Variance reduction by conditioning in the pricing problem where the underlying is a continuous-time finite state Markov process

Wolfgang Runggaldier, University of Padova¹

Research Seminar Institute for Statistics and Mathematics, WU, Wien December 2012

¹based on joint work with J.M. Montes and V.Prezioso 🚓 🚛 🔬 🚛 🔊 🤉

- Asset price evolutions are generally described as a geometric Brownian motion or an exponential Levy.
- The evolution of other quantities, in particular rates, but occasionally also asset prices, may more conveniently be modeled as a continuous time Markov chain (CTMC).
- Levy processes include the case of CTMC, but for this case a direct approach may be more convenient computationally.

(日) (日) (日) (日) (日) (日) (日)

A full theory of financial markets based on CTMC (prices, rates or, more generally, factors) is given in Norberg (2003).

- Assume given the following:
 - i) An underlying factor process $X_t \in \{x^1, \dots, x^N\}$ (could simply be the short rate itself) with a time homogeneous transition intensity matrix Q
 - ii) A simple claim of the form $H(X_T) = H_0 := [H(x^1), \cdots, H(x^N)]'.$
 - iii) Assume furthermore that for the short rate one has $r_t = r^i$ if $X_t = x^i$ (obvious if $X_t = r_t$).

(日) (日) (日) (日) (日) (日) (日)

• The price $\Pi_i(t)$ at time *t* when $X_t = x^i$ is then given by

$$\Pi_{i}(t) = [\exp\{(Q - R)(T - t)\} H_{0}]_{i}$$

where $[z]_i$ denotes the *i*-th component of the vector *z* and *R* is the diagonal matrix with elements r^i (*i* = 1, · · · , *N*).

- The previous explicit formula may not be of much use if:
 - i) The evolution of the underlying factors is not time homogeneous;

(日) (日) (日) (日) (日) (日) (日)

ii) the derivative is path dependent.

In all these more involved cases a full Monte Carlo (MC) simulation is always possible:

- For the CTMC X_t simulate the successive jump times τ_n and the values X_n of X_t at τ_n.
- For an intensity matrix $Q = \{q_{i,j}\}$, putting $q_i = \sum_{i \neq j} q_{i,j}$ one has that, if $X_{\tau_n} = x^i$, the inter-jump times $\tau_{n+1} \tau_n$ are exponentially distributed with parameter q_i and the probability for $X_{\tau_{n+1}} = x^j \neq x^i$ is $p_{i,j} = \frac{q_{i,j}}{q_i}$.
 - → In addition to a possibly large variance, plain MC may lead to biased results (Quasi-Montecarlo may allow to better explore the various regions of possible trajectories).

Purpose

We show first that, conditionally on the number $\nu_{t,T}$ of jumps of X_t in a given interval [t, T], one can obtain an explicitly computable expression also for exotic derivatives and when the underlying is multivariate and/or has a time non homogeneous evolution.

- ロマ・山下・山下・山下・山下・山

Since

$$\Pi_{i}(t) = E^{\tilde{P}} \left\{ e^{-\int_{t}^{T} r_{s} ds} H(X_{T}) \mid X_{t} = i \right\}$$
$$= E^{\tilde{P}} \left\{ E^{\tilde{P}} \left\{ e^{-\int_{t}^{T} r_{s} ds} H(X_{T}) \mid \nu_{t,T}, X_{t} = i \right\} \mid X_{t} = i \right\}$$

where \tilde{P} is a (calibrated) martingale measure, then, given that the inner expression allows for an explicit computation, one needs to simulate only the r.v. $\nu_{t,T}$.

- With respect to a full MC this allows to reduce the variance (variance reduction by conditioning).
- Allows also to reduce a possible bias.

→ Shall show how to compute the inner expression in various more general cases

Outline

- For simplicity of exposition we first present the procedure for the case of a simple claim on a time homogeneous underlying *X*^{*t*} given by a CTMC.
- Successively we show the extensions/changes for the more general case.
- Finally we present numerical results and comparisons.

・ロト・日本・日本・日本・日本

The model (simple case first)

X_t a **CTMC** under a martingale measure \tilde{P}

- state space $E = \{x^1, x^2, \dots, x^N\}, N \in \mathbb{N}$ (identify x^i with i)
- Q = (q_{i,j})_{1≤i,j≤N} the transition intensity matrix, homogeneous w.r. to time
- $q_i := \sum_{\substack{j=1 \ j \neq i}}^{N} q_{i,j}$, i = 1, ..., N the intensities associated with the states x^i .

シック・ 川 ・ 川田・ 小田・ 小田・

• τ_n : random time at which the n^{th} jump occurs,

•
$$X_n := X_{\tau_n}$$
 and $X_s \equiv X_n$ for $s \in [\tau_n, \tau_{n+1})$
• $r_n - r^i$ if $X_n - x^i$ $(i - 1, \dots, N)$

(write
$$r_n := r_{\tau_n}$$
; $r_s = r_n$ for $s \in [\tau_n, \tau_{n+1})$)

•
$$(\tau_{n+1} - \tau_n \mid X_{\tau_n} = x^i) \sim \mathcal{E}xp(q_i)$$

• $\nu_t := \sup\{n \mid \tau_n \le t\}$ (#of jumps up to time *t*); $\nu_{t,T} := \nu_T - \nu_t$.

・ロト・西ト・ヨト・ヨト・日・ つへぐ

• Pricing a derivative

$$\Pi(t) = E^{\tilde{P}} \left\{ e^{-\int_{t}^{T} r_{s} ds} H(X_{T}) \mid \mathcal{F}_{t} \right\}$$
$$= \sum_{i=1}^{N} E^{\tilde{P}} \left\{ e^{-\int_{t}^{T} r_{s} ds} H(X_{T}) \mid X_{t} = i \right\} \mathbf{1}_{\{X_{t} = i\}}$$
$$\Downarrow$$

$$\Pi_{i}(t) = E^{\tilde{P}} \left\{ \exp[r_{t}(t - \tau_{\nu_{t}}] \\ \exp\left[-\sum_{i=\nu_{t}}^{\nu_{T}-1} r_{i}(\tau_{i+1} - \tau_{i}) - r_{T}(T - \tau_{\nu_{T}})\right] H(X_{T}) \mid X_{t} = i \right\}$$

=
$$\exp[r_{t}(t - \tau_{\nu_{t}}] \\ E^{\tilde{P}} \left\{ \exp\left[-\sum_{i=\nu_{t}}^{\nu_{T}-1} r_{i}(\tau_{i+1} - \tau_{i}) - r_{T}(T - \tau_{\nu_{T}})\right] H(X_{T}) \mid X_{t} = i \right\}$$

 \rightarrow Not restrictive to assume $t = T_{\nu_t}$

Prototype product (analogue to Arrow-Debreu prices)

• Its price at time t < T is

$$V_{H_0,t,T}(X_t) =$$

$$= E^{\tilde{P}} \left\{ \exp\left[-\sum_{i=\nu_t}^{\nu_T - 1} r_i(\tau_{i+1} - \tau_i) - r_{\nu_T}(T - \tau_{\nu_T}) \right] H_0(X_T) \mid X_t \right\}$$
with
$$H_0(\cdot) = \sum_{i=1}^N w_i^0 \mathbf{1}_{\{\cdot = x^i\}}, \ x^i \in E, \ w_i^0 \in \mathbb{R}$$

- In the calculations to follow, in order to determine the explicit analytical expression conditional on $\nu_{t,T}$, we shall *(except for the case of Asian options)* drop the last factor: it is in general a small quantity but we shall take it into account in the MC simulations anyway *(the MC simulations will be performed to determine* $\nu_{t,T}$ *and thus also* $\nu_T = \nu_t + \nu_{t,T}$).
- Various interest rate derivatives can be obtained as particular cases or as linear combinations of prototype products with underlying the short rate.

(日) (日) (日) (日) (日) (日) (日)

• For given $n \in \mathbb{N}$ consider the recursions

Proposition: The price of the Prototype product can be computed as

$$V_{H_0,t,T}(X_t) = E^{\tilde{P}} \left\{ H_{\nu_{t,T}}(X_t) \mid X_t \right\} = \sum_{n=0}^{+\infty} H_n(X_t) \tilde{P}(\nu_{t,T} = n \mid X_t)$$

where

ν_{t,T} = ν_T - ν_t (number of jumps between t and T)
 H_n(X_t) = H_n(X_{νt}) is as obtained recursively above.

• Setting $\underline{x} = [x^1, \dots, x^N]'$ we have the representations $H_0(\underline{x}) := [w_1^0, \dots, w_N^0]' \rightarrow H_n(\underline{x}) := [w_1^n, \dots, w_N^n]'$

Putting, furthermore,

$$\widetilde{Q} = (\widetilde{q}_{i,j})_{1 \le i,j \le N}$$
 with $\widetilde{q}_{i,j} = \begin{cases} \frac{q_{i,j}}{r^i + q_i} & i \ne j \\ 0 & i = j \end{cases}$

one obtains, at the generic τ_n , the following one-step evolution of H_n ,

$$H_n(\underline{x}) = \widetilde{Q} H_{n-1}(\underline{x}).$$

→ In the time homogeneous case it follows that $H_n(\underline{x}) = \widetilde{Q}^n H_0(\underline{x})$ by putting $\widetilde{Q}^0 = I_N$.

• The actual derivative price is then given by

$$\begin{aligned} \mathsf{T}_{i}(t) &= V_{\mathcal{H}_{0},t,T}(X_{t})_{|X_{t}=x^{i}} \\ &= \sum_{n=0}^{\infty} \left[\widetilde{Q}^{n}\mathcal{H}_{0}(\underline{x}) \right]_{i} \widetilde{P} \left(\nu_{t,T} = n \mid X_{t} = x^{i} \right) \\ &= E^{\widetilde{P}} \left\{ \left[\widetilde{Q}^{\nu_{t,T}}\mathcal{H}_{0}(\underline{x}) \right]_{i} \mid X_{t} = x^{i} \right\} \end{aligned}$$

 $([z]_i \text{ is the } i-\text{th component of the vector } z).$

From here two possibilities for actual computation:

- Explicit numerical computation (middle term)
- MC simulation by simulating just ν_{t,T} (rightmost term), i.e. MC simulation by conditioning.

Bond prices with CF, RBT, PPM(MC1)+K-A and PPM(MC2)+K-A (*stepsMC=stepsRBT*=500)

MC1: MC with conditioning MC2: full MC

T(years)	0.5	0.5	0.5	0.5
$\widetilde{r}(=r^i)$	0.01	0.02	0.03	0.02
k	0.8	0.5	1.1	1.2
θ	0.01	0.02	0.03	0.02
σ	0.1	0.05	0.1	0.1
CF	0.995014	0.990051	0.985116	0.990052
RBT	0.995042	0.99007	0.985146	0.990072
PPM(MC1)+K-A	0.995024	0.990143	0.985128	0.990059
PPM(MC2)+K-A	0.994988	0.989963	0.984903	0.990049

Bond prices with CF, RBT, PPM(MC1)+K-A and PPM(EF)+K-A (stepsMC=stepsRBT=500)

T(years)	0.5	0.5	0.5	0.5
$\widetilde{r}(=r^i)$	0.1	0.1	0.2	0.3
k	0.1	0.1	0.2	0.3
θ	0.1	0.4	0.2	0.3
σ	0.1	0.05	0.2	0.3
CF	0.95124806	0.95123369	0.90497717	0.86113958
RBT	0.951343	0.951329	0.905157	0.861394
PPM(MC1)+K-A	0.951022	0.950859	0.905229	0.861104
PPM(EF)+K-A	0.951324	0.951723	0.905012	0.861756

Extensions

- X_t (scalar) but time inhomogeneous
 - → Barrier options (may include credit risky derivatives)

(日) (日) (日) (日) (日) (日) (日)

- Path dependent derivatives/claims with X_t multivariate:
 - Iookback options
 - Asian options

Time inhomogeneous case

• Generalize Q as

$$Q \longrightarrow Q(n) = \{q_{i,j}^n\}_{i,j=1,\cdots,N}$$

so that also

$$\widetilde{Q} \longrightarrow \widetilde{Q}(n) = \left\{ \frac{q_{i,j}^n}{r^i + q_i^n} \right\}_{i,j=1,\cdots,N}$$

Then

$$H_n(\underline{x}) = \widetilde{Q}(n)H_{n-1}(\underline{x})$$

or, equivalently,

$$H_n(\underline{x}) = \widetilde{Q}(n)\widetilde{Q}(n-1)\cdots\widetilde{Q}(0)H_0(\underline{x})$$

The multivariate (bivariate) case

• Consider e.g. (X_t, Y_t) with $X_t \in \{x^1, \cdots, x^N\}$ and $Y_t \in \{y^1, \cdots, y^M\}$ and put $r_{\tau_{n}} = r^{i,h}$ if $(X_{\tau_{n}}, Y_{\tau_{n}}) = (x^{i}, v^{h})$ (in the more general time-inhomogeneous case) $Q(n) = \left\{ q_{(i,h),(j,k)}^n \right\} \begin{bmatrix} i,j = 1,\cdots,N\\ h,k = 1,\cdots,M \end{bmatrix}$

The multivariate case

• With $\underline{z} = (\underline{x}, \underline{y})'$ where $\underline{x} = (x^1, \dots, x^N)$, $\underline{y} = (y^1, \dots, y^M)$ and $H_0(\underline{z}) = H_0(\underline{x}, \underline{y}) = [w_1, \dots, w_{N \cdot M}]'$

also

$$H_n(\underline{z}) = \tilde{Q}(n)H_{n-1}(\underline{z})$$

where

$$\tilde{Q}(n) = \left\{ \frac{q_{(i,h),(j,k)}^n}{r^{i,h} + q_{i,h}^n} \right\} \begin{bmatrix} i,j = 1,\cdots,N\\ h,k = 1,\cdots,M \end{bmatrix}$$

with $q_{i,h}^n = \sum_{j \neq i, k \neq h} q_{(i,h),(j,k)}^n$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

The multivariate case

Application to defaultable bond pricing

 With τ denoting the default time and λ_t the default intensity, for the price of a defaultable bond we have

$$\Pi(t) = \mathbf{1}_{\{\tau > t\}} E^{\tilde{P}} \left\{ \exp \left[-\int_{t}^{T} (r_{s} + \lambda_{s}) \, ds \right] \mid \mathcal{F}_{t} \right\}$$

- \rightarrow r_t and λ_t may form two different CTMC, i.e. $X_t = r_t, Y_t = \lambda_t$
- → They may also be driven by a common factor process Z_t evolving as a CTMC, i.e. $r_t = r(t, Z_t), \lambda_t = \lambda(t, Z_t).$

Lookback call options

• For an underlying CTMC X_t consider a claim of the form

$$H_T = \left(X_T - g(X_0^T)
ight)^+$$

- Put Y_t := g(X₀^t) which takes a given finite number of values.
 - → For $t \le T$, the process Y_t then takes a finite number of values (w.l.of g. we can identify them with $h = 1, \dots, M$)
 - \rightarrow it jumps only at jump times of X_t .

• Assume, furthermore,

 $g(X_0^{ au_n}) = G(X_{ au_n}, g(X_0^{ au_{n-1}})) ext{ for some measurable } G(\cdot, \cdot)$

 \rightarrow (*X_t*, *Y_t*) is a CTMC and *H_T* = (*X_T* - *Y_T*)⁺.

 \rightarrow Need only to derive the *Q*-matrix for (*X*_t, *Y*_t).

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

• Recall that, if for a scalar CTMC X_t the Q-matrix is $Q = \{q_{i,j}\}$, then the transition probabilities of the embedded chain X_n are

$$p_{i,j}=rac{q_{i,j}}{q_i}$$
 with $q_i=\sum_{j
eq i}q_{i,j}$ $(q_{i,i}=p_{i,i}=0)$

(日) (日) (日) (日) (日) (日) (日)

 Viceversa, given p_{i,j}, there are various possible q_{i,j} that lead to the same p_{i,j}. They differ by the choice of q_i since we have q_{i,j} = q_ip_{i,j}.

 Since in our case Y_t jumps exactly when X_t does, we may put

$$q_{(i,h)}$$
 $\left(=\sum_{j,k}q_{(i,h),(j,k)}\right)=q_i$ $\forall h=1,\cdots,M$

where q_i is the intensity of leaving state *i* for the chain X_t . (At a generic τ_n the process X_t actually leaves the current state, while Y_t may jump to itself)

 \rightarrow Start thus from constructing $p_{(i,h),(j,k)}$.

We have (recall
$$X_n = X_{\tau_n}, Y_n = Y_{\tau_n}$$
)
 $p_{(i,h),(j,k)} := P\{X_{n+1} = j, Y_{n+1} = k \mid X_n = i, Y_n = h\}$
 $= P\{X_{n+1} = j, G(X_{n+1}, Y_n) = k \mid X_n = i, Y_n = h\}$
 $= P\{G(X_{n+1}, Y_n) = k \mid X_{n+1} = j, X_n = i, Y_n = h\}$
 $\cdot P\{X_{n+1} = j \mid X_n = i, Y_n = h\}$
 $= \mathbf{1}_{\{G(j,h)=k\}} P\{X_{n+1} = j \mid X_n = i\} = \mathbf{1}_{\{G(j,h)=k\}} p_{i,j}$

$$\rightarrow \quad q_{(i,h),(j,k)} = p_{(i,h),(j,k)} \cdot q_i = q_{i,j} \mathbf{1}_{\{G(j,h)=k\}}$$

Example

• Let
$$Y_t = g(X_0^t) := \min_{s \le t} X_s$$

 $(Y_t \text{ has the same finite number of possible values as } X_t)$
 $\rightarrow G(X_{\tau_n}, g(X_0^{\tau_{n-1}})) = \min \left[X_{\tau_n}, \min_{s \le \tau_{n-1}} X_s \right] = g(X_0^{\tau_n})$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Example

• In this case (states in increasing order of magnitude)

$$p_{(i,h),(j,k)} = \mathbf{1}_{\{G(j,h)=k\}} p_{i,j} = \mathbf{1}_{\{\min\{j,h\}=k\}} p_{i,j}$$

which implies that

$$p_{(i,h),(j,k)} = \begin{cases} p_{ik} & \text{if } k < h\\ p_{ij} & \text{if } k = h, j \ge k\\ 0 & \text{if } k > h \end{cases} = \begin{cases} \frac{q_{ik}}{q_i} & \text{if } k < h\\ \frac{d_{ij}}{q_i} & \text{if } k = h, j \ge k\\ 0 & \text{if } k > h \end{cases}$$

and, consequently,

$$q_{(i,h),(j,k)} = p_{(i,h),(j,k)} \cdot q_i = \begin{cases} q_{ik} & \text{if } k < h \\ q_{ij} & \text{if } k = h, j \ge k \\ 0 & \text{if } k < h \end{cases}$$

◆□ → ◆□ → ◆三 → ◆□ → ◆○ ◆

Comparing Plain MC and MC + Variance Reduction for Lookback Call pricing.

 $E = [0.8, 0.9, 1.0, 1.1, 1.2], x_0 = 3, T = 2$ years, time unit: 1 day

Q-matrix for Test 1

	-1200	300	300	300	300 -	
	0.6	-2.4	0.6	0.6	0.6	
Q =	6	6	-24.0	6	6	
	21	21	21	-84	21	
	400	400	400	400	-1600	

• *Q*-matrix for Test 2

$$Q = \begin{bmatrix} -0.12 & 0.03 & 0.03 & 0.03 & 0.03 \\ 0.3 & -1.2 & 0.3 & 0.3 & 0.3 \\ 0.6 & 0.6 & -2.3 & 0.5 & 0.6 \\ 0.9 & 0.8 & 1 & -3.7 & 1 \\ 1.1 & 1 & 0.9 & 0.8 & -3.8 \end{bmatrix}$$

Running Mean of Price vs. Iteration Number (Test 1) (Red) Plain MC; (Blue) MC+Variance Reduction Diagram Width = 3 empirical standard deviations

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

Running Mean of Price vs. Iteration Number(Test 2) (Red) Plain MC; (Blue) MC+Variance Reduction *Diagram Width* = 3 *empirical standard deviations*

イロト イヨト イヨト イヨト

(Left) Empirical Distribution of Jump Counts for Test 1 samples (Right) Empirical Distibution of Jump Counts for Test 2 samples

イロト イヨト イヨト イヨト

Price vs. Jump Count: Test 1 samples (Left); Test 2 samples (Right)

red - sample price; green- theoretical price

イロト イヨト イヨト イヨト

크

Weighted Price vs. Jump Count: Test 1 samples (Left); Test 2 samples (Right)

red - sample price; green- theoretical price

イロト イヨト イヨト イヨト

For Asian options consider the two processes

$$\begin{cases} X_t \text{ a CTMC, and} \\ Y_t := \int_0^t X_s ds = \sum_{\tau_n \le t} X_{\tau_{n-1}}(\tau_n - \tau_{n-1}) + X_{\tau_n}(t - \tau_n) \end{cases}$$

and write X_n and Y_n for X_{τ_n} and Y_{τ_n} respectively.

 The claim of a standard Asian option can then be represented as

$$H_T = \left(\frac{1}{T-t}\int_t^T X_s ds - K\right)^+ = \left(\frac{1}{T-t}(Y_T - Y_t) - K\right)^+$$

・ロト・西ト・ヨト・ヨト・日・ つへぐ

• X_t is finite-state, while Y_t is continuous-valued

 \rightarrow Want also Y_t to become finite-state in order to have (X_t, Y_t) finite-state Markov

(ロ) (同) (三) (三) (三) (○) (○)

 \rightarrow Discretization of the values of Y_t .

- Assuming that X_t ∈ {x¹, · · · , x^N}, (in increasing order of magnitude) the range for the values of Y_t is
 [0, T max_{t≤T} X_t] = [0, Tx^N] (one may denote the states of X_t by i = 1, · · · , N.)
- Partition now the interval $[0, Tx^N]$ into intervals of equal length Δ assuming that $Tx^N = K\Delta$ for a suitable positive integer *K*. The generic *k*-th interval of the partition is then

$$A^{k} = [a^{k-1}, a^{k}) = [(k-1)\Delta, k\Delta), \quad k = 1, \cdots, K$$

• Denote by y^k the midpoint of A^k (other choices are possible) and let $Y_t = y^k$ if $Y_t \in A^k$ (in what follows denote this value simply by k). Since $Y_0 = 0$, we have also to allow for the value y = 0 that we may consider as corresponding to k = 0.

At the generic jump time *τ_n* ≤ *T* of the chain *X_t* we then have

i) If $\tau_{n+1} < T$ then $Y_{n+1} = y^k \quad \leftrightarrow \quad Y_n + X_n(\tau_{n+1} - \tau_n) \in A^k$ $\leftrightarrow (k-1)\Delta < Y_n + X_n(\tau_{n+1} - \tau_n) < k\Delta$ ii) If $\tau_{n+1} > T$ then $Y_T = v^k \quad \leftrightarrow \quad Y_n + X_n(T - \tau_n) \in A^k$ $\leftrightarrow (k-1)\Delta < Y_n + X_n(T-\tau_n) < k\Delta$ iii) For $\tau_0 = 0$ we put $Y_0 = 0$.

- From the previous relations one can see that, in order to have Markovianity, the pair (X_n, Y_n) alone does not suffice, one has to include also τ_n.
- Again, as for Y_t , also τ_n is continuous-valued (recall that the distribution of $\tau_{n+1} \tau_n$, given $X_n = x^i$, is exponential with parameter q_i) and so to obtain a finite-state Markov chain one has to discretize also τ_n .

(日) (日) (日) (日) (日) (日) (日)

• Partition the interval [0, T] into intervals of equal length $\delta > 0$ assuming that $T = L\delta$ for a suitable integer *L*. The generic interval of the partition is then

$$B^{\ell} = [b^{\ell-1}, b^{\ell}) = [(\ell-1)\delta, \ell\delta)$$

- Denote by t_ℓ the midpoint of B^ℓ and let τ_n = t_ℓ if τ_n ∈ B^ℓ (again, in what follows, we may denote this value simply by ℓ with ℓ = 1, · · · , L). We have also to allow for ℓ = 0 that corresponds to τ₀ = 0.
- If τ_{n+1} > T then we shall assign it the value (L + 1)δ and denote it simply by L + 1.

- We may now consider the 3-dimensional chain
 (X_n, Y_n, τ_n), for which we have to derive the corresponding
 Q-matrix {q_{(i,h,m),(j,k,ℓ)}}.
- Again, the entire chain jumps only when X_n jumps (with a last jump when τ_{n+1} > T) and so we have for the intensities that

$$\sum_{j\neq i,k\neq h,\ell\neq m} q_{(i,h,m),(j,k,\ell)} = q_{(i,h,m)} = q_i$$

 \rightarrow It thus suffices to determine $p_{(i,h,m),(j,k,\ell)}$ from which then

$$q_{(i,h,m),(j,k,\ell)} = q_i p_{(i,h,m),(j,k,\ell)}$$

• Given the definition of the process *Y*_t as

$$Y_t = \sum_{\tau_n \leq t} X_{\tau_{n-1}}(\tau_n - \tau_{n-1}) + X_{\tau_n}(t - \tau_n)$$

at the generic jump time τ_n we have to restrict the possible values of the triple (X_n, Y_n, τ_n) to those triples (i, h, m) with $i = 1, \dots, N$; $m = 0, 1, \dots, L$ for which $h \in \{0, 1, \dots, K\}$ is such that

$$y^h \leq x^N t_m$$
 (in fact, $x^N > x^i$ for $i < N$)

→ We have now the following relations for the transition probabilities $p_{(i,h,m),(j,k,\ell)}$:

$$P_{(i,h,m),(j,k,\ell)} := P\{X_{n+1} = j, Y_{n+1} = k, \tau_{n+1} = \ell \mid X_n = i, Y_n = h, \tau_n = m\}$$

$$\begin{split} &= P\{X_{n+1}=j, Y_{n+1}=k, \tau_{n+1}=\ell, \tau_{n+1}\leq T | X_n=i, Y_n=h, \tau_n=m\} \\ &+ P\{X_{n+1}=j, Y_{n+1}=k, \tau_{n+1}=L+1, \tau_{n+1}>T | X_n=i, Y_n=h, \tau_n=m\} \\ &= P\{X_{n+1}=j, Y_{n+1}=k, \tau_{n+1}=\ell | X_n=i, Y_n=h, \tau_n=m\} \mathbf{1}_{\{\tau_{n+1}\leq T\}} \mathbf{1}_{\{\ell\leq L\}} \\ &+ P\{X_{n+1}=j, Y_{n+1}=k, \tau_{n+1}=L+1 | X_n=i, Y_n=h, \tau_n=m\} \mathbf{1}_{\{\tau_{n+1}>T\}} \end{split}$$

where we have used the fact that, for $\ell \leq L$,

 $\{\tau_{n+1} = \ell\} \cap \{\tau_{n+1} \le T\} = \{\tau_{n+1} \in B^{\ell}\} \cap \{\tau_{n+1} \le T\} = \{\tau_{n+1} \in B^{\ell}\}$ and, analogously, for $\ell = L + 1$,

$$\{\tau_{n+1} = L+1\} \cap \{\tau_{n+1} > T\} = \{\tau_{n+1} > T\}$$

The first term, i.e. relative to the event $\tau_{n+1} \leq T$, can be continued as

$$P\{X_{n+1} = j \mid Y_{n+1} = k, \tau_{n+1} = \ell, X_n = i, Y_n = h, \tau_n = m\}$$

$$\cdot P\{Y_{n+1} = k \mid \tau_{n+1} = \ell, X_n = i, Y_n = h, \tau_n = m\}$$

$$\cdot P\{\tau_{n+1} = \ell \mid X_n = i, Y_n = h, \tau_n = m\}$$

$$= \rho_{i,j} \mathbf{1}_{\{(k-1)\Delta \leq y^h + x^i(\tau_{n+1} - t_m) < k\Delta\}} \mathbf{1}_{\{(\ell-1)\delta \leq \tau_{n+1} < \ell\delta\}}$$
$$\cdot \left[\mathbf{1}_{\{t_m \notin [(\ell-1)\delta,\ell\delta)\}} \int_{(\ell-1)\delta - t_m}^{\ell\delta - t_m} q_i e^{-q_i t} dt + \mathbf{1}_{\{t_m \in [(\ell-1)\delta,\ell\delta)\}} \int_{t_m}^{\ell\delta} q_i e^{-q_i t} dt \right]$$

where we have used the fact that ···

• we have $Y_{n+1} = k$ $(k = 1, \dots, K)$, i.e. $Y_{n+1} \in A^k$ under the condition $\tau_{n+1} = \ell$ $(\ell = 1, \dots, L)$, $X_n = i$, $Y_n = h$, $\tau_n = m$ if and only if

$$(k-1)\Delta \leq y^h + x^i(\tau_{n+1} - t_m) < k\Delta \text{ with } \tau_{n+1} \in [(\ell-1)\delta, \ell\delta)$$

• Furthermore, given $X_n = i$, $\tau_n = m$, the random variable $\tau_{n+1} - t_m$ has the exponential density $q_i e^{-q_i t}$.

Analogously, on the event $\tau_{n+1} > T$, the second term can be continued as

$$P\{X_{n+1} = j \mid Y_{n+1} = k, \tau_{n+1} = L+1, X_n = i, Y_n = h, \tau_n = m\}$$

$$\cdot P\{Y_{n+1} = k \mid \tau_{n+1} = L+1, X_n = i, Y_n = h, \tau_n = m\}$$

$$\cdot P\{\tau_{n+1} = L+1 \mid X_n = i, Y_n = h, \tau_n = m\}$$

$$= \delta_{i,j} \mathbf{1}_{\{(k-1)\Delta \le y^h + x^i(T-t_m) < k\Delta\}} \int_{T-t_m}^{\infty} q_i e^{-q_i t} dt$$

where $\delta_{i,j}$ is the Kronecker symbol due to the fact that, on the event $\tau_{n+1} > T$, the chain X_t stops. On the other hand Y_t moves as far as it can on the time window [0, T]. Furthermore, as before, the r.v. $\tau_{n+1} - t_m$ has the exponential density $q_i e^{-q_i t}$, given that $X_n = i$ and $\tau_n = m$.

Conclusions

- We have considered a specific market model where the underlying evolves as a continuous time finite state Markov chain (CTMC)
- For those cases where an explicit analytic pricing formula is not available *(i.e. most of the cases)* we have presented a hybrid MC simulation method which, with respect to a plain MC allows to:
 - i) reduce the variance
 - ii) obtain more precise results
- We have presented numerical results and comparisons for the case of lookback call and Asian options.

Thank you for your attention

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

- Let an option be knocked out when the underlying X_t reaches or falls below a level L
- Assume also that for the background (not knocked out) option we have

$$\bar{H}_0(\cdot) = \sum_{i=1}^N \bar{w}_i^0 \mathbf{1}_{\{\cdot = x^i\}}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

 Assuming the values xⁱ are in increasing order of magnitude, put

$$\ell := \min\{i \in \{1, \cdots, N\} \mid x^i > L\}$$

For the knock-out option we may then start from

$$H_0(X_T) = \sum_{i=1}^N \bar{w}_i^0 \mathbf{1}_{\{X_T = x^i, i \ge \ell\}} := \sum_{i=1}^N w_i^0 \mathbf{1}_{\{X_T = x^i\}}$$

having put $w_i^0 := \bar{w}_i^0 \mathbf{1}_{\{i \ge \ell\}}.$

 \rightarrow Want to obtain also here a relation of the form

$$H_n(\underline{x}) = \widetilde{Q}(n)H_{n-1}(\underline{x})$$

for a suitable $\widetilde{Q}(n)$.

Proposition: Starting from

$$H_{0}(\cdot) = \sum_{i=1}^{N} \bar{w}_{i}^{0} \mathbf{1}_{\{\cdot = x^{i}, i \geq \ell\}} := \sum_{i=1}^{N} w_{i}^{0} \mathbf{1}_{\{\cdot = x^{i}\}}$$

with $w_i^0 := \bar{w}_i^0 \mathbf{1}_{\{i \ge \ell\}}$ we have, for $n \le \nu_T$ (recall that we compute the price without the last term, i.e. as if $T = \tau_{\nu_T}$), $H_n(\cdot) = \sum_{i=1}^N w_i^n \mathbf{1}_{\{\cdot = x^i\}}$, where $w^n = [w_1^n, \cdots, w_N^n]'$ is given recursively by

$$w^n = I_\ell \widetilde{Q}(n) w^{n-1}$$

with I_{ℓ} a unit matrix having the first ℓ rows equal to zero and, as before, $\widetilde{Q}(n) = \left\{\frac{q_{i,j}^n}{r_i + q_i^n}\right\}_{i,j=1,\cdots,N}$

 As a consequence of the Proposition, we may restrict consideration to an (N − ℓ)−vector w̃ⁿ for which

$$w_i^0 := \bar{w}_i^0 \mathbf{1}_{\{i \ge \ell\}}$$
 and $\tilde{w}^n = \widetilde{Q}_\ell(n) \tilde{w}^{n-1}$

where $\widetilde{Q}_{\ell}(n)$ is the $(N - \ell) \times (N - \ell)$ sub matrix of \widetilde{Q}^n formed by the last $N - \ell$ towns and columns.

 \rightarrow We have the equivalent representations

$$H_n(X_{\nu_T-n}) = \sum_{i=1}^N w_i^n \mathbf{1}_{\{X_{\nu_T-n}=x^i\}} = \sum_{i=1}^{N-\ell} \tilde{w}_i^n \mathbf{1}_{\{X_{\nu_T-n}=x^i\}}$$

(日) (日) (日) (日) (日) (日) (日)

Explicit numerical computation

• \widetilde{Q} may also be viewed as a mapping acting as follows $\widetilde{Q}H(v) = E_v^{\widetilde{P}} \{ e^{-v\mathcal{I}}H(u) \}$ with $\mathcal{I} \sim Exp(q(v))$

It is a contraction mapping with fixed point zero and contraction constant

$$\gamma := \max_{i \le N} \frac{q_i}{r^i + q_i} < 1$$

Price of Prototype product: explicit formula

Consequently we have that the price of the Prototype product assur $X_t = x^i$ for a fixed $x^i \in E$, is

$$V_{H_0,t,T}(X_t)_{|X_t=x^i} = \sum_{n=0}^{n_{\epsilon}} [\widetilde{Q}^n \cdot H_0(\underline{x})]_i \widetilde{P}(\nu_{t,T}=n \mid X_t=x^i)$$

with

•
$$\widetilde{Q} = (\widetilde{q}_{i,j})_{1 \le i,j \le N}$$
 where $\widetilde{q}_{i,j} = \begin{cases} \frac{q_{i,j}}{r^i + q_i} & i \ne j \\ 0 & i = j \end{cases}$

- [v]_i is the ith component of a general vector v
- $H_0(\underline{x}) := [w_1^0, \cdots, w_N^0]'$ whose components are given by the Prototype payoff $H_0(\cdot) = \sum_{i=1}^N w_i \mathbf{1}_{\{\cdot = x^i\}}$

 \rightarrow A specific form when \widetilde{Q} is diagonalizable.