,l}$ in the j^{th} component.

VARs o	Bayesian nonparametric methods oo	The Bayesian semiparametric VAR(1)	Computation o	Empirical Examples o ooooooooooooooo
Priors				

- When selecting the priors, we must ensure that the Σ_j matrices are positive definite. For this reason rather than placing priors on the variance covariance matrices, we decompose them in terms of correlation matrices.
- We follow Karlsson (2012), and write Σ_j, Ω_j as follows:
 Σ_j = S_jP_jS_j and Ω_j = S_jR_jS_j
 - where, S_j is an $m \times m$ diagonal matrix, with $\sigma_{1,j}, \ldots, \sigma_{m,j}$, in the diagonal.
 - P_j is the $m \times m$ correlation matrix at time t of the VAR(1) variables. Its elements are the correlations between $y_{t,k}$ and $y_{t,l}$ in the j^{th} component.
 - R_j is the cross-correlation matrix at times t and t 1. Its elements are the correlations between $y_{t-1,k}$ and $y_{t,l}$ in the j^{th} component.

VARs o	Bayesian nonparametric methods oo	The Bayesian semiparametric VAR(1)	Computation o	Empirical Examples o ooooooooooooooo
Priors				

- When selecting the priors, we must ensure that the Σ_j matrices are positive definite. For this reason rather than placing priors on the variance covariance matrices, we decompose them in terms of correlation matrices.
- We follow Karlsson (2012), and write Σ_j , Ω_j as follows: $\Sigma_j = S_j P_j S_j$ and $\Omega_j = S_j R_j S_j$
 - where, S_j is an $m \times m$ diagonal matrix , with $\sigma_{1,j}, \ldots, \sigma_{m,j}$, in the diagonal.
 - P_j is the $m \times m$ correlation matrix at time t of the VAR(1) variables. Its elements are the correlations between $y_{t,k}$ and $y_{t,l}$ in the j^{th} component.
 - R_j is the cross-correlation matrix at times t and t 1. Its elements are the correlations between $y_{t-1,k}$ and $y_{t,l}$ in the j^{th} component.

VARs o	Bayesian nonparametric methods oo	The Bayesian semiparametric VAR(1)	Computation o	Empirical Examples o ooooooooooooooo
Priors				

- When selecting the priors, we must ensure that the Σ_j matrices are positive definite. For this reason rather than placing priors on the variance covariance matrices, we decompose them in terms of correlation matrices.
- We follow Karlsson (2012), and write Σ_j , Ω_j as follows: $\Sigma_j = S_j P_j S_j$ and $\Omega_j = S_j R_j S_j$
 - where, S_j is an $m \times m$ diagonal matrix , with $\sigma_{1,j}, \ldots, \sigma_{m,j}$, in the diagonal.
 - P_j is the $m \times m$ correlation matrix at time t of the VAR(1) variables. Its elements are the correlations between $y_{t,k}$ and $y_{t,l}$ in the j^{th} component.
 - R_j is the cross-correlation matrix at times t and t 1. Its elements are the correlations between $y_{t-1,k}$ and $y_{t,l}$ in the j^{th} component.

VARs o	Bayesian nonparametric methods oo	The Bayesian semiparametric VAR(1)	Computation o	Empirical Examples o ooooooooooooooo
Priors				

- When selecting the priors, we must ensure that the Σ_j matrices are positive definite. For this reason rather than placing priors on the variance covariance matrices, we decompose them in terms of correlation matrices.
- We follow Karlsson (2012), and write Σ_j , Ω_j as follows: $\Sigma_j = S_j P_j S_j$ and $\Omega_j = S_j R_j S_j$
 - where, S_j is an $m \times m$ diagonal matrix , with $\sigma_{1,j}, \ldots, \sigma_{m,j}$, in the diagonal.
 - P_j is the $m \times m$ correlation matrix at time *t* of the VAR(1) variables. Its elements are the correlations between $y_{t,k}$ and $y_{t,l}$ in the *j*th component.
 - R_j is the cross-correlation matrix at times t and t 1. Its elements are the correlations between $y_{t-1,k}$ and $y_{t,l}$ in the j^{th} component.

VARs o	Bayesian nonparametric methods oo	The Bayesian semiparametric VAR(1)	Computation o	Empirical Examples o ooooooooooooooo
Priors				

- When selecting the priors, we must ensure that the Σ_j matrices are positive definite. For this reason rather than placing priors on the variance covariance matrices, we decompose them in terms of correlation matrices.
- We follow Karlsson (2012), and write Σ_j, Ω_j as follows:
 Σ_j = S_jP_jS_j and Ω_j = S_jR_jS_j
 - where, S_j is an $m \times m$ diagonal matrix , with $\sigma_{1,j}, \ldots, \sigma_{m,j}$, in the diagonal.
 - P_j is the $m \times m$ correlation matrix at time t of the VAR(1) variables. Its elements are the correlations between $y_{t,k}$ and $y_{t,l}$ in the j^{th} component.
 - R_j is the cross-correlation matrix at times t and t 1. Its elements are the correlations between $y_{t-1,k}$ and $y_{t,l}$ in the j^{th} component.

VARs o	Bayesian nonparametric methods o	The Bayesian semiparametric VAR(1)	Computation o	Empirical Examples o ooooooooooooooo
Priors				

- This means that the mean vector and variance matrix for the transition probability can be written as:
 - $\theta_j(y_{t-1}) = \mu_j + S_j R'_j P_j^{-1} S_j^{-1}(y_{t-1} \mu_j)$
 - $\Lambda_j(y_{t-1}) = S_j(P_j R'_j P_j^{-1} R_j) S_j$
- We then place priors on R_j , P_j , S_j , and μ_j .)
 - $R_{k,j} \sim U(-1,1)$,
 - $P_{k,j} \sim U(-1,1)$ for $k \neq j$, with diagonal matrix $P_{j,j} = I$
 - $S_j \sim \text{IG}(S_a, (S_a 1)S_{\mu_j})$, where $S_{\mu_j} \sim \text{Ga}(1, 5)$, so that $S_{\mu_j} = \text{E}(S_j)$, and $S_a = 4$.
 - $\mu_j \sim N(\mu_0, \Sigma_0)$. μ_0 is set equal to the sample mean of the data and $\Sigma_{0,j,j} = 1.5^2 Var(y_j)$ and $\Sigma_{0,k,j} = 0$

VARs o	Bayesian nonparametric methods oo	The Bayesian semiparametric VAR(1) ○○○○	Computation o	Empirical Examples o ooooooooooooooo
Priors				

- This means that the mean vector and variance matrix for the transition probability can be written as:
 - $\theta_j(y_{t-1}) = \mu_j + S_j R'_j P_j^{-1} S_j^{-1}(y_{t-1} \mu_j)$
 - $\Lambda_j(y_{t-1}) = S_j(P_j R'_j P_j^{-1} R_j) S_j$
- We then place priors on R_j , P_j , S_j , and μ_j .)
 - $R_{k,j} \sim U(-1,1)$,
 - $P_{k,j} \sim U(-1,1)$ for $k \neq j$, with diagonal matrix $P_{j,j} = I$
 - $S_j \sim \text{IG}(S_a, (S_a 1)S_{\mu_j})$, where $S_{\mu_j} \sim \text{Ga}(1, 5)$, so that $S_{\mu_j} = \text{E}(S_j)$, and $S_a = 4$.
 - $\mu_j \sim N(\mu_0, \Sigma_0)$. μ_0 is set equal to the sample mean of the data and $\Sigma_{0,j,j} = 1.5^2 Var(y_j)$ and $\Sigma_{0,k,j} = 0$

VARs o	Bayesian nonparametric methods oo	The Bayesian semiparametric VAR(1) ○○○○ ○●	Computation o	Empirical Examples o ooooooooooooooo
Priors				

- This means that the mean vector and variance matrix for the transition probability can be written as:
 - $\theta_j(y_{t-1}) = \mu_j + S_j R'_j P_j^{-1} S_j^{-1}(y_{t-1} \mu_j)$
 - $\Lambda_j(y_{t-1}) = S_j(P_j R'_j P_j^{-1} R_j) S_j$
- We then place priors on R_i , P_j , S_j , and μ_j .)
 - $R_{k,j} \sim U(-1,1)$,
 - $P_{k,j} \sim U(-1,1)$ for $k \neq j$, with diagonal matrix $P_{j,j} = I$
 - $S_j \sim \text{IG}(S_a, (S_a 1)S_{\mu_j})$, where $S_{\mu_j} \sim \text{Ga}(1, 5)$, so that $S_{\mu_j} = \text{E}(S_j)$, and $S_a = 4$.
 - $\mu_j \sim N(\mu_0, \Sigma_0)$. μ_0 is set equal to the sample mean of the data and $\Sigma_{0,j,j} = 1.5^2 Var(y_j)$ and $\Sigma_{0,k,j} = 0$

VARs M	Motivation oo	Bayesian nonparametric methods	The Bayesian semiparametric VAR(1) ○○○○ ○●	Computation o	Empirical Examples o ooooooooooooooo
Priors					

- This means that the mean vector and variance matrix for the transition probability can be written as:
 - $\theta_j(y_{t-1}) = \mu_j + S_j R'_j P_j^{-1} S_j^{-1}(y_{t-1} \mu_j)$
 - $\Lambda_j(y_{t-1}) = S_j(P_j R'_j P_j^{-1} R_j) S_j$
- We then place priors on R_j , P_j , S_j , and μ_j .)
 - $R_{k,j} \sim U(-1,1)$,
 - $P_{k,j} \sim U(-1, 1)$ for $k \neq j$, with diagonal matrix $P_{j,j} = I$
 - $S_j \sim \text{IG}(S_a, (S_a 1)S_{\mu_j})$, where $S_{\mu_j} \sim \text{Ga}(1, 5)$, so that $S_{\mu_j} = \text{E}(S_j)$, and $S_a = 4$.
 - $\mu_j \sim N(\mu_0, \Sigma_0)$. μ_0 is set equal to the sample mean of the data and $\Sigma_{0,j,j} = 1.5^2 Var(y_j)$ and $\Sigma_{0,k,j} = 0$

VARs M	Motivation oo	Bayesian nonparametric methods	The Bayesian semiparametric VAR(1) ○○○○ ○●	Computation o	Empirical Examples o ooooooooooooooo
Priors					

- This means that the mean vector and variance matrix for the transition probability can be written as:
 - $\theta_j(y_{t-1}) = \mu_j + S_j R'_j P_j^{-1} S_j^{-1}(y_{t-1} \mu_j)$
 - $\Lambda_j(y_{t-1}) = S_j(P_j R'_j P_j^{-1} R_j) S_j$
- We then place priors on R_j , P_j , S_j , and μ_j .)
 - $R_{k,j} \sim U(-1,1)$,
 - $P_{k,j} \sim U(-1, 1)$ for $k \neq j$, with diagonal matrix $P_{j,j} = I$
 - $S_j \sim \text{IG}(S_a, (S_a 1)S_{\mu_j})$, where $S_{\mu_j} \sim \text{Ga}(1, 5)$, so that $S_{\mu_j} = \text{E}(S_j)$, and $S_a = 4$.
 - $\mu_j \sim N(\mu_0, \Sigma_0)$. μ_0 is set equal to the sample mean of the data and $\Sigma_{0,j,j} = 1.5^2 Var(y_j)$ and $\Sigma_{0,k,j} = 0$

VARs M	Motivation	Bayesian nonparametric methods	The Bayesian semiparametric VAR(1) ○○○○ ○●	Computation o	Empirical Examples o ooooooooooooooo
Priors					

- This means that the mean vector and variance matrix for the transition probability can be written as:
 - $\theta_j(y_{t-1}) = \mu_j + S_j R'_j P_j^{-1} S_j^{-1}(y_{t-1} \mu_j)$
 - $\Lambda_j(y_{t-1}) = S_j(P_j R'_j P_j^{-1} R_j) S_j$
- We then place priors on R_j , P_j , S_j , and μ_j .)
 - $R_{k,j} \sim U(-1,1)$,
 - $P_{k,j} \sim U(-1,1)$ for $k \neq j$, with diagonal matrix $P_{j,j} = I$
 - $S_j \sim \text{IG}(S_a, (S_a 1)S_{\mu_j})$, where $S_{\mu_j} \sim \text{Ga}(1, 5)$, so that $S_{\mu_j} = \mathbb{E}(S_j)$, and $S_a = 4$.
 - $\mu_j \sim N(\mu_0, \Sigma_0)$. μ_0 is set equal to the sample mean of the data and $\Sigma_{0,j,j} = 1.5^2 Var(y_j)$ and $\Sigma_{0,k,j} = 0$

VARs M	Motivation	Bayesian nonparametric methods	The Bayesian semiparametric VAR(1) ○○○○ ○●	Computation o	Empirical Examples o ooooooooooooooo
Priors					

- This means that the mean vector and variance matrix for the transition probability can be written as:
 - $\theta_j(y_{t-1}) = \mu_j + S_j R'_j P_j^{-1} S_j^{-1}(y_{t-1} \mu_j)$
 - $\Lambda_j(y_{t-1}) = S_j(P_j R'_j P_j^{-1} R_j) S_j$
- We then place priors on R_j , P_j , S_j , and μ_j .)
 - $R_{k,j} \sim U(-1,1)$,
 - $P_{k,j} \sim U(-1,1)$ for $k \neq j$, with diagonal matrix $P_{j,j} = I$
 - $S_j \sim \text{IG}(S_a, (S_a 1)S_{\mu_j})$, where $S_{\mu_j} \sim \text{Ga}(1, 5)$, so that $S_{\mu_j} = \text{E}(S_j)$, and $S_a = 4$.
 - $\mu_j \sim N(\mu_0, \Sigma_0)$. μ_0 is set equal to the sample mean of the data and $\Sigma_{0,j,j} = 1.5^2 Var(y_j)$ and $\Sigma_{0,k,j} = 0$

VARs Motivatio	Bayesian nonparametric methods	The Bayesian semiparametric VAR(1) ○○○○ ○●	Computation o	Empirical Examples o ooooooooooooooo
Priors				

- This means that the mean vector and variance matrix for the transition probability can be written as:
 - $\theta_j(y_{t-1}) = \mu_j + S_j R'_j P_j^{-1} S_j^{-1}(y_{t-1} \mu_j)$
 - $\Lambda_j(y_{t-1}) = S_j(P_j R'_j P_j^{-1} R_j) S_j$
- We then place priors on R_j , P_j , S_j , and μ_j .)
 - $R_{k,j} \sim U(-1,1)$,
 - $P_{k,j} \sim U(-1,1)$ for $k \neq j$, with diagonal matrix $P_{j,j} = I$
 - $S_j \sim IG(S_a, (S_a 1)S_{\mu_j})$, where $S_{\mu_j} \sim Ga(1, 5)$, so that $S_{\mu_j} = E(S_j)$, and $S_a = 4$.
 - $\mu_j \sim N(\mu_0, \Sigma_0)$. μ_0 is set equal to the sample mean of the data and $\Sigma_{0,j,j} = 1.5^2 Var(y_j)$ and $\Sigma_{0,k,j} = 0$

VARs Motivation	Bayesian nonparametric methods o	The Bayesian semiparametric VAR(1)	Computation •	Empirical Examples o ooooooooooooooo
key points				

- Standard MCMC methods for infinite mixture models cannot be used here.
- We use the adaptive truncation method of Griffin(2013).
- We sample a sequence of posteriors for truncated versions of the model, with different levels of truncation.
- The algorithm provides a method for choosing when to stop sampling this sequence, in such a way so that large truncation errors are avoided. The final posterior provides an approximation to the posterior of the infinite dimensional model.

VARs Mo		Bayesian nonparametric methods o	The Bayesian semiparametric VAR(1)	Computation •	Empirical Examples o ooooooooooooooo
key points	6				

- Standard MCMC methods for infinite mixture models cannot be used here.
- We use the adaptive truncation method of Griffin(2013).
- We sample a sequence of posteriors for truncated versions of the model, with different levels of truncation.
- The algorithm provides a method for choosing when to stop sampling this sequence, in such a way so that large truncation errors are avoided. The final posterior provides an approximation to the posterior of the infinite dimensional model.

VARs o		Bayesian nonparametric methods oo	The Bayesian semiparametric VAR(1)	Computation •	Empirical Examples o ooooooooooooooo
key points					

- Standard MCMC methods for infinite mixture models cannot be used here.
- We use the adaptive truncation method of Griffin(2013).
- We sample a sequence of posteriors for truncated versions of the model, with different levels of truncation.
- The algorithm provides a method for choosing when to stop sampling this sequence, in such a way so that large truncation errors are avoided. The final posterior provides an approximation to the posterior of the infinite dimensional model.

VARs o		Bayesian nonparametric methods o	The Bayesian semiparametric VAR(1)	Computation •	Empirical Examples o ooooooooooooooo
key points					

- Standard MCMC methods for infinite mixture models cannot be used here.
- We use the adaptive truncation method of Griffin(2013).
- We sample a sequence of posteriors for truncated versions of the model, with different levels of truncation.
- The algorithm provides a method for choosing when to stop sampling this sequence, in such a way so that large truncation errors are avoided. The final posterior provides an approximation to the posterior of the infinite dimensional model.

VARs o		Bayesian nonparametric methods o	The Bayesian semiparametric VAR(1)	Computation •	Empirical Examples o oooooooooooooo
key points					

- Standard MCMC methods for infinite mixture models cannot be used here.
- We use the adaptive truncation method of Griffin(2013).
- We sample a sequence of posteriors for truncated versions of the model, with different levels of truncation.
- The algorithm provides a method for choosing when to stop sampling this sequence, in such a way so that large truncation errors are avoided. The final posterior provides an approximation to the posterior of the infinite dimensional model.

VARs o		Bayesian nonparametric methods oo	The Bayesian semiparametric VAR(1)	Computation o	Empirical Examples	
What and why?						

- The preliminary results are based on a Var(1) with three variables. They include:
 - heat plots of $f(y_{t,k}|y_{t-1,j})$, and
 - plots of the median *E*(*y*_{t,k}|*y*_{t-1,j}) together with the 95% credible interval.
 Recall that at each iteration of the sampler we have different *E*(*y*_{t,k}|*y*_{t-1,j}) and that's why we choose the median as our point estimate
- The purpose of this analysis is to gain insight on the co-movements of macroeconomic variables, and how changes in previous lags of the same variables, as well as other variables affect their expected value.

VARs o		Bayesian nonparametric methods o	The Bayesian semiparametric VAR(1)	Computation o	Empirical Examples	
What and why?						

- The preliminary results are based on a Var(1) with three variables. They include:
 - heat plots of $f(y_{t,k}|y_{t-1,j})$, and
 - plots of the median *E*(*y*_{t,k}|*y*_{t-1,j}) together with the 95% credible interval.
 Recall that at each iteration of the sampler we have different *E*(*y*_{t,k}|*y*_{t-1,j}) and that's why we choose the median as our point estimate.
- The purpose of this analysis is to gain insight on the co-movements of macroeconomic variables, and how changes in previous lags of the same variables, as well as other variables affect their expected value.

VARs o		Bayesian nonparametric methods o	The Bayesian semiparametric VAR(1)	Computation o	Empirical Examples	
What and why?						

- The preliminary results are based on a Var(1) with three variables. They include:
 - heat plots of $f(y_{t,k}|y_{t-1,j})$, and
 - plots of the median $E(y_{t,k}|y_{t-1,j})$ together with the 95% credible interval.

Recall that at each iteration of the sampler we have different $E(y_{t,k}|y_{t-1,j})$ and that's why we choose the median as our point estimate.

• The purpose of this analysis is to gain insight on the co-movements of macroeconomic variables, and how changes in previous lags of the same variables, as well as other variables affect their expected value.
	VARs o		Bayesian nonparametric methods o	The Bayesian semiparametric VAR(1)	Computation o	Empirical Examples
What and why?						

- The preliminary results are based on a Var(1) with three variables. They include:
 - heat plots of $f(y_{t,k}|y_{t-1,j})$, and
 - plots of the median *E*(*y*_{t,k}|*y*_{t-1,j}) together with the 95% credible interval.
 Recall that at each iteration of the sampler we have different *E*(*y*_{t,k}|*y*_{t-1,j}) and that's why we choose the median as our point estimate.
- The purpose of this analysis is to gain insight on the co-movements of macroeconomic variables, and how changes in previous lags of the same variables, as well as other variables affect their expected value.

VARs Motivation Ba	ayesian nonparametric methods o	The Bayesian semiparametric VAR(1)	Computation o	Empirical Examples				
What and why?								

- The preliminary results are based on a Var(1) with three variables. They include:
 - heat plots of $f(y_{t,k}|y_{t-1,j})$, and
 - plots of the median *E*(*y*_{t,k}|*y*_{t-1,j}) together with the 95% credible interval.
 Recall that at each iteration of the sampler we have different *E*(*y*_{t,k}|*y*_{t-1,j}) and that's why we choose the median as our point estimate.
- The purpose of this analysis is to gain insight on the co-movements of macroeconomic variables, and how changes in previous lags of the same variables, as well as other variables affect their expected value.

VARs o	Bayesian nonparametric methods oo	The Bayesian semiparametric VAR(1)	Computation o	Empirical Examples ••••••••••••••••••••••••••••••••••••
data				
data				

- We constracted our data set using data series obtained from FRED, the economic database of the Federal Reserve Bank of St Louis.
- The sample period is from the second quarter of 1965 to the first quarter of 2011.
- The three variables are:
 - GDP deflator,
 - GDP growth (difference in logs of real GDP), and
 - Employment growth (differences in logs of non farm payroll).

VARs o	Bayesian nonparametric methods oo	The Bayesian semiparametric VAR(1)	Computation o	Empirical Examples ••••••••••••••••••••••••••••••••••••
data				

- We constracted our data set using data series obtained from FRED, the economic database of the Federal Reserve Bank of St Louis.
- The sample period is from the second quarter of 1965 to the first quarter of 2011.
- The three variables are:
 - GDP deflator,
 - GDP growth (difference in logs of real GDP), and
 - Employment growth (differences in logs of non farm payroll).

VARs o	Bayesian nonparametric methods oo	The Bayesian semiparametric VAR(1)	Computation o	Empirical Examples ••••••••••••••••••••••••••••••••••••
data				

- We constracted our data set using data series obtained from FRED, the economic database of the Federal Reserve Bank of St Louis.
- The sample period is from the second quarter of 1965 to the first quarter of 2011.
- The three variables are:
 - GDP deflator,
 - GDP growth (difference in logs of real GDP), and
 - Employment growth (differences in logs of non farm payroll).

VARs o	Bayesian nonparametric methods oo	The Bayesian semiparametric VAR(1)	Computation o	Empirical Examples ••••••••••••••••••••••••••••••••••••
data				

- We constracted our data set using data series obtained from FRED, the economic database of the Federal Reserve Bank of St Louis.
- The sample period is from the second quarter of 1965 to the first quarter of 2011.
- The three variables are:
 - GDP deflator,
 - GDP growth (difference in logs of real GDP), and
 - Employment growth (differences in logs of non farm payroll).

VARs o	Bayesian nonparametric methods o	The Bayesian semiparametric VAR(1)	Computation o	Empirical Examples
data				

- We constracted our data set using data series obtained from FRED, the economic database of the Federal Reserve Bank of St Louis.
- The sample period is from the second quarter of 1965 to the first quarter of 2011.
- The three variables are:
 - GDP deflator,
 - GDP growth (difference in logs of real GDP), and
 - Employment growth (differences in logs of non farm payroll).

VARs o	Bayesian nonparametric methods oo	The Bayesian semiparametric VAR(1)	Computation o	Empirical Examples ••••••••••••••••••••••••••••••••••••
data				

- We constracted our data set using data series obtained from FRED, the economic database of the Federal Reserve Bank of St Louis.
- The sample period is from the second quarter of 1965 to the first quarter of 2011.
- The three variables are:
 - GDP deflator,
 - GDP growth (difference in logs of real GDP), and
 - Employment growth (differences in logs of non farm payroll).

VARs ○	Bayesian nonparametric methods o	The Bayesian semiparametric VAR(1)	Computation o	Empirical Examples
data				

GDP growth at t and t - 1

VARs	Bayesian nonparametric methods	The Bayesian semiparametric VAR(1)	Computation	Empirical Examples
	00	00		000000000

GDP growth at t and Employment growth at t - 1

VARs	Bayesian nonparametric methods	The Bayesian semiparametric VAR(1)	Computation	Empirical Examples
		0000		0
	00	00		000000000

GDP growth at t and GDP deflator at t - 1

VARs	Bayesian nonparametric methods	The Bayesian semiparametric VAR(1)	Computation	Empirical Examples
	0 00	0000 00		o 0000●00000

GDP deflator at *t* and **GDP** growth at t - 1

VARs	Bayesian nonparametric methods	The Bayesian semiparametric VAR(1)	Computation	Empirical Examples
		0000		0
	00	00		00000000000

GDP deflator at t and Employment growth at t - 1

VARs	Bayesian nonparametric methods	The Bayesian semiparametric VAR(1)	Computation	Empirical Examples
		0000		0
	00	00		0000000000

GDP deflator at t and t - 1

VARs	Bayesian nonparametric methods	The Bayesian semiparametric VAR(1)	Computation	Empirical Examples
		0000 00		 0000000●00

Employment growth at t and GDP growth at t - 1

VARs	Bayesian nonparametric methods	The Bayesian semiparametric VAR(1)	Computation	Empirical Examples
	00	00		0000000000

Employment growth at t and GDP deflator at t - 1

VARs	Bayesian nonparametric methods	The Bayesian semiparametric VAR(1)	Computation	Empirical Examples
		0000		0
	00	00		000000000

Employment growth at t and t - 1

