

Demographic forecasting using functional data analysis

Rob J Hyndman

Joint work with: Heather Booth, Han Lin Shang, Shahid Ullah, Farah Yasmeen.

Demographic forecasting using functional data analysis

Mortality rates

Fertility rates

Outline

- Bagplots, boxplots and outliers
- Functional forecasting
- Forecasting groups
- Population forecasting

6 References

Outline

- 2 Bagplots, boxplots and outliers
- Functional forecasting
- Forecasting groups
- Population forecasting
- 6 References

Let $y_{t,x}$ be the observed (smoothed) data in period t at age x, t = 1, ..., n.

$$y_{t,x} = f_t(x) + \sigma_t(x)\varepsilon_{t,x}$$

$$f_t(x) = \mu(x) + \sum_{k=1}^{K} \beta_{t,k} \phi_k(x) + e_t(x)$$

Estimate f_t(x) using penalized regression splines.
 Estimate μ(x) as me(di)an f_t(x) across years.
 Estimate β_{t,k} and φ_k(x) using (robust) functional principal components.

Let $y_{t,x}$ be the observed (smoothed) data in period t at age x, t = 1, ..., n.

$$y_{t,x} = f_t(x) + \sigma_t(x)\varepsilon_{t,x}$$

$$f_t(x) = \mu(x) + \sum_{k=1}^{K} \beta_{t,k} \phi_k(x) + e_t(x)$$

• Estimate $f_t(x)$ using penalized regression splines.

- Estimate $\mu(x)$ as me(di)an $f_t(x)$ across years.
- Estimate $\beta_{t,k}$ and $\phi_k(x)$ using (robust) functional principal components.
- $\varepsilon_{t,x} \stackrel{\text{\tiny{iid}}}{\sim} \mathsf{N}(0,1)$ and $e_t(x) \stackrel{\text{\tiny{iid}}}{\sim} \mathsf{N}(0,v(x))$.

Let $y_{t,x}$ be the observed (smoothed) data in period t at age x, t = 1, ..., n.

$$y_{t,x} = f_t(x) + \sigma_t(x)\varepsilon_{t,x}$$

$$f_t(x) = \mu(x) + \sum_{k=1}^{K} \beta_{t,k} \phi_k(x) + e_t(x)$$

Estimate f_t(x) using penalized regression splines.
 Estimate μ(x) as me(di)an f_t(x) across years.
 Estimate β_{t,k} and φ_k(x) using (robust) functional principal components.

Let $y_{t,x}$ be the observed (smoothed) data in period t at age x, t = 1, ..., n.

$$y_{t,x} = f_t(x) + \sigma_t(x)\varepsilon_{t,x}$$

$$f_t(x) = \mu(x) + \sum_{k=1}^{K} \beta_{t,k} \phi_k(x) + e_t(x)$$

- Estimate $f_t(x)$ using penalized regression splines.
- Estimate $\mu(x)$ as me(di)an $f_t(x)$ across years.
- Estimate $\beta_{t,k}$ and $\phi_k(x)$ using (robust) functional principal components.

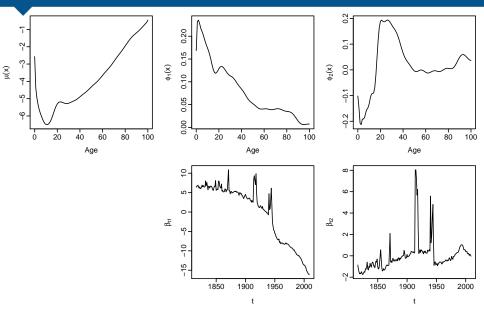
Let $y_{t,x}$ be the observed (smoothed) data in period t at age x, t = 1, ..., n.

$$y_{t,x} = f_t(x) + \sigma_t(x)\varepsilon_{t,x}$$

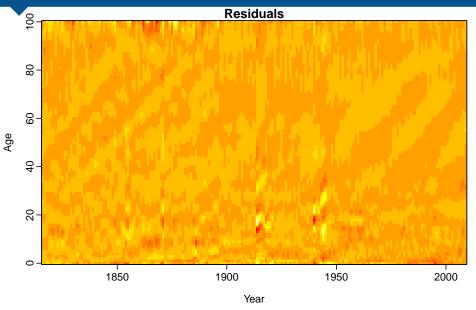
$$f_t(x) = \mu(x) + \sum_{k=1}^{K} \beta_{t,k} \phi_k(x) + e_t(x)$$

