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Introduction

I Acyclic probabilistic finite automata1 (APFA) are a rich family
of models for discrete longitudinal data.

I An APFA
I embodies a set of context-specific conditional independence

relations
I may be represented as a directed multigraph.
I and is a context-specific graphical model.

I The methodology is highly scalable and is routinely used for
high-dimensional genomic data in the Beagle software2.

I Here we describe the models and methods from a statistical
perspective.

1Ron, Singer and Tishby (1998). On the learnability and usage of acyclic
finite automata. J. Comp. Syst. Sci, 56, 133-52.

2Browning and Browning (2007). Rapid and accurate haplotype phasing and
missing-data inference for whole-genome association studies by use of localized
haplotype clustering. Am. J. Hum. Gen., 81, 1084-1097
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Automata

I Automata are devices that either input strings (as in parsing)
or output strings.

I They are used in computer science and machine learning:
I to represent formal languages and regular expressions;
I for speech recognition,
I natural language processing,
I machine translation.

I We first consider the more general probabilistic finite
automata (PFA) before focussing on the subclass of APFA.



Probabilistic Finite Automata

I A PFA is a device to generate random strings of symbols.
I It may be displayed as a directed multigraph, in which

I nodes are called states,
I there is one initial or root state with only outgoing edges, and

one final or sink state with only incoming edges,
I self-loops (edges from a state to itself) are allowed,
I each edge e has a symbol σ(e) and a probability π(e), and
I outgoing edges from each state have distinct symbols and the

sum of their probabilities is unity.



A PFA
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How a PFA generates strings

It starts at the root, then repeatedly

I chooses an outgoing edge at random according to the edge
probabilities,

I emits the edge symbol,

I traverses the edge to the next state,

until it reaches the sink.

This generates symbol strings of possibly variable length.



An APFA
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Acyclic Probabilistic Finite Automata

I An APFA A is a PFA that generates strings of constant
length.

I So all root-to-sink paths have the same length p.

I So all paths from the root to any specific state have the same
length, called the level of the state.

I Regard the strings as realizations of a random p-vector
X = (X1,X2, . . .Xp).

I Distinct root-to-sink paths e = (e1, e2, . . . , ep) generate
distinct realizations of X= σ(e) = (σ(e1), σ(e2), . . . , σ(ep)).

I The sample space of X is X(A) = {σ(e) : e ∈ E(A)}, where
E(A) is the set of root-to-sink paths in A.

I For any x ∈ X(A) there exists a unique root-to-sink path e
such that x = σ(e): we write this as e = σ−1(x).



A little theory

I The sample space of Xi , Xi , is the set of symbols on edges
incoming to a level i state.

I The parameters are the edge probabilities
π = {π(e) : e ∈ E (A)}.

I The π(e) specify the right-hand side of

Pr(X = x) = Pr(X1 = x1)
∏

i=2...p

Pr(Xi = xi |X<i = x<i ) (1)

where X<i = (X1, . . . ,Xi−1), x≥i = (xi , . . . , xp),
Y≥i ;≤j = (Yi , . . . ,Yj) etc.



Context-specific conditional independences

I When the data generating process arrives at a level i state w ,
the distribution of X>i does not depend on the path the
process took to arrive at w . So

X>i ⊥⊥X≤i |X≤i ∈ C(w) (2)

where C(w) = {σ(e) : e ∈ P(w)}, and P(w) is the set of
paths from the root to w .

I Thus an APFA expresses a set of context-specific conditional
independence constraints on the distribution of X.



Maximal and minimal APFA for three binary variables
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A sample tree for N = 70 observations of 4 binary variables
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To derive the maximal (unrestricted) APFA, contract the states at
the last level.
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Likelihood

We draw independent samples x(v) for v = 1 . . .N from A, and
want to estimate the π(e). We have

Pr(x) =
∏

i=1...p

π(ei )

where e = σ−1(x) so that the likelihood of the sample is∏
v=1...N

∏
i=1...p

π(e
(v)
i )

where e(v) = σ−1(x(v)). This can be re-written as∏
e∈E(A)

π(e)n(e)

where n(e) is the edge count, i.e. the number of observations in
the sample whose root-to-sink path traverses the edge e.



Maximum likelihood

I So the log-likelihood is:

`(A) =
∑

e∈E(A)

n(e) log π(e).

I which is easy to maximize:

π̂(e) =
n(e)

n(v)
, (3)

where n(v) is the node count of v , the source node of e.
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State merging

I Simplifying APFA involves state merging.

I Only states at the same level may be merged.

I Suppose we wish to merge state w into state v .

I That is, redirect all incoming edges to w to v instead, and all
outgoing edges from w to outgo from v instead.

I This can lead to the existence of outgoing edges from v with
duplicate symbols.

I Any such edges must therefore also be merged, and if their
target nodes are distinct, these must also be merged.

I So the operation is recursive.

I Write L(s) for the merge-list induced by merging s. E.g.
L({2, 3}) = {2, 3}, {5, 7}, {4, 6}.



An example of state merging
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Likelihood ratio tests

I We can construct likelihood ratio tests of nested hypotheses,
that is of A0 versus A, where A0 is a submodel of A.

I For example, for the APFA shown 3 slides back, the deviance
is

G 2 = −2[ˆ̀(A)− ˆ̀(A0)] (4)

= 53.1228 (5)

I Under A0, G 2 ∼ χ2(k) where k is the difference in model
dimension (number of free parameters) between the models.

I By inspection we see that A has 7 free parameters and A0

has 4, so k = 3, and clearly A0 fits very poorly.



Likelihood ratio tests continued

I The same test can be computed by applying a standard
contingency table test of independence to the table

source (1,1) (1,2) (2,1) (2,2)

2 2 3 22 9
3 16 16 1 1

I Recall that for an r × c table of counts {nij}i=1...r ;j=1...c the
deviance is

G 2 = 2
∑
i ,j

nij log
nijn++

ni+n+j
(6)

with degrees of freedom given as

k = (#{i : ni+ > 0} − 1)(#{j : n+j > 0} − 1) (7)

where ni+ and n+j are the row and column totals, respectively.



Another example
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Adjusted degrees of freedom

I As before we can construct the contingency table
source (1,1) (1,2) (2,1) (2,2)

2 2 3 22 9
3 17 17 0 0

and find G 2 = 67.288 on 3 d.f.

I or we can decompose the test
element of 2× 2 G2 df
L(2, 3) table

(2,3)
5 31
34 0

67.112 1

(4,6)
2 3
17 17

0.176 1

sum 67.288 2

and find G 2 = 67.288 on 2 d.f.

I This is a sharper result that takes account of inestimability.

I We call these the adjusted degrees of freedom.

I For large APFA the unadjusted and adjusted degrees of
freedom can differ considerably.
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The model selection algorithm of Ron et al (1998)

I The sample tree is constructed and then simplified in a series
of state merging operations.

I Two nodes v and w at level i are merged

Pr(future|X≤i goes through v) = Pr(future|X≤i goes through w).

or in other words if ∀ x>i ,

Pr(X>i = x>i |X≤i ∈ C(v)) = Pr(X>i = x>i |X≤i ∈ C(w)).

I The decision is based on a measure of similarity δ(v ,w)
between nodes v and w , and a fixed threshold, µ.

I v and w are called similar if δ(v ,w) < µ: otherwise they are
called dissimilar. Dissimilar nodes are not merged.



The algorithm

1. Start with the sample tree.

2. From level 1 to p − 1:
Repeatedly merge similar nodes until all the resulting nodes

are pairwise dissimilar.

3. Merge all nodes at level p.



Similarity scores

I Ron et al proposed the similarity score

δR(v ,w) = max
k=i+1...p

max
xi+1,...,k

|P̂r(Xi+1,...,k = xi+1,...,k |X≤i ∈ C(v))− P̂r(Xi+1,...,k = xi+1,...,k |X≤i ∈ C(w))|

I We propose instead a score based on the penalized likelihood
criterion

IC (A) = −2ˆ̀(A) + α dim(A) (8)

namely

δIC (v ,w) = IC (A0)− IC (A)

= G 2 − αk (9)

We set µ = 0, so that two nodes are similar whenever merging
them decreases the IC.

I Thus the selection algorithm seeks to minimize the IC.

I We are currently comparing the performance of this algorithm
with the one in Beagle.



An example

Level Node pair G 2 k δIC Action

1 1,2 53.98 5 32.74 go to next level

2 3,4 20.78 3 8.03
2 3,5 1.03 3 -11.71
2 3,6 5.60 3 -7.14
2 4,5 58.49 3 45.74
2 4,6 0.36 1 -3.89
2 5,6 7.43 3 -5.31 merge 5 into 3

2 3,4 61.36 3 48.62
2 3,6 7.60 3 -5.15
2 4,6 0.36 1 -3.89 merge 6 into 3

2 3,4 56.60 3 43.85 go to next level

3 7,8 2.88 1 -1.37
3 7,9 0.05 1 -4.19
3 8,9 5.40 1 1.15 merge 9 into 7

3 7,8 6.41 1 2.16 stop



An example
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Independence
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First order Markov
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Second order Markov
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Variable order Markov
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Memory gap Markov
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Summary and conclusion

I This talk has tried to describe APFA as statistical models.

I An APFA embodies a set of context-specific conditional
independence relations, and may be represented as a directed
multigraph.

I So it may be called a context-specific graphical model.

I APFA form a very rich class of models for discrete longitudinal
data.

I We have shown how likelihood ratio tests may be constructed,
and used this to modify the selection algorithm of Ron et al.
(1998).

I We are preparing an R package to work with the models.
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