Variance reduction by conditioning in the pricing problem where the underlying is a continuous-time finite state Markov process

Wolfgang Runggaldier, University of Padova ${ }^{1}$

Research Seminar Institute for Statistics and Mathematics, WU, Wien December 2012

[^0]- Asset price evolutions are generally described as a geometric Brownian motion or an exponential Levy.
- The evolution of other quantities, in particular rates, but occasionally also asset prices, may more conveniently be modeled as a continuous time Markov chain (CTMC).
- Levy processes include the case of CTMC, but for this case a direct approach may be more convenient computationally.

A full theory of financial markets based on CTMC (prices, rates or, more generally, factors) is given in Norberg (2003).

- Assume given the following:
i) An underlying factor process $X_{t} \in\left\{x^{1}, \cdots, x^{N}\right\}$ (could simply be the short rate itself) with a time homogeneous transition intensity matrix Q
ii) A simple claim of the form $H\left(X_{T}\right)=H_{0}:=\left[H\left(x^{1}\right), \cdots, H\left(x^{N}\right)\right]^{\prime}$.
iii) Assume furthermore that for the short rate one has $r_{t}=r^{i}$ if $X_{t}=x^{i}$ (obvious if $X_{t}=r_{t}$).
- The price $\Pi_{i}(t)$ at time t when $X_{t}=x^{i}$ is then given by

$$
\Pi_{i}(t)=\left[\exp \{(Q-R)(T-t)\} H_{0}\right]_{i}
$$

where $[z]_{i}$ denotes the i-th component of the vector z and R is the diagonal matrix with elements $r^{i}(i=1, \cdots, N)$.

- The previous explicit formula may not be of much use if:
i) The evolution of the underlying factors is not time homogeneous;
ii) the derivative is path dependent.

In all these more involved cases a full Monte Carlo (MC) simulation is always possible:

- For the CTMC X_{t} simulate the successive jump times τ_{n} and the values X_{n} of X_{t} at τ_{n}.
- For an intensity matrix $Q=\left\{q_{i, j}\right\}$, putting $q_{i}=\sum_{i \neq j} q_{i, j}$ one has that, if $X_{\tau_{n}}=x^{i}$, the inter-jump times $\tau_{n+1}-\tau_{n}$ are exponentially distributed with parameter q_{i} and the probability for $X_{\tau_{n+1}}=x^{j} \neq x^{i}$ is $p_{i, j}=\frac{q_{i, j}}{q_{i}}$.
\rightarrow In addition to a possibly large variance, plain MC may lead to biased results (Quasi-Montecarlo may allow to better explore the various regions of possible trajectories).

Purpose

We show first that, conditionally on the number $\nu_{t, T}$ of jumps of X_{t} in a given interval $[t, T]$, one can obtain an explicitly computable expression also for exotic derivatives and when the underlying is multivariate and/or has a time non homogeneous evolution.

Since

$$
\begin{aligned}
& \Pi_{i}(t)=E^{\tilde{P}}\left\{e^{-\int_{t}^{T} r_{s} d s} H\left(X_{T}\right) \mid X_{t}=i\right\} \\
& =E^{\tilde{P}}\left\{E^{\tilde{P}}\left\{e^{-\int_{t}^{T} r_{s} d s} H\left(X_{T}\right) \mid \nu_{t, T}, X_{t}=i\right\} \mid X_{t}=i\right\}
\end{aligned}
$$

where \tilde{P} is a (calibrated) martingale measure, then, given that the inner expression allows for an explicit computation, one needs to simulate only the r.v. $\nu_{t, T}$.

- With respect to a full MC this allows to reduce the variance (variance reduction by conditioning).
- Allows also to reduce a possible bias.
\rightarrow Shall show how to compute the inner expression in various more general cases

Outline

- For simplicity of exposition we first present the procedure for the case of a simple claim on a time homogeneous underlying X_{t} given by a CTMC.
- Successively we show the extensions/changes for the more general case.
- Finally we present numerical results and comparisons.

The model (simple case first)

X_{t} a CTMC under a martingale measure \tilde{P}

- state space $E=\left\{x^{1}, x^{2}, \ldots, x^{N}\right\}, N \in \mathbb{N} \quad$ (identify x^{i} with i)
- $Q=\left(q_{i, j}\right)_{1 \leq i, j \leq N}$ the transition intensity matrix, homogeneous w.r. to time
- $q_{i}:=\sum_{\substack{j=1 \\ j \neq i}}^{N} q_{i, j}, i=1, \ldots, N$ the intensities associated with the states x^{i}.
- τ_{n} : random time at which the $n^{\text {th }}$ jump occurs,
- $X_{n}:=X_{\tau_{n}}$ and $X_{s} \equiv X_{n}$ for $s \in\left[\tau_{n}, \tau_{n+1}\right)$
- $r_{\tau_{n}}=r^{i} \quad$ if $\quad X_{\tau_{n}}=x^{i} \quad(i=1, \cdots, N)$
(write $r_{n}:=r_{\tau_{n}} ; \quad r_{s}=r_{n}$ for $s \in\left[\tau_{n}, \tau_{n+1}\right)$)
- $\left(\tau_{n+1}-\tau_{n} \mid X_{\tau_{n}}=x^{i}\right) \sim \mathcal{E} \times p\left(q_{i}\right)$
- $\nu_{t}:=\sup \left\{n \mid \tau_{n} \leq t\right\} \quad(\#$ of jumps up to time $t) ; \quad \nu_{t, T}:=$ $\nu_{T}-\nu_{t}$.
- Pricing a derivative

$$
\begin{gathered}
\Pi(t)=E^{\tilde{P}}\left\{e^{-\int_{t}^{T} r_{s} d s} H\left(X_{T}\right) \mid \mathcal{F}_{t}\right\} \\
=\sum_{i=1}^{N} E^{\tilde{P}}\left\{e^{-\int_{t}^{T} r_{s} d s} H\left(X_{T}\right) \mid X_{t}=i\right\} \mathbf{1}_{\left\{X_{t}=i\right\}} \\
\Downarrow
\end{gathered}
$$

$$
\begin{aligned}
& \Pi_{i}(t)= E^{\tilde{P}}\left\{\operatorname { e x p } \left[r_{t}\left(t-\tau_{\nu_{t}}\right]\right.\right. \\
&\left.\exp \left[-\sum_{i=\nu_{t}}^{\nu_{T}-1} r_{i}\left(\tau_{i+1}-\tau_{i}\right)-r_{T}\left(T-\tau_{\nu_{T}}\right)\right] H\left(X_{T}\right) \mid X_{t}=i\right\} \\
&= \exp \left[r_{t}\left(t-\tau_{\nu_{t}}\right]\right. \\
& \quad E^{\tilde{P}}\left\{\exp \left[-\sum_{i=\nu_{t}}^{\nu_{T}-1} r_{i}\left(\tau_{i+1}-\tau_{i}\right)-r_{T}\left(T-\tau_{\nu_{T}}\right)\right] H\left(X_{T}\right) \mid X_{t}=i\right\}
\end{aligned}
$$

\rightarrow Not restrictive to assume $t=T_{\nu_{t}}$

Prototype product (analogue to Arrow-Debreu prices)

- Its price at time $t<T$ is

$$
\begin{aligned}
& V_{H_{0}, t, T}\left(X_{t}\right)= \\
& =E^{\tilde{P}}\left\{\exp \left[-\sum_{i=\nu_{t}}^{\nu_{T}-1} r_{i}\left(\tau_{i+1}-\tau_{i}\right)-r_{\nu_{T}}\left(T-\tau_{\nu_{T}}\right)\right] H_{0}\left(X_{T}\right) \mid X_{t}\right\}
\end{aligned}
$$

with

$$
H_{0}(\cdot)=\sum_{i=1}^{N} w_{i}^{0} \mathbf{1}_{\left\{\cdot=x^{i}\right\}}, x^{i} \in E, w_{i}^{0} \in \mathbb{R}
$$

- In the calculations to follow, in order to determine the explicit analytical expression conditional on $\nu_{t, T}$, we shall (except for the case of Asian options) drop the last factor: it is in general a small quantity but we shall take it into account in the MC simulations anyway (the MC simulations will be performed to determine $\nu_{t, T}$ and thus also $\nu_{T}=\nu_{t}+\nu_{t, T}$).
- Various interest rate derivatives can be obtained as particular cases or as linear combinations of prototype products with underlying the short rate.
- For given $n \in \mathbb{N}$ consider the recursions

$$
\left\{\begin{array}{c}
H_{0}\left(X_{\nu_{t}+n}\right) \text { given by the Prototype payoff } \quad\left(H_{0}(\cdot)=\sum_{i=1}^{N} w_{i}^{0} \mathbf{1}_{\left\{\cdot=x^{i}\right\}}\right) \\
H_{h}\left(X_{\nu_{t}+n-h}\right)=E^{\tilde{P}}\left\{e^{-r_{\nu_{t}+n-h}\left(\tau_{\nu_{t}+n-h+1}-\tau_{\left.\nu_{t}+n-h\right)}\right.} H_{h-1}\left(X_{\nu_{t}+n-h+1}\right) \mid X_{\nu_{t}+n-h}\right\} \\
\forall h=1, \ldots, n
\end{array}\right.
$$

Proposition: The price of the Prototype product can be computed as

$$
V_{H_{0}, t, T}\left(X_{t}\right)=E^{\tilde{P}}\left\{H_{\nu_{t, T}}\left(X_{t}\right) \mid X_{t}\right\}=\sum_{n=0}^{+\infty} H_{n}\left(X_{t}\right) \tilde{P}\left(\nu_{t, T}=n \mid X_{t}\right)
$$

where

- $\nu_{t, T}=\nu_{T}-\nu_{t}$ (number of jumps between t and T)
- $H_{n}\left(X_{t}\right)=H_{n}\left(X_{\nu_{t}}\right)$ is as obtained recursively above.
- Setting $\underline{x}=\left[x^{1}, \ldots, x^{N}\right]^{\prime}$ we have the representations

$$
H_{0}(\underline{x}):=\left[w_{1}^{0}, \ldots, w_{N}^{0}\right]^{\prime} \quad \rightarrow \quad H_{n}(\underline{x}):=\left[w_{1}^{n}, \ldots, w_{N}^{n}\right]^{\prime}
$$

Putting, furthermore,

$$
\widetilde{Q}=\left(\tilde{q}_{i, j}\right)_{1 \leq i, j \leq N} \quad \text { with } \quad \tilde{q}_{i, j}= \begin{cases}\frac{q_{i, j}}{r_{i}+q_{i}} & i \neq j \\ 0 & i=j\end{cases}
$$

one obtains, at the generic τ_{n}, the following one-step evolution of H_{n},

$$
H_{n}(\underline{x})=\widetilde{Q} H_{n-1}(\underline{x}) .
$$

\rightarrow In the time homogeneous case it follows that $H_{n}(\underline{x})=\widetilde{Q}^{n} H_{0}(\underline{x})$ by putting $\widetilde{Q}^{0}=I_{N}$.

- The actual derivative price is then given by

$$
\begin{aligned}
\Pi_{i}(t) & =V_{H_{0}, t, T}\left(X_{t}\right)_{\mid X_{t}=x^{i}} \\
& =\sum_{n=0}^{\infty}\left[\widetilde{Q}^{n} H_{0}(\underline{x})\right]_{i} \tilde{P}\left(\nu_{t, T}=n \mid X_{t}=x^{i}\right) \\
& =E^{\tilde{P}}\left\{\left[\widetilde{Q}^{\nu_{t, T}} H_{0}(\underline{x})\right]_{i} \mid X_{t}=x^{i}\right\}
\end{aligned}
$$

($[z]_{i}$ is the i-th component of the vector z).

From here two possibilities for actual computation:

- Explicit numerical computation (middle term)
- MC simulation by simulating just $\nu_{t, T}$ (rightmost term), i.e. MC simulation by conditioning.

Bond prices with CF, RBT, PPM(MC1)+K-A and PPM(MC2)+K-A (stepsMC=stepsRBT=500)
MC1: MC with conditioning MC2: full MC

T (years)	0.5	0.5	0.5	0.5
$\widetilde{r}\left(=r^{i}\right)$	0.01	0.02	0.03	0.02
k	0.8	0.5	1.1	1.2
θ	0.01	0.02	0.03	0.02
σ	0.1	0.05	0.1	0.1
CF	0.995014	0.990051	0.985116	0.990052
RBT	0.995042	0.99007	0.985146	0.990072
PPM(MC1)+K-A	0.995024	0.990143	0.985128	$\mathbf{0 . 9 9 0 0 5 9}$
PPM(MC2)+K-A	$\mathbf{0 . 9 9 4 9 8 8}$	0.989963	0.984903	$\mathbf{0 . 9 9 0 0 4 9}$

Bond prices with CF, RBT, PPM(MC1)+K-A and PPM(EF)+K-A (stepsMC=stepsRBT=500)

T (years)	0.5	0.5	0.5	0.5
$\widetilde{r}\left(=r^{i}\right)$	0.1	0.1	0.2	0.3
k	0.1	0.1	0.2	0.3
θ	0.1	0.4	0.2	0.3
σ	0.1	0.05	0.2	0.3
CF	0.95124806	0.95123369	0.90497717	0.86113958
RBT	0.951343	0.951329	0.905157	0.861394
PPM(MC1)+K-A	0.951022	0.950859	0.905229	0.861104
PPM(EF)+K-A	$\mathbf{0 . 9 5 1 3 2 4}$	0.951723	$\mathbf{0 . 9 0 5 0 1 2}$	0.861756

Extensions

- X_{t} (scalar) but time inhomogeneous
\rightarrow Barrier options (may include credit risky derivatives)
- Path dependent derivatives/claims with X_{t} multivariate:
- lookback options
- Asian options

Time inhomogeneous case

- Generalize Q as

$$
Q \quad \longrightarrow \quad Q(n)=\left\{q_{i, j}^{n}\right\}_{i, j=1, \cdots, N}
$$

so that also

$$
\widetilde{Q} \quad \longrightarrow \quad \widetilde{Q}(n)=\left\{\frac{q_{i, j}^{n}}{r^{i}+q_{i}^{n}}\right\}_{i, j=1, \cdots, N}
$$

Then

$$
H_{n}(\underline{x})=\widetilde{Q}(n) H_{n-1}(\underline{x})
$$

or, equivalently,

$$
H_{n}(\underline{x})=\widetilde{Q}(n) \widetilde{Q}(n-1) \cdots \widetilde{Q}(0) H_{0}(\underline{x})
$$

The multivariate (bivariate) case

- Consider e.g. $\left(X_{t}, Y_{t}\right)$ with

$$
X_{t} \in\left\{x^{1}, \cdots, x^{N}\right\} \quad \text { and } \quad Y_{t} \in\left\{y^{1}, \cdots, y^{M}\right\}
$$

and put

$$
r_{\tau_{n}}=r^{i, h} \quad \text { if } \quad\left(X_{\tau_{n}}, Y_{\tau_{n}}\right)=\left(x^{i}, y^{h}\right)
$$

$\rightarrow \quad$ (in the more general time-inhomogeneous case)

$$
Q(n)=\left\{q_{(i, h),(j, k)}^{n}\right\}\left[\begin{array}{ll}
i, j & =1, \cdots, N \\
h, k & =1, \cdots, M
\end{array}\right]
$$

The multivariate case

- With $\underline{z}=(\underline{x}, \underline{y})^{\prime}$ where $\underline{x}=\left(x^{1}, \cdots, x^{N}\right), \underline{y}=\left(y^{1}, \cdots, y^{M}\right)$ and

$$
H_{0}(\underline{z})=H_{0}(\underline{x}, \underline{y})=\left[w_{1}, \cdots, w_{N \cdot M}\right]^{\prime}
$$

also

$$
H_{n}(\underline{z})=\tilde{Q}(n) H_{n-1}(\underline{z})
$$

where

$$
\tilde{Q}(n)=\left\{\frac{q_{(i, h),(j, k)}^{n}}{r^{i, h}+q_{i, h}^{n}}\right\}\left[\begin{array}{ll}
i, j & =1, \cdots, N \\
h, k & =1, \cdots, M
\end{array}\right]
$$

with $q_{i, h}^{n}=\sum_{j \neq i, k \neq h} q_{(i, h),(j, k)}^{n}$.

The multivariate case

Application to defaultable bond pricing

- With τ denoting the default time and λ_{t} the default intensity, for the price of a defaultable bond we have

$$
\Pi(t)=\mathbf{1}_{\{\tau>t\}} E^{\tilde{P}}\left\{\exp \left[-\int_{t}^{T}\left(r_{s}+\lambda_{s}\right) d s\right] \mid \mathcal{F}_{t}\right\}
$$

$\rightarrow r_{t}$ and λ_{t} may form two different CTMC, i.e.

$$
X_{t}=r_{t}, Y_{t}=\lambda_{t}
$$

\rightarrow They may also be driven by a common factor process Z_{t} evolving as a CTMC, i.e.

$$
r_{t}=r\left(t, Z_{t}\right), \lambda_{t}=\lambda\left(t, Z_{t}\right) .
$$

Lookback options

Lookback call options

- For an underlying CTMC X_{t} consider a claim of the form

$$
H_{T}=\left(X_{T}-g\left(X_{0}^{T}\right)\right)^{+}
$$

- Put $Y_{t}:=g\left(X_{0}^{t}\right)$ which takes a given finite number of values.
\rightarrow For $t \leq T$, the process Y_{t} then takes a finite number of values (w.l.of g. we can identify them with $h=1, \cdots, M$)
\rightarrow it jumps only at jump times of X_{t}.

Lookback options

- Assume, furthermore,

$$
g\left(X_{0}^{\tau_{n}}\right)=G\left(X_{\tau_{n}}, g\left(X_{0}^{\tau_{n-1}}\right)\right) \text { for some measurable } G(\cdot, \cdot)
$$

$\rightarrow\left(X_{t}, Y_{t}\right)$ is a CTMC and $H_{T}=\left(X_{T}-Y_{T}\right)^{+}$.
\rightarrow Need only to derive the Q-matrix for $\left(X_{t}, Y_{t}\right)$.

Lookback options

- Recall that, if for a scalar CTMC X_{t} the Q-matrix is $Q=\left\{q_{i, j}\right\}$, then the transition probabilities of the embedded chain X_{n} are

$$
p_{i, j}=\frac{q_{i, j}}{q_{i}} \quad \text { with } \quad q_{i}=\sum_{j \neq i} q_{i, j} \quad\left(q_{i, i}=p_{i, i}=0\right)
$$

- Viceversa, given $p_{i, j}$, there are various possible $q_{i, j}$ that lead to the same $p_{i, j}$. They differ by the choice of q_{i} since we have $q_{i, j}=q_{i} p_{i, j}$.

Lookback options

- Since in our case Y_{t} jumps exactly when X_{t} does, we may put

$$
q_{(i, h)} \quad\left(=\sum_{j, k} q_{(i, h),(j, k)}\right)=q_{i} \quad \forall h=1, \cdots, M
$$

where q_{i} is the intensity of leaving state i for the chain X_{t}. (At a generic τ_{n} the process X_{t} actually leaves the current state, while Y_{t} may jump to itself)
\rightarrow Start thus from constructing $p_{(i, h),(j, k)}$.

Lookback options

We have (recall $X_{n}=X_{\tau_{n}}, Y_{n}=Y_{\tau_{n}}$)

$$
\begin{aligned}
& p_{(i, h),(j, k)}:=P\left\{X_{n+1}=j, Y_{n+1}=k \mid X_{n}=i, Y_{n}=h\right\} \\
= & P\left\{X_{n+1}=j, G\left(X_{n+1}, Y_{n}\right)=k \mid X_{n}=i, Y_{n}=h\right\} \\
= & P\left\{G\left(X_{n+1}, Y_{n}\right)=k \mid X_{n+1}=j, X_{n}=i, Y_{n}=h\right\} \\
& \cdot P\left\{X_{n+1}=j \mid X_{n}=i, Y_{n}=h\right\} \\
= & \mathbf{1}_{\{G(j, h)=k\}} P\left\{X_{n+1}=j \mid X_{n}=i\right\}=\mathbf{1}_{\{G(j, h)=k\}} p_{i, j} \\
\rightarrow \quad & q_{(i, h),(j, k)}=p_{(i, h),(j, k)} \cdot q_{i}=q_{i, j} \mathbf{1}_{\{G(j, h)=k\}}
\end{aligned}
$$

Example

- Let $Y_{t}=g\left(X_{0}^{t}\right):=\min _{s \leq t} X_{s}$
(Y_{t} has the same finite number of possible values as X_{t})

$$
\rightarrow \quad G\left(X_{\tau_{n}}, g\left(X_{0}^{\tau_{n-1}}\right)\right)=\min \left[X_{\tau_{n}}, \min _{s \leq \tau_{n-1}} X_{s}\right]=g\left(X_{0}^{\tau_{n}}\right)
$$

Example

- In this case (states in increasing order of magnitude)

$$
p_{(i, h),(j, k)}=\mathbf{1}_{\{G(j, h)=k\}} p_{i, j}=\mathbf{1}_{\{\min \{j, h\}=k\}} p_{i, j}
$$

which implies that
$p_{(i, h),(j, k)}=\left\{\begin{array}{lll}p_{i k} & \text { if } & k<h \\ p_{i j} & \text { if } & k=h, j \geq k \\ 0 & \text { if } & k>h\end{array}=\left\{\begin{array}{lll}\frac{q_{i k}}{q_{i j}} & \text { if } & k<h \\ \frac{q_{i j}}{q_{i}} & \text { if } & k=h, j \geq k \\ 0 & \text { if } & k>h\end{array}\right.\right.$
and, consequently,

$$
q_{(i, h),(j, k)}=p_{(i, h),(j, k)} \cdot q_{i}=\left\{\begin{array}{lll}
q_{i k} & \text { if } & k<h \\
q_{i j} & \text { if } & k=h, j \geq k \\
0 & \text { if } & k<h
\end{array}\right.
$$

Comparing Plain MC and MC + Variance Reduction for Lookback Call pricing.
$E=[0.8,0.9,1.0,1.1,1.2], x_{0}=3, T=2$ years, time unit: 1 day

- Q-matrix for Test 1

$$
Q=\left[\begin{array}{ccccc}
-1200 & 300 & 300 & 300 & 300 \\
0.6 & -2.4 & 0.6 & 0.6 & 0.6 \\
6 & 6 & -24.0 & 6 & 6 \\
21 & 21 & 21 & -84 & 21 \\
400 & 400 & 400 & 400 & -1600
\end{array}\right]
$$

- Q-matrix for Test 2

$$
Q=\left[\begin{array}{ccccc}
-0.12 & 0.03 & 0.03 & 0.03 & 0.03 \\
0.3 & -1.2 & 0.3 & 0.3 & 0.3 \\
0.6 & 0.6 & -2.3 & 0.5 & 0.6 \\
0.9 & 0.8 & 1 & -3.7 & 1 \\
1.1 & 1 & 0.9 & 0.8 & -3.8
\end{array}\right]
$$

Running Mean of Price vs. Iteration Number (Test 1) (Red) Plain MC; (Blue) MC+Variance Reduction Diagram Width $=3$ empirical standard deviations

Plain MC. Lookback Price: 0.188668 ((sample standard deviation) 0.06061)

MC w/ variance reduction. Lookback Price: 0.189689 ((sample standard deviation) 0.0062

Running Mean of Price vs. Iteration Number(Test 2)
(Red) Plain MC; (Blue) MC+Variance Reduction
Diagram Width $=3$ empirical standard deviations

(Left) Empirical Distribution of Jump Counts for Test 1 samples (Right) Empirical Distibution of Jump Counts for Test 2 samples

Price vs. Jump Count:
Test 1 samples (Left); Test 2 samples (Right)
red - sample price; green- theoretical price

Weighted Price vs. Jump Count:
Test 1 samples (Left); Test 2 samples (Right)
red - sample price; green- theoretical price

Asian options

- For Asian options consider the two processes

$$
\left\{\begin{array}{l}
X_{t} \quad \text { a CTMC, and } \\
Y_{t}:=\int_{0}^{t} X_{s} d s=\sum_{\tau_{n} \leq t} X_{\tau_{n-1}}\left(\tau_{n}-\tau_{n-1}\right)+X_{\tau_{n}}\left(t-\tau_{n}\right)
\end{array}\right.
$$

and write X_{n} and Y_{n} for $X_{\tau_{n}}$ and $Y_{\tau_{n}}$ respectively.

- The claim of a standard Asian option can then be represented as

$$
H_{T}=\left(\frac{1}{T-t} \int_{t}^{T} X_{s} d s-K\right)^{+}=\left(\frac{1}{T-t}\left(Y_{T}-Y_{t}\right)-K\right)^{+}
$$

Asian options

- X_{t} is finite-state, while Y_{t} is continuous-valued
\rightarrow Want also Y_{t} to become finite-state in order to have $\left(X_{t}, Y_{t}\right)$ finite-state Markov
\rightarrow Discretization of the values of Y_{t}.

Asian options

- Assuming that $X_{t} \in\left\{x^{1}, \cdots, x^{N}\right\}$, (in increasing order of magnitude) the range for the values of Y_{t} is $\left[0, T \max _{t \leq T} X_{t}\right]=\left[0, T x^{N}\right]$ (one may denote the states of X_{t} by $\left.i=1, \cdots, N.\right)$
- Partition now the interval $\left[0, T x^{N}\right]$ into intervals of equal length Δ assuming that $T x^{N}=K \Delta$ for a suitable positive integer K. The generic k-th interval of the partition is then

$$
A^{k}=\left[a^{k-1}, a^{k}\right)=[(k-1) \Delta, k \Delta), \quad k=1, \cdots, K
$$

- Denote by y^{k} the midpoint of A^{k} (other choices are possible) and let $Y_{t}=y^{k}$ if $Y_{t} \in A^{k}$ (in what follows denote this value simply by k). Since $Y_{0}=0$, we have also to allow for the value $y=0$ that we may consider as corresponding to $k=0$.

Asian options

- At the generic jump time $\tau_{n} \leq T$ of the chain X_{t} we then have
i) If $\tau_{n+1} \leq T$ then

$$
\begin{aligned}
& Y_{n+1}=y^{k} \quad \leftrightarrow \quad Y_{n}+X_{n}\left(\tau_{n+1}-\tau_{n}\right) \in A^{k} \\
& \quad \leftrightarrow(k-1) \Delta \leq Y_{n}+X_{n}\left(\tau_{n+1}-\tau_{n}\right)<k \Delta
\end{aligned}
$$

ii) If $\tau_{n+1}>T$ then

$$
\begin{aligned}
Y_{T} & =y^{k} \quad \leftrightarrow \quad Y_{n}+X_{n}\left(T-\tau_{n}\right) \in A^{k} \\
& \leftrightarrow(k-1) \Delta \leq Y_{n}+X_{n}\left(T-\tau_{n}\right)<k \Delta
\end{aligned}
$$

iii) For $\tau_{0}=0$ we put $Y_{0}=0$.

Asian options

- From the previous relations one can see that, in order to have Markovianity, the pair $\left(X_{n}, Y_{n}\right)$ alone does not suffice, one has to include also τ_{n}.
- Again, as for Y_{t}, also τ_{n} is continuous-valued (recall that the distribution of $\tau_{n+1}-\tau_{n}$, given $X_{n}=x^{i}$, is exponential with parameter q_{i}) and so to obtain a finite-state Markov chain one has to discretize also τ_{n}.

Asian options

- Partition the interval $[0, T]$ into intervals of equal length $\delta>0$ assuming that $T=L \delta$ for a suitable integer L. The generic interval of the partition is then

$$
B^{\ell}=\left[b^{\ell-1}, b^{\ell}\right)=[(\ell-1) \delta, \ell \delta)
$$

- Denote by t_{ℓ} the midpoint of B^{ℓ} and let $\tau_{n}=t_{\ell}$ if $\tau_{n} \in B^{\ell}$ (again, in what follows, we may denote this value simply by ℓ with $\ell=1, \cdots, L)$. We have also to allow for $\ell=0$ that corresponds to $\tau_{0}=0$.
- If $\tau_{n+1}>T$ then we shall assign it the value $(L+1) \delta$ and denote it simply by $L+1$.

Asian options

- We may now consider the 3-dimensional chain
$\left(X_{n}, Y_{n}, \tau_{n}\right)$, for which we have to derive the corresponding Q-matrix $\left\{q_{(i, h, m),(j, k, \ell)}\right\}$.
- Again, the entire chain jumps only when X_{n} jumps (with a last jump when $\tau_{n+1}>T$) and so we have for the intensities that

$$
\sum_{j \neq i, k \neq h, \ell \neq m} q_{(i, h, m),(j, k, \ell)}=q_{(i, h, m)}=q_{i}
$$

\rightarrow It thus suffices to determine $p_{(i, h, m),(j, k, \ell)}$ from which then

$$
q_{(i, h, m),(j, k, \ell)}=q_{i} p_{(i, h, m),(j, k, \ell)}
$$

Asian options

- Given the definition of the process Y_{t} as

$$
Y_{t}=\sum_{\tau_{n} \leq t} X_{\tau_{n-1}}\left(\tau_{n}-\tau_{n-1}\right)+X_{\tau_{n}}\left(t-\tau_{n}\right)
$$

at the generic jump time τ_{n} we have to restrict the possible values of the triple $\left(X_{n}, Y_{n}, \tau_{n}\right)$ to those triples (i, h, m) with $i=1, \cdots, N ; m=0,1, \cdots, L$ for which $h \in\{0,1, \cdots, K\}$ is such that

$$
y^{h} \leq x^{N} t_{m} \quad\left(\text { in fact, } x^{N}>x^{i} \text { for } i<N\right)
$$

\rightarrow We have now the following relations for the transition probabilities $p_{(i, h, m),(j, k, \ell)}$:

Asian options

$$
\begin{aligned}
& P_{(i, h, m),(j, k, \ell)} \\
&:=P\left\{X_{n+1}=j, Y_{n+1}=k, \tau_{n+1}=\ell \mid X_{n}=i, Y_{n}=h, \tau_{n}=m\right\} \\
&= P\left\{X_{n+1}=j, Y_{n+1}=k, \tau_{n+1}=\ell, \tau_{n+1} \leq T \mid X_{n}=i, Y_{n}=h, \tau_{n}=m\right\} \\
&+P\left\{X_{n+1}=j, Y_{n+1}=k, \tau_{n+1}=L+1, \tau_{n+1}>T \mid X_{n}=i, Y_{n}=h, \tau_{n}=m\right\} \\
&= P\left\{X_{n+1}=j, Y_{n+1}=k, \tau_{n+1}=\ell \mid X_{n}=i, Y_{n}=h, \tau_{n}=m\right\} \mathbf{1}_{\left\{\tau_{n+1} \leq T\right\}} \mathbf{1}_{\{\ell \leq L\}} \\
&+P\left\{X_{n+1}=j, Y_{n+1}=k, \tau_{n+1}=L+1 \mid X_{n}=i, Y_{n}=h, \tau_{n}=m\right\} \mathbf{1}_{\left\{\tau_{n+1}>T\right\}}
\end{aligned}
$$

where we have used the fact that, for $\ell \leq L$,

$$
\left\{\tau_{n+1}=\ell\right\} \cap\left\{\tau_{n+1} \leq T\right\}=\left\{\tau_{n+1} \in B^{\ell}\right\} \cap\left\{\tau_{n+1} \leq T\right\}=\left\{\tau_{n+1} \in B^{\ell}\right\}
$$

and, analogously, for $\ell=L+1$,

$$
\left\{\tau_{n+1}=L+1\right\} \cap\left\{\tau_{n+1}>T\right\}=\left\{\tau_{n+1}>T\right\}
$$

Asian options

The first term, i.e. relative to the event $\tau_{n+1} \leq T$, can be continued as

$$
\left.\begin{array}{l}
P\left\{X_{n+1}=j \mid Y_{n+1}=k, \tau_{n+1}=\ell, X_{n}=i, Y_{n}=h, \tau_{n}=m\right\} \\
\quad \cdot P\left\{Y_{n+1}=k \mid \tau_{n+1}=\ell, X_{n}=i, Y_{n}=h, \tau_{n}=m\right\} \\
\cdot P\left\{\tau_{n+1}=\ell \mid X_{n}=i, Y_{n}=h, \tau_{n}=m\right\} \\
=p_{i, j} \mathbf{1}_{\left\{(k-1) \Delta \leq y^{n}+x^{i}\left(\tau_{n+1}-t_{m}\right)<k \Delta\right\}} \mathbf{1}_{\left\{(\ell-1) \delta \leq \tau_{n+1}<\ell \delta\right\}} \\
\cdot
\end{array} \mathbf{1}_{\left\{t_{m} \notin[(\ell-1) \delta, \ell \delta)\right\}} \int_{(\ell-1) \delta-t_{m}}^{\ell \delta-t_{m}} q_{i} e^{-q_{i} t} d t+\mathbf{1}_{\left\{t_{m} \in[(\ell-1) \delta, \ell \delta)\right\}} \int_{t_{m}}^{\ell \delta} q_{i} e^{-q_{i} t} d t\right] .
$$

where we have used the fact that ...

Asian options

- we have $Y_{n+1}=k(k=1, \cdots, K)$, i.e. $Y_{n+1} \in A^{k}$ under the condition $\tau_{n+1}=\ell(\ell=1, \cdots, L), X_{n}=i, Y_{n}=h, \tau_{n}=m$ if and only if
$(k-1) \Delta \leq y^{h}+x^{i}\left(\tau_{n+1}-t_{m}\right)<k \Delta$ with $\tau_{n+1} \in[(\ell-1) \delta, \ell \delta)$
- Furthermore, given $X_{n}=i, \tau_{n}=m$, the random variable $\tau_{n+1}-t_{m}$ has the exponential density $q_{i} e^{-q_{i} t}$.

Asian options

Analogously, on the event $\tau_{n+1}>T$, the second term can be continued as

$$
\begin{aligned}
& P\left\{X_{n+1}=j \mid Y_{n+1}=k, \tau_{n+1}=L+1, X_{n}=i, Y_{n}=h, \tau_{n}=m\right\} \\
& \quad \cdot P\left\{Y_{n+1}=k \mid \tau_{n+1}=L+1, X_{n}=i, Y_{n}=h, \tau_{n}=m\right\} \\
& \quad \cdot P\left\{\tau_{n+1}=L+1 \mid X_{n}=i, Y_{n}=h, \tau_{n}=m\right\} \\
& =\delta_{i, j} \mathbf{1}_{\left\{(k-1) \Delta \leq y^{h}+x^{i}\left(T-t_{m}\right)<k \Delta\right\}} \int_{T-t_{m}}^{\infty} q_{i} e^{-q_{i} t} d t
\end{aligned}
$$

where $\delta_{i, j}$ is the Kronecker symbol due to the fact that, on the event $\tau_{n+1}>T$, the chain X_{t} stops. On the other hand Y_{t} moves as far as it can on the time window $[0, T]$. Furthermore, as before, the r.v. $\tau_{n+1}-t_{m}$ has the exponential density $q_{i} e^{-q_{i} t}$, given that $X_{n}=i$ and $\tau_{n}=m$.

Conclusions

- We have considered a specific market model where the underlying evolves as a continuous time finite state Markov chain (CTMC)
- For those cases where an explicit analytic pricing formula is not available (i.e. most of the cases) we have presented a hybrid MC simulation method which, with respect to a plain MC allows to:
i) reduce the variance
ii) obtain more precise results
- We have presented numerical results and comparisons for the case of lookback call and Asian options.

Thank you for your attention

Barrier options

- Let an option be knocked out when the underlying X_{t} reaches or falls below a level L
- Assume also that for the background (not knocked out) option we have

$$
\bar{H}_{0}(\cdot)=\sum_{i=1}^{N} \bar{w}_{i}^{0} \mathbf{1}_{\left\{\cdot=x^{i}\right\}}
$$

Barrier options

- Assuming the values x^{i} are in increasing order of magnitude, put

$$
\ell:=\min \left\{i \in\{1, \cdots, N\} \mid x^{i}>L\right\}
$$

- For the knock-out option we may then start from

$$
H_{0}\left(X_{T}\right)=\sum_{i=1}^{N} \bar{w}_{i}^{0} \mathbf{1}_{\left\{X_{T}=x^{i}, i \geq \ell\right\}}:=\sum_{i=1}^{N} w_{i}^{0} \mathbf{1}_{\left\{X_{T}=x^{i}\right\}}
$$

having put $w_{i}^{0}:=\bar{w}_{i}^{0} \mathbf{1}_{\{i \geq \ell\}}$.
\rightarrow Want to obtain also here a relation of the form

$$
H_{n}(\underline{x})=\widetilde{Q}(n) H_{n-1}(\underline{x})
$$

for a suitable $\widetilde{Q}(n)$.

Barrier options

Proposition: Starting from

$$
H_{0}(\cdot)=\sum_{i=1}^{N} \bar{w}_{i}^{0} \mathbf{1}_{\left\{\cdot=x^{i}, i \geq \ell\right\}}:=\sum_{i=1}^{N} w_{i}^{0} \mathbf{1}_{\left\{\cdot=x^{i}\right\}}
$$

with $w_{i}^{0}:=\bar{w}_{i}^{0} \mathbf{1}_{\{i \geq \ell\}}$ we have, for $n \leq \nu_{T}$ (recall that we compute the price without the last term, i.e. as if $\left.T=\tau_{\nu_{T}}\right), H_{n}(\cdot)=\sum_{i=1}^{N} w_{i}^{n} \mathbf{1}_{\left\{\cdot=x^{i}\right\}}$, where $w^{n}=\left[w_{1}^{n}, \cdots, w_{N}^{n}\right]^{\prime}$ is given recursively by

$$
w^{n}=I_{\ell} \widetilde{Q}(n) w^{n-1}
$$

with I_{ℓ} a unit matrix having the first ℓ rows equal to zero and, as before, $\widetilde{Q}(n)=\left\{\frac{q_{i, j}^{n}}{r_{i}+q_{i}^{n}}\right\}_{i, j=1, \cdots, N}$

Barrier options

- As a consequence of the Proposition, we may restrict consideration to an $(N-\ell)$-vector \tilde{w}^{n} for which

$$
w_{i}^{0}:=\bar{w}_{i}^{0} \mathbf{1}_{\{i \geq \ell\}} \quad \text { and } \quad \tilde{w}^{n}=\widetilde{Q}_{\ell}(n) \tilde{w}^{n-1}
$$

where $\widetilde{Q}_{\ell}(n)$ is the $(N-\ell) \times(N-\ell)$ sub matrix of \widetilde{Q}^{n} formed by the last $N-\ell$ towns and columns.
\rightarrow We have the equivalent representations

$$
H_{n}\left(X_{\nu_{T}-n}\right)=\sum_{i=1}^{N} w_{i}^{n} \mathbf{1}_{\left\{X_{\nu_{T}-n}=x^{i}\right\}}=\sum_{i=1}^{N-\ell} \tilde{w}_{i}^{n} \mathbf{1}_{\left\{X_{\nu_{T}-n}=x^{i}\right\}}
$$

Explicit numerical computation

- \widetilde{Q} may also be viewed as a mapping acting as follows

$$
\widetilde{Q} H(v)=E_{v}^{\tilde{P}}\left\{e^{-v \mathcal{I}} H(u)\right\} \quad \text { with } \quad \mathcal{I} \sim \operatorname{Exp}(q(v))
$$

It is a contraction mapping with fixed point zero and contraction constant

$$
\gamma:=\max _{i \leq N} \frac{q_{i}}{r^{i}+q_{i}}<1
$$

Price of Prototype product: explicit formula

Consequently we have that the price of the Prototype product assur $X_{t}=x^{i}$ for a fixed $x^{i} \in E$, is

$$
V_{H_{0}, t, T}\left(X_{t}\right)_{\mid X_{t}=x^{i}}=\sum_{n=0}^{n_{\epsilon}}\left[\widetilde{Q}^{n} \cdot H_{0}(\underline{x})\right]_{i} \tilde{P}\left(\nu_{t, T}=n \mid X_{t}=x^{i}\right)
$$

with

- $\widetilde{Q}=\left(\widetilde{q}_{i, j}\right)_{1 \leq i, j \leq N}$ where $\widetilde{q}_{i, j}= \begin{cases}\frac{q_{i, j}}{r^{i}+q_{i}} & i \neq j \\ 0 & i=j\end{cases}$
- $[v]_{i}$ is the $i^{\text {th }}$ component of a general vector v
- $H_{0}(\underline{x}):=\left[w_{1}^{0}, \cdots, w_{N}^{0}\right]^{\prime}$ whose components are given by the Prototype payoff $H_{0}(\cdot)=\sum_{i=1}^{N} w_{i} \mathbf{1}_{\left\{\cdot=x^{i}\right\}}$
\rightarrow A specific form when \widetilde{Q} is diagonalizable.

[^0]: ${ }^{1}$ based on joint work with J.M. Montes and V.Prezioso

