Optimal portfolio strategies under partial information with expert opinions

Ralf Wunderlich

Brandenburg University of Technology Cottbus, Germany

Joint work with Rüdiger Frey

Research Seminar WU Wien, December 7, 2012

Agenda

Dynamic Portfolio Optimization

Partial Information and Expert Opinions

Approximation of the Optimal Strategy

Dynamic Portfolio Optimization

Initial capital	<i>x</i> ₀ > 0
Horizon	[0, <i>T</i>]
Aim	maximize expected utility of terminal wealth
Problem	find an optimal investment strategy
	How many shares
	of which asset
	have to be held at which time by the portfolio manager ?
Market model	continuously tradable assets
	drift depends on unobservable finite-state Markov chain
	investor only observes stock prices and
	expert opinions

Classical Black-Scholes Model of Financial Market

 $(\Omega, \mathbb{G} = (\mathcal{G}_t)_{t \in [0,T]}, P)$ filtered probability space $S_t^0 = e^{rt}$, r risk-free interest rate Bond prices $S_t = (S_t^1, \dots, S_t^n)^{\top}$, returns $dR_t^i = \frac{dS_t^i}{S_t^i}$ Stocks $dR_t = \mu dt + \sigma dW_t$ $\mu \in \mathbb{R}^n$ average stock return, drift $\sigma \in \mathbb{R}^{n \times n}$ volatility W_t *n*-dimensional Brownian motion parameters μ and σ are constant and known time-dependent (non-random) parameters μ, σ, r Generalization

Portfolio

Initial capital $X_0 = x_0 > 0$ Wealth at time t $X_t = X_t(\underbrace{h_t^0}_{bond} + \underbrace{h_t^1}_{tot} + \ldots + \underbrace{h_t^n}_{tot})$ invested inbond h_t^k fractions of wealth invested in asset kStrategy $h_t = (h_t^1, \ldots, h_t^n)^T$

Self financing condition (assume r = 0 for simplicity) \Rightarrow

Wealth equation

 X_t satisfies **linear SDE** with initial value x_0

$$dX_t^{(h)} = X_t^{(h)} \boldsymbol{h}_t^{\top} (\mu \, dt + \sigma \, dW_t)$$
$$X_0^{(h)} = x_0$$

Utility Function

 $U: [0,\infty) \to \mathbb{R} \cup \{-\infty\}$ strictly increasing and concave Inada conditions $\lim_{x\downarrow 0} U'(x) = \infty$ and $\lim_{x\uparrow\infty} U'(x) = 0$ $U(x) = \begin{cases} \frac{x^{\theta}}{\theta} & \text{for } \theta \in (-\infty, 1) \setminus \{0\} \text{ power utility} \\ \log x & \text{for } \theta = 0 & \text{log-utility} \end{cases}$ log-utility $\frac{x^{\theta}-1}{\rho}$

Optimization Problem

Wealth $dX_t^{(h)} = X_t^{(h)} h_t^\top (\mu \, dt + \sigma dW_t), \quad X_0^{(h)} = x_0$ Admissible Strategies $\mathcal{H} = \{(h_t)_{t \in [0,T]} \mid h_t \in \mathbb{R}^n,$ $E[\exp\{\int_0^T ||h_t||^2 dt\}] < \infty\}$ Reward function $v(t, x, h) = E_{t,x}[U(X_T^{(h)})]$ for $h \in \mathcal{H}$ Value function $V(t, x) = \sup_{h \in \mathcal{H}} v(t, x, h)$

Find optimal strategy $h^* \in \mathcal{H}$ such that $V(0, x_0) = v(0, x_0, h^*)$

Solution optimal fractions of wealth $h_t^* = \frac{1}{1-\theta} (\sigma \sigma^\top)^{-1} \mu = \text{const}$ Merton (1969,1973) using methods from dynamic programming

Drawbacks of the Merton Strategy

Sensitive dependence of investment strategies on the drift μ of assets

Drift is hard to estimate empirically

need data over long time horizons

(other than volatility estimation)

is not constant

depends on the state of the economy

Non-intuitive strategies

for constant fraction of wealth $\in (0,1) \quad \Longrightarrow \quad$

sell stocks when prices increase

buy stocks when prices decrease

 \implies Model drift as stochastic process, not directly observable

Models With Partial Information on the Drift

Drift depends on an additional "source of randomness" $\mu = \mu_t = \mu(Y_t)$ with factor process Y_t

Investor is not informed about factor process Y_t , he only observesStock prices S_t or equivalently stock returns R_t Expert opinionsnews, company reports
recommendations of analysts or rating agencies
own view about future performance

 \implies Model with **partial information**

Problem Investor needs to "learn" the drift from observable quantities Find an estimate or **filter** for $\mu(Y_t)$

Models With Partial Information on the Drift (cont.)

Linear Gaussian Model

Lakner (1998), Nagai, Peng (2002), Brendle (2006) Drift $\mu(Y_t) = Y_t$ is a mean-reversion process

$$dY_t = \alpha(\overline{\mu} - Y_t)dt + \beta dW_t^1$$

where W_t^1 is a Brownian motion (in)dependent of W_t

Models With Partial Information on the Drift (cont.)

Hidden Markov Model (HMM)

Sass, Haussmann (2004), Rieder, Bäuerle (2005), Nagai, Rungaldier (2008)

Factor process Y_t finite-state Markov chain, independent of W_t state space $\{e_1, \ldots, e_d\}$, unit vectors in \mathbb{R}^d states of drift $\mu(Y_t) = MY_t$ where $M = (\mu_1, \ldots, \mu_d)$ generator or rate matrix $Q \in \mathbb{R}^{d \times d}$

diagonal: $Q_{kk} = -\lambda_k$ exponential rate of leaving state kconditional transition prob. $P(Y_t = e_l | Y_{t-} = k, Y_t \neq Y_{t-}) = Q_{kl}/\lambda_k$ initial distribution $(\pi^1, \dots, \pi^d)^{\top}$

HMM Filtering

Returns
$$dR_t = \frac{dS_t}{S_t} = \mu(Y_t) dt + \sigma dW_t$$
 observations
Drift $\mu(Y_t) = M Y_t$ non-observable (hidden) state
Investor Filtration $\mathbb{F} = (\mathcal{F}_t)_{t \in [0,T]}$ with $\mathcal{F}_t = \sigma(S_u : u \le t) \subset \mathcal{G}_t$
Filter $p_t^k := P(Y_t = e_k | \mathcal{F}_t)$
 $\widehat{\mu(Y_t)} := E[\mu(Y_t) | \mathcal{F}_t] = \mu(p_t) = \sum_{j=1}^d p_t^j \mu_j$
Innovations process $B_t := \sigma^{-1}(R_t - \int_0^t \widehat{\mu(Y_s)} ds)$ is an \mathbb{F} -BM
HMM filter Liptser, Shiryaev (1974), Wonham (1965), Elliot (1993)
 $p_0^k = \pi^k$
 $dp_t^k = \sum_{j=1}^d Q^{jk} p_t^j dt + \beta_k (p_t)^\top dB_t$
where $\beta_k(p) = p^k \sigma^{-1} \left(\mu_k - \sum_{j=1}^d p^j \mu_j\right)$

HMM Filtering: Example

HMM Filtering: Example

Expert Opinions

- Academic literature: drift is driven by unobservable factors Models with partial information, apply filtering techniques
 - Linear Gaussian models
 - Hidden Markov models
- Practitioners use static Black-Litterman model

Expert Opinions

Modelled by marked point process $I = (T_n, Z_n) \sim I(dt, dz)$

- At random points in time $T_n \sim \text{Poi}(\lambda)$ investor observes r.v. $Z_n \in \mathcal{Z}$
- Z_n depends on current state Y_{T_n} , density $f(Y_{T_n}, z)$

(*Z_n*) cond. independent given $\mathcal{F}_T^Y = \sigma(Y_s : s \in [0, T])$

Examples

• Absolute view: $Z_n = \mu(Y_{T_n}) + \sigma_{\varepsilon}\varepsilon_n$, (ε_n) i.i.d. N(0, 1)The view "*S* will grow by 5%" is modelled by $Z_n = 0.05$ σ_{ε} models confidence of investor

• Relative view (2 assets): $Z_n = \mu_1(Y_{T_n}) - \mu_2(Y_{T_n}) + \tilde{\sigma}_{\varepsilon} \varepsilon_n$

Investor filtration $\mathbb{F} = (\mathcal{F}_t)$ with $\mathcal{F}_t = \sigma(S_u: u \le t; (T_n, Z_n): T_n \le t)$

HMM Filtering - Including Expert Opinions

Extra information has no impact on filter p_t between 'information dates' T_n Bayesian updating at $t = T_n$:

 $p_{T_n}^k \propto p_{T_n-}^k f(e_k, Z_n)$ recall: $f(Y_{T_n}, z)$ is density of Z_n given Y_{T_n}

with normalizer
$$\sum_{j=1}^{d} p_{T_n-}^j f(e_j, Z_n) =: \bar{f}(p_{T_n-}, Z_n)$$

HMM filter

$$p_{0}^{k} = \pi^{k}$$

$$dp_{t}^{k} = \sum_{j=1}^{d} Q^{jk} p_{t}^{j} dt + \beta_{k} (p_{t})^{\top} dB_{t} + p_{t-}^{k} \int_{\mathcal{Z}} \left(\frac{f(e_{k}, z)}{f(p_{t-}, z)} - 1 \right) \widetilde{I}(dt \times dz)$$
Compensated measure $\widetilde{I}(dt \times dz) := I(dt \times dz) - \lambda dt \sum_{k=1}^{d} p_{t-}^{k} f(e_{k}, z) dz$

$$\underbrace{\sum_{k=1}^{compensator}}_{compensator}$$

Filter: Example

Filter: Example

Optimization Problem Under Partial Information

Wealth $dX_t^{(h)} = X_t^{(h)} h_t^\top (\mu(Y_t) dt + \sigma dW_t), \quad X_0^{(h)} = x_0$ Admissible Strategies $\mathcal{H} = \{(h_t)_{t \in [0,T]} \mid h_t \in \mathbb{R}^n,$
 $h ext{ is } \mathbb{F} ext{-adapted and bounded } \}$ Reward function $v(t, x, h) = E_{t,x}[U(X_T^{(h)})] ext{ for } h \in \mathcal{H}$ Value function $V(t, x) = \sup_{h \in \mathcal{H}} v(t, x, h)$

Find optimal strategy $h^* \in \mathcal{H}$ such that $V(0, x_0) = v(0, x_0, h^*)$

Reduction to an OP Under Full Information

Consider augmented state process (X_t, p_t) $dX_t^{(h)} = X_t^{(h)} h_t^{\mathsf{T}} (\underbrace{\widehat{\mu(Y_t)}}_{=M\rho_t} dt + \sigma dB_t), \qquad X_0^{(h)} = x_0$ Wealth $dp_t^k = \sum_{i=1}^d Q^{jk} p_t^j dt + \beta_k (p_t)^\top dB_t$ Filter $+p_{t-}^k \int \left(\frac{f(e_k,z)}{\overline{f}(p_{t-},z)} - 1
ight) \widetilde{I}(dt imes dz), \qquad p_0^k = \pi^k$ **Reward function** $v(t, x, p, h) = E_{t.x.p}[U(X_{\tau}^{(h)})]$ for $h \in \mathcal{H}$ Value function $V(t, x, p) = \sup v(t, x, p, h)$ h∈Ĥ Find $h^* \in \mathcal{H}(0)$ such that $V(0, x_0, \pi) = v(0, x_0, \pi, h^*)$

Logarithmic Utility

$$U(X_T^{(h)}) = \log(X_T^{(h)}) = \log x_0 + \int_0^T \left(h_s^\top \widehat{\mu(Y_s)} - \frac{1}{2}h_s^\top \sigma \sigma^\top h_s\right) ds + \int_0^T h_s^\top \sigma dB_s$$
$$E[U(X_T^{(h)})] = \log x_0 + E\left[\int_0^T \left(h_s^\top \widehat{\mu(Y_s)} - \frac{1}{2}h_s^\top \sigma \sigma^\top h_s\right) ds\right] + 0$$

Optimal Strategy

$$h_t^* = (\sigma \sigma^{\top})^{-1} \widehat{\mu(Y_t)}.$$

Certainty equivalence principle

 h^* is obtained by replacing in the optimal strategy under full information

$$h_t^{\text{full}} = (\sigma \sigma^{\top})^{-1} \mu(Y_t)$$

the unknown drift $\mu(Y_t)$ by its filter $\widehat{\mu(Y_t)}$

Solution for Power Utility

Risk-sensitive control problem

Nagai & Runggaldier (2008), Davis & Lleo (2011)

Let
$$Z^h := \exp\left\{\theta \int_0^T h_s^\top \sigma dB_s - \frac{\theta^2}{2} \int_0^T h_s^\top \sigma \sigma^\top h_s ds\right\}$$

Change of measure: $P^{(h)}(A) = E[Z^{(h)}1_A]$ for $A \in \mathcal{F}_T$ **Reward function**

$$E_{t,x,p}[U(X_T^{(h)})] = \frac{x^{\theta}}{\theta} \underbrace{E_{t,p}^{(h)} \Big[\exp \Big\{ -\int_t^T b(p_s, h_s) ds \Big\} \Big]}_{t,p}$$

=: v(t, p, h) independent of x

where
$$b(p,h) := -\theta \left(h^{\top} M p - \frac{1-\theta}{2} h^{\top} \sigma \sigma^{\top} h \right)$$

Value function $V(t,p) = \sup_{h \in \mathcal{H}} v(t,p,h)$ for $0 < \theta < 1$

Find $h^* \in \mathcal{H}$ such that $V(0, \pi) = v(0, \pi, h^*)$

HJB-Equation

State $dp_t = \alpha(p_t, h_t)dt + \beta^{\top}(p_t)dB_t + \int_{\mathcal{Z}} \gamma(p_t, z)\widetilde{I}(dt \times dz)$

Generator
$$\mathcal{L}^{h}g(p) = \frac{1}{2}tr[\beta^{\top}(p)\beta(p)D^{2}g] + \alpha^{\top}(p,h)\nabla g + \lambda \int_{\mathcal{Z}} \{g(p+\gamma(p,z)) - g(p)\}\overline{f}(p,z)dz$$

$$V_t(t,p) + \sup_{h \in \mathbb{R}^n} \left\{ \mathcal{L}^h V(t,p) - b(p,h) V(t,p) \right\} = 0$$

terminal condition $V(T,p) = 1$

Candidate for the Optimal Strategy

$$h^* = h^*(t, p) = \frac{1}{(1-\theta)} (\sigma \sigma^{\top})^{-1} \Big\{ M p + \frac{1}{V(t, p)} \sigma \beta(p) \nabla V(t, p) \Big\}$$

myopic strategy + correction

Certainty equivalence principle does not hold

Justification of HJB-Equation

 Standard verification arguments fail, since we cannot guarantee uniform ellipticity of the diffusion part: tr[β^T(p)β(p)D²G]

 $\xi^{\top} \beta^{\top}(p) \beta(p) \xi \ge c |\xi|^2$ for some c > 0 and all $\xi \in \mathbb{R}^d$

satisfiable only if number of assets $n \ge$ number of drift states d

• Applying results and techniques from Pham (1998)

 \implies V is a unique continuous viscosity solution of the HJB-equation

Regularization of HJB-Equation

- Add a 'small' Gaussian perturbation $\frac{1}{\sqrt{m}}d\widetilde{B}_t$ to the SDE for the first d-1 components of the filter
- Consider control problem for the modified dynamics of the filter
- Modified HJB-equation has an additional diffusion term $\frac{1}{2m}\Delta V^m(t,p)$ \implies uniform ellipticity
- Applying results from Davis & Lleo (2011)

 \implies classical solution $V^m(t, p)$ to the modified HJB-equation

Standard verification results can be applied

• Convergence results for $m \to \infty$:

optimal strategy to the modified control problem is an ε -optimal strategy to the original control problem

Approximation of the optimal strategy

- → Policy Improvement
- → Numerical solution of HJB equation
 - Feynman-Kac formula for linearized HJB equation

Policy Improvement

Starting approximation is the myopic strategy $h_t^{(0)} = \frac{1}{1-\theta} (\sigma \sigma^{\top})^{-1} M p_t$ The corresponding reward function is

$$V^{(0)}(t,p) := v(t,p,h^{(0)}) = E_{t,p} \Big[\exp \Big(- \int_t^t b(p_s^{(h^{(0)})},h_s^{(0)}) ds \Big) \Big]$$

Consider the following optimization problem

$$\max_{h} \left\{ \mathcal{L}^{h} V^{(0)}(t,p) - b(p,h) V^{(0)}(t,p) \right\}$$

with the maximizer

$$h^{(1)}(t,p) = h^{(0)}(t,p) + \frac{1}{(1-\theta)V^{(0)}(t,p)}(\sigma^{\top})^{-1}\beta(p)\nabla V^{(0)}(t,p)$$

For the corresponding reward function $V^{(1)}(t, p) := v(t, p, h^{(1)})$ it holds

Lemma ($h^{(1)}$ is an improvement of $h^{(0)}$) $V^{(1)}(t,p) \geq V^{(0)}(t,p)$

Policy Improvement (cont.)

Policy improvement requires Monte-Carlo approximation of reward function

- Generate *N* paths of $p_s^{h^{(0)}}$ starting at time *t* with $p = p_t$
- Estimate expectation $E_{t,p}[\cdot]$
- Approximate partial derivatives $V_{p^k}^{(0)}(t,p)$ by finite differences
- Compute first iterate h⁽¹⁾

Numerical Results

Numerical Results

For $t = T_n$: nearly full information \implies correction ≈ 0

Numerical solution of HJB equation

Conclusion

- Portfolio optimization under partial information on the drift
- Investor observes stock prices and expert opinions
- Non-linear HJB-equation with a jump part
- Computation of optimal strategy

References

- Davis, M. and Lleo, S. (2011). Jump-Diffusion Risk-Sensitive Asset Management II: Jump-Diffusion Factor Model, arXiv:1102.5126v1.
- Frey, R., Gabih, A. and Wunderlich, R. (2012): Portfolio optimization under partial information with expert opinions. *International Journal of Theoretical and Applied Finance*, Vol. 15, No. 1.
- Nagai, H. and Runggaldier, W.J. (2008): PDE approach to utility maximization for market models with hidden Markov factors. In: Seminar on Stochastic Analysis, Random Fields and Applications V (R.C.Dalang, M.Dozzi, F.Russo, eds.). Progress in Probability, Vol.59, Birkhäuser Verlag, 493–506.
- Pham, H. (1998): Optimal Stopping of Controlled Jump Diffusion Processes: A viscosity Solution Approach. *Journal of Mathematical Systems, estimations, and Control* Vol.8, No.1, 1-27.
- Rieder, U. and Bäuerle, N. (2005): Portfolio optimization with unobservable Markov-modulated drift process. *Journal of Applied Probability* 43, 362–378
- Sass, J. and Haussmann, U.G (2004): Optimizing the terminal wealth under partial information: The drift process as a continuous time Markov chain. *Finance and Stochastics* 8, 553–577.