- Estimate $f_t(x)$ using penalized regression splines.
- Estimate $\mu(x)$ as me(di)an $f_t(x)$ across years.
- Estimate $\beta_{t,k}$ and $\phi_k(x)$ using (robust) functional principal components.
- $\varepsilon_{t,x} \stackrel{\text{iid}}{\sim} N(0,1) \text{ and } e_t(x) \stackrel{\text{iid}}{\sim} N(0,v(x)).$

French mortality components



French mortality components

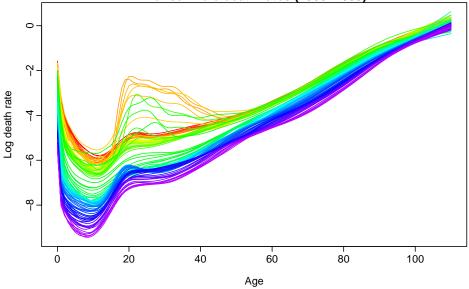


Outline

- Bagplots, boxplots and outliers
- Functional forecasting
- Forecasting groups
- Population forecasting
- 6 References

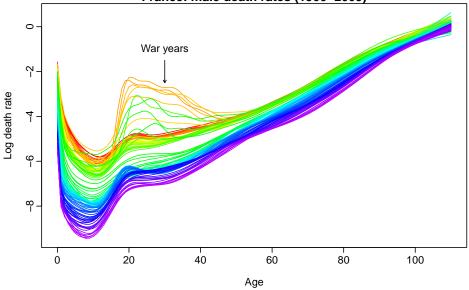
French male mortality rates

France: male death rates (1900-2009)



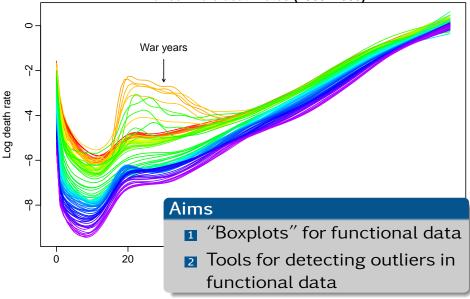
French male mortality rates

France: male death rates (1900-2009)



French male mortality rates

France: male death rates (1900-2009)



Let $\{f_t(x)\}$, t = 1, ..., n, be a set of curves.

Apply a robust principal component algorithm

$$f_t(x) = \mu(x) + \sum_{k=1}^{n-1} \beta_{t,k} \phi_k(x)$$

 $=\mu(x)$ is median curve

Let $\{f_t(x)\}$, t = 1, ..., n, be a set of curves.

Apply a robust principal component algorithm

$$f_t(x) = \mu(x) + \sum_{k=1}^{n-1} \beta_{t,k} \phi_k(x)$$

- $\mu(x)$ is median curve
- $\{\phi_k(x)\}$ are principal components
- $\{\beta_{t,k}\}$ are PC scores

Let $\{f_t(x)\}$, t = 1, ..., n, be a set of curves.

Apply a robust principal component algorithm

$$f_t(x) = \mu(x) + \sum_{k=1}^{n-1} \beta_{t,k} \phi_k(x)$$

• $\mu(x)$ is median curve

- $\{\phi_k(x)\}$ are principal components
- $\{\beta_{t,k}\}$ are PC scores

Let $\{f_t(x)\}$, t = 1, ..., n, be a set of curves.

Apply a robust principal component algorithm

$$f_t(x) = \mu(x) + \sum_{k=1}^{n-1} \beta_{t,k} \phi_k(x)$$

- μ(x) is median curve
 {φ_k(x)} are principal components
 - { $\beta_{t,k}$ } are PC scores

Let $\{f_t(x)\}$, t = 1, ..., n, be a set of curves.

Apply a robust principal component algorithm

$$f_t(x) = \mu(x) + \sum_{k=1}^{n-1} \beta_{t,k} \phi_k(x)$$

- $\mu(x)$ is median curve
- $\{\phi_k(x)\}$ are principal components
- $\{\beta_{t,k}\}$ are PC scores

Let $\{f_t(x)\}$, t = 1, ..., n, be a set of curves.

Apply a robust principal component algorithm

$$f_t(x) = \mu(x) + \sum_{k=1}^{n-1} \beta_{t,k} \phi_k(x)$$

- $\mu(x)$ is median curve
- $\{\phi_k(x)\}$ are principal components
- $\{\beta_{t,k}\}$ are PC scores

2 Plot $\beta_{i,2}$ vs $\beta_{i,1}$

Each point in scatterplot represents one curve.

Uutuers show up in bivariate score space.

Let $\{f_t(x)\}$, t = 1, ..., n, be a set of curves.

Apply a robust principal component algorithm

$$f_t(x) = \mu(x) + \sum_{k=1}^{n-1} \beta_{t,k} \phi_k(x)$$

- $\mu(x)$ is median curve
- $\{\phi_k(x)\}$ are principal components
- $\{\beta_{t,k}\}$ are PC scores

2 Plot $\beta_{i,2}$ vs $\beta_{i,1}$

Each point in scatterplot represents one curve.

Outliers show up in bivariate score space.

Let $\{f_t(x)\}$, t = 1, ..., n, be a set of curves.

Apply a robust principal component algorithm

$$f_t(x) = \mu(x) + \sum_{k=1}^{n-1} \beta_{t,k} \phi_k(x)$$

- $\mu(x)$ is median curve
- $\{\phi_k(x)\}$ are principal components
- $\{\beta_{t,k}\}$ are PC scores

2 Plot $\beta_{i,2}$ vs $\beta_{i,1}$

Each point in scatterplot represents one curve.

Outliers show up in bivariate score space.

Let $\{f_t(x)\}$, t = 1, ..., n, be a set of curves.

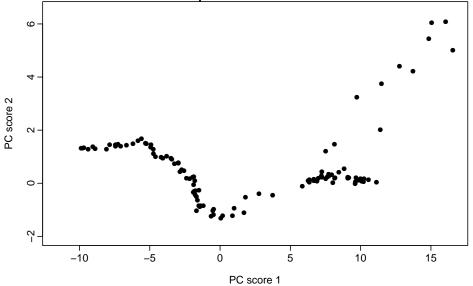
Apply a robust principal component algorithm

$$f_t(x) = \mu(x) + \sum_{k=1}^{n-1} \beta_{t,k} \phi_k(x)$$

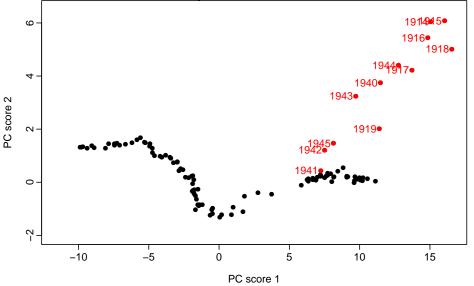
- $\mu(x)$ is median curve
- $\{\phi_k(x)\}$ are principal components
- $\{\beta_{t,k}\}$ are PC scores

- Each point in scatterplot represents one curve.
- Outliers show up in bivariate score space.

Scatterplot of first two PC scores

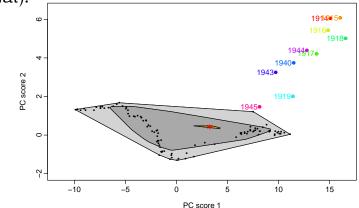


Scatterplot of first two PC scores



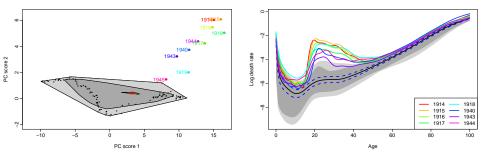
Functional bagplot

- Bivariate bagplot due to Rousseeuw et al. (1999).
- Rank points by halfspace location depth.
- Display median, 50% convex hull and outer convex hull (with 99% coverage if bivariate normal).



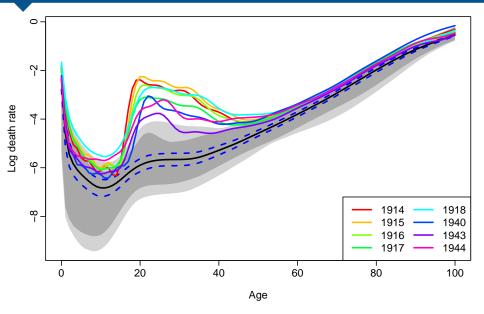
Functