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Registry data

National health care registers typically collect incidence
and/or mortality counts stratified by age and period.

Prostate cancer data from Besag et al., 1995, Statistical Science
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Age-period-cohort analysis

Age-period-cohort (APC) model is commonly used to describe
vital rates using three time scales:

Age: age at diagnosis/death

Period: date of diagnosis/death

Cohort: date of birth

Goals:

Detecting temporal patterns in such data as they could

provide important clues for disease etiology.

Extrapolation and prediction.
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The univariate age-period-cohort model

yij : Number of cases in age group i at period j
nij : Number of persons at risk in age group i at period j

yij |ηij ∼ Poisson(nij exp(ηij))

ηij = µ+ αi + βj + γk

with age effect αi , period effect βj and cohort effect γk .

The cohort index k = M × (I − i) + j is a linear function of i

and j, where M is the ratio of age group to period interval.

To assure identifiability of the intercept µ we apply
sum-to-zero constraints for each parameter vector α, β, γ.
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Identifiability problems

Time trends are not identifiable due to the linear dependence
between age, period and cohort indices.

For any value of a ∈ R, the linear transformations

αi → αi + M × a
(

i − (I + 1)

2

)
,

βj → βj − a
(

j − (J + 1)

2

)
,

γk → γk + a
(

k − (K + 1)

2

)
will leave ηij unchanged and maintain the sum-to-zero constraints.

Holford, 1983, Biometrics
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Identifiability problems: Illustration (M=1)

Note: Second differences are identifiable, but hard to interpret.
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Identifiability problems cont.

For unequally spaced data, a second identifiability problem
induces artificial cyclical patterns (saw-tooth-pattern) in the
period and cohort estimates. Holford, 2006, Stat Med

Remember, M is the ratio of age group to period interval
length.

For any value of b1, . . . ,bM ∈ R (subject to b1 + . . .+ bM = 0),
the transformations

βj = βj + b1+(j−1) mod M

γk = γk − b1+(k−1) mod M

will leave the linear predictor ηij unchanged.
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Identifiability problems: Illustration (M=5)
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Likelihood Inference

Mainly classical maximum likelihood (ML) estimation has been
used for APC models.

Disadvantages:

Additional constraints are necessary for identifiability.

The model overfits cohorts for which only a single observation

exists. Besag et al., 1995, Stat Science

For unequally spaced data, ML estimates become very

unstable resulting in artificial saw-tooth pattern.
Holford, 2006, Stat Med

⇒We go for a Bayesian approach.
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The Bayesian APC model

A natural choice is to penalise second differences.
Berzuini and Clayton, 1994, Stat Med

The second order random walk (RW2) prior for α is

π(α|τα) ∝ τ
I−2

2
α exp

(
−τα

2

I∑
i=3

(αi − 2αi−1 + αi−2)
2

)
= τ

I−2
2

α exp
(
−1

2
α>Rα

)
,

where R is the precision matrix:

R = τα



1 −2 1
−2 5 −4 1

1 −4 6 −4 1

. . .
. . .

. . .
. . .

. . .

1 −4 6 −4 1
1 −4 5 −2

1 −2 1

 .

⇒ Latent Gaussian Markov random field (GMRF) model.
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The Bayesian APC model (II)

Use independent RW2 priors for α,β,γ.

To account for overdispersion add zij ∼ N (0, τ−1
z ) to ηij :

ηij = µ+ αi + βj + γk + zij .

All precision parameters are treated as unknown and suitable

gamma-hyperpriors are assigned.
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Inference in the Bayesian APC model

Besag et al. (1995) propose a sophisticated MCMC algorithm

using suitable reparameterisation and block sampling.

However, they also note:

“We anticipate that analytical approximations should work well

on our model and on others similar to it, especially for the

present data where there appears not to be any significant

multimodality in the posterior distribution.”

Today, the INLA methodology can be used for routine
application using an R interface (www.r-inla.org).
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Integrated nested Laplace approximations (INLA)
(Rue et al, 2009, JRSS-B)

INLA is a fast alternative to inference via MCMC in latent
Gaussian models. The methodology is particularly attractive if the
latent Gaussian model is a GMRF.

The INLA approach

incorporates posterior uncertainty with respect to
hyperparameters,

can be used for out-of-sample prediction,

can be used for model assessment and comparison based on
leave-one-out cross-validation.

INLA can be called in a modular way, just as glm() or lme(), say,
using an R interface (www.r-inla.org).
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The general setting

Three-stage Bayesian hierarchical model:

Observation model: π(y |x) =
∏

u π(yu|xu,θ).

Parameter model: π(x |θ), usually a GMRF.

Hyperprior: π(θ).

The posterior distribution is

π(x ,θ|y) ∝ π(θ)π(x |θ)
∏

u

π(yu|xu,θ).

Dim(x) is large, while dim(θ) is small.
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INLA: non-Gaussian observations

Main goal: Compute the posterior marginals

π(xu|y) =

∫
θ

∫
x−u

π(x ,θ|y)dx−u︸ ︷︷ ︸
π(xu,θ|y)=π(xu|θ,y)π(θ|y)

dθ,

π(θv |y) =

∫
θ−v

∫
x
π(x ,θ|y)dx︸ ︷︷ ︸
π(θ|y)

dθ−v .

INLA uses nested Laplace approximations for this purpose.

In our model: x = (µ,α>,β>,γ>, z>)>, θ = (τα, τβ, τγ , τz)>.
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Using INLA

> head(ProstateCancer, 4)

deaths pop age.group period cohort index

1 177 301000 1 1 7 1

2 262 212000 2 1 6 2

3 360 159000 3 1 5 3

4 409 132000 4 1 4 4

> library(INLA)

> my.hyper <- list(prec=list(param=c(1, 0.005)))

> model <- deaths ~ f(age.group, model="rw2", hyper=my.hyper) +

f(period, model="rw2", hyper=my.hyper) +

f(cohort, model="rw2", hyper=my.hyper) +

f(index, model="iid", hyper=my.hyper)

> results <- inla(model, family="poisson", data=ProstateCancer,

E=pop, quantiles=c(0.1, 0.5, 0.9))
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Comparing INLA with MCMC
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Predictions in INLA

Prediction of future deaths rates was one of the major goals in
Besag et al. (1995).

This can be also done in INLA by setting the observations to

be predicted to NA.

Post-processing of the posterior predictive distribution of the
linear predictor ηij gives the predictive distribution of yij .

Even simultaneous credible bands can be computed.

Sørbye and Rue, 2010
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Prediction: Prostate cancer

Assume, we would like to predict the last three five-year
periods 1970–1974, 1975–1979, 1980–1984.
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Observed and predicted number of cases within 80% point-wise credible bands.
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Multivariate APC models

Data now also depend on strata r = 1, . . . ,R.

Most general formulation (apc model):

yijr |ηijr ∼ Poisson(nijr exp(ηijr ))

ηijr = µr + αi,r + βj,r + γk,r + zijr

with independent zijr ∼ N (0, κ−1
z ), say.

Simpler models can be obtained, e.g. assuming shared age
effects (Apc model):

yijr |ηijr ∼ Poisson(nijr exp(ηijr ))

ηijr = µr + αi + βj,r + γk,r + zijr

As a start: independent RW2 priors for α, βr , γr , r = 1, . . . ,R.
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Identifiability of relative risks

The multivariate APC model inherits all identifiability problems
from the univariate APC model.

However, differences

∆
(r)
j = βj,r − βj,R in the ApC model

∆
(r)
k = γk,r − γk,R in the APc model

∆
(r)
jk = ∆j + ∆k in the Apc model

are identifiable.

Let ∆
(r)
µ = µr − µR. The adjusted differences

∆̃
(r)
j = ∆(r)

µ + ∆
(r)
j

∆̃
(r)
k = ∆(r)

µ + ∆
(r)
k

can be interpreted as (average) log relative risk.
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Analysing heterogeneous time trends: Apc model

Data: COPD mortality counts among males in England & Wales
Hansell et al., 2003, Epidemiology

I = 7 age groups:
15–24, 25–34, . . . , 75+.

J = 50 periods:
1950–1999.

K = 110 birth cohorts.

R = 3 regions

- Greater London

- Other conurbations

- Rural areas

Riebler & Held, 2010, Biostatistics.
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A side comment: A conditional approach

Let yij• = yij1 + . . .+ yijR.

It is easy to see that the Apc model for yijr implies that y ij |yij•
is multinomial with individual success probability

πijr =

exp
(

log
( nijr

nijR

)
+ ∆(r)

µ + ∆
(r)
j + ∆

(r)
k

)
1 +

∑R−1
s=1 exp

(
log
( nijs

nijR

)
+ ∆

(s)
µ + ∆

(s)
j + ∆

(s)
k

) .

Note that through conditioning, the original parameters are

replaced by the differences ∆
(r)
j and ∆

(r)
k .

Age effects are no longer present in this formulation.

All parameters are identifiable and can be estimated with ML

with suitable smoothing, if necessary (R-package VGAM).

Held & Riebler, 2012, Stat Methods Med Res
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Correlate separate random walks

When assuming separate time effects across strata it might
nevertheless be plausible to assume some correlation.

⇒ Use of correlated random walks

Illustration for R = 3:

● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●
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Correlated GMRF priors

For simplicity: R = 3.

Let C =

 1 ρ ρ

ρ 1 ρ

ρ ρ 1

 denote a uniform correlation matrix.

The random walks β1, β2, β3 can be correlated using the

stacked vector β̃ = (β>1 ,β
>
2 ,β

>
3 )>:

f (β̃|Cβ, τβ) ∝ |τβC−1
β |

(J−2)/2 exp
(
−1

2
β̃>
{

C−1
β ⊗ R

}
β̃

)
.

Multivariate RW2 with correlated increments.

Correlated overdispersion can also be incorporated:

z ij = (zij1, zij2, zij3)> ∼ N (0, τ−1
z Cz).

All correlations are treated as unknown.
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Prior on correlation parameters

Reparamerise ρ using the general Fisher’s z-transformation:

ρ =
exp(ρ?)− 1

exp(ρ?) + R − 1
ρ? = log

(
1 + ρ · (R − 1)

1− ρ

)
,

Fisher, 1958, page 219
and assign a N (0, τ−1) prior to ρ?.

This prior automatically ensures that ρ ∈ (−1/(R − 1),1),
which is required to ensure positive definiteness of C, is
fulfilled.

In addition, P(ρ > 0) = 0.5, independent of R.
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Illustration of prior on correlation parameters
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INLA call in R-INLA package
> library(INLA)
> ## define the grouping index

> g <- rep(c(1,2,3), each=I*J)

> ## Apc model with correlated time effects & overdispersion.

> my.hyper.rho <- list(rho=list(param=c(0, 0.2)))

> model_Apc <- y ~ -1 + mu1 + mu2 + mu3 +

f(age.group, model="rw2", hyper=my.hyper) +

f(period, model="rw2", hyper=my.hyper, constr=TRUE, rankdef=2,

control.group=list(hyper=my.hyper.rho, model="exchangeable"),

group=g) +

f(cohort, model="rw2", ...) +

f(index, model="iid", hyper=my.hyper,

control.group=list(hyper=my.hyper.rho, model="exchangeable"),

group=g)

> results <- inla(model_Apc, family="poisson", E=n, data=data,

control.compute=list(hyperpar =TRUE))
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Relative risks accounting for correlation
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Imputation/extrapolation of rates

Imputation of missing data for one stratum by taking advantage of
corresponding observations in other strata.

In particular interesting for short term projections, historic data

or to adjust for varying collection periods.

We are able to consider the most flexible apc model.
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Mortality extrapolation
Riebler et al., 2012, AOAS

Data: Overall mortality counts among females stratified by

R = 3 regions: Denmark, Sweden and Norway.

I = 17 age groups: 0− 4,5− 9, . . . ,75− 79,80− 84.

J = 20 periods from 1900− 1999 for Denmark and Sweden
(only 10 periods for Norway)

Periods

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000

Denmark

Sweden

Norway
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Mortality extrapolation II

Projection for Norwegian women for 1900–1949 by borrowing

strength of full mortality rates of Sweden and Denmark.

Comparison to a univariate APC model and an extended
Lee-Carter demographic forecasting approach.

The correlated model performs better in terms of mean

squared error, coverage probabilities and proper scoring

rules.
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Observed and predicted mortality rates

0

10

20

30

40

Period center

D
ea

th
 r

at
es

 p
er

 1
00

0 
py

rs

1900 1910 1920 1930 1940 1950 1960

●

●
● ●

●
● ● ● ●

●
● ● ●

Agegroup:  0−4

0

1

2

3

4

5

6

Period center

D
ea

th
 r

at
es

 p
er

 1
00

0 
py

rs

1900 1910 1920 1930 1940 1950 1960

● ●

●
●

●

●
●

●

●

●
● ● ●

Agegroup:  5−9

0

1

2

3

4

5

Period center

D
ea

th
 r

at
es

 p
er

 1
00

0 
py

rs

1900 1910 1920 1930 1940 1950 1960

● ●

●

●

●

●

●
●

●

●
● ● ●

Agegroup:  10−14

0

2

4

6

8

Period center

D
ea

th
 r

at
es

 p
er

 1
00

0 
py

rs

1900 1910 1920 1930 1940 1950 1960

●
●

●

●

●

●

●

● ●

●

● ● ●

Agegroup:  15−19

0

2

4

6

8

Period center

D
ea

th
 r

at
es

 p
er

 1
00

0 
py

rs

1900 1910 1920 1930 1940 1950 1960

●
●

●

●

●

●

●

● ●

●

● ● ●

Agegroup:  20−24

0

2

4

6

8

10

Period center

D
ea

th
 r

at
es

 p
er

 1
00

0 
py

rs

1900 1910 1920 1930 1940 1950 1960

● ●
●

●

●
●

●

●
●

●

●
● ●

Agegroup:  25−29

0

2

4

6

8

Period center

D
ea

th
 r

at
es

 p
er

 1
00

0 
py

rs

1900 1910 1920 1930 1940 1950 1960

● ●

●

●

●

●
●

●
●

●

● ● ●

Agegroup:  30−34

0

2

4

6

8

Period center

D
ea

th
 r

at
es

 p
er

 1
00

0 
py

rs

1900 1910 1920 1930 1940 1950 1960

● ●

●

●

●

●

●

●
●

●

● ● ●

Agegroup:  35−39

0

2

4

6

8

10

12

Period center

D
ea

th
 r

at
es

 p
er

 1
00

0 
py

rs

1900 1910 1920 1930 1940 1950 1960

●
●

● ●

●
●

●
●

●
●

● ● ●

Agegroup:  40−44

0

5

10

15

Period center

D
ea

th
 r

at
es

 p
er

 1
00

0 
py

rs

1900 1910 1920 1930 1940 1950 1960

● ●
●

●

● ●
●

●
●

●
● ● ●

Agegroup:  45−49

0

5

10

15

20

Period center

D
ea

th
 r

at
es

 p
er

 1
00

0 
py

rs

1900 1910 1920 1930 1940 1950 1960

●
● ●

●
● ●

●
●

●

●
● ● ●

Agegroup:  50−54

0

5

10

15

20

25

Period center

D
ea

th
 r

at
es

 p
er

 1
00

0 
py

rs

1900 1910 1920 1930 1940 1950 1960

● ● ● ●
● ●

● ●
●

●
●

● ●

Agegroup:  55−59

0

5

10

15

20

25

30

35

Period center

D
ea

th
 r

at
es

 p
er

 1
00

0 
py

rs

1900 1910 1920 1930 1940 1950 1960

● ● ● ●
● ●

● ●
●

●
●

● ●

Agegroup:  60−64

0

10

20

30

40

50

Period center

D
ea

th
 r

at
es

 p
er

 1
00

0 
py

rs

1900 1910 1920 1930 1940 1950 1960

● ● ● ●
● ● ● ● ●

●
● ● ●

Agegroup:  65−69

0

20

40

60

80

100

Period center

D
ea

th
 r

at
es

 p
er

 1
00

0 
py

rs

1900 1910 1920 1930 1940 1950 1960

● ● ● ●
● ● ● ●

● ● ● ● ●

Agegroup:  70−74

0

50

100

150

200

Period center
D

ea
th

 r
at

es
 p

er
 1

00
0 

py
rs

1900 1910 1920 1930 1940 1950 1960

● ● ● ● ● ● ● ●
● ● ● ● ●

Agegroup:  75−79

Andrea Riebler (University of Zurich) Bayesian age-period-cohort models Page 33 of 35



Summary

Applying APC models you need to be aware of identifiability
problems.

(Multivariate) APC models are well suited to estimate and

project time trends in registry data.

A Bayesian APC analysis can easily be done using INLA. No

MCMC necessary.
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INLA: non-Gaussian observations

Main goal: Compute the posterior marginals

π(xi |y) =

∫
θ

∫
x−i

π(x ,θ|y)dx−i︸ ︷︷ ︸
π(xi ,θ|y)=π(xi |θ,y)π(θ|y)

dθ,

π(θj |y) =

∫
θ−j

∫
x
π(x ,θ|y)dx︸ ︷︷ ︸
π(θ|y)

dθ−j .

From π(x ,θ,y) = π(x |θ,y)× π(θ|y)× π(y) it follows that:

π(θ|y) ∝ π(x ,θ,y)

π(x |θ,y)
≈ π(x ,θ,y)

π̃G(x |θ,y)
∝ π̃(θ|y) (Laplace approximation)

with π̃G(x |θ,y) Gaussian approximation to π(x |θ,y).
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INLA

Step I Build a Laplace approximation to

π(θ|y) ∝ π(x ,θ,y)

π(x |θ,y)
≈ π(x ,θ,y)

π̃G(x |θ,y)
∝ π̃(θ|y)

and “explore it numerically” to obtain good support points
θk .

Step II Approximate π(xi |y ,θk) for each θk .

Step III For each i, sum out θk

π̃(xi |y) =
∑

k

π̃(xi |θk ,y)× π̃(θk |y)×∆k .

Step IV Approximate π(θk |y) using numerical integration.
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Posterior correlation in Apc model
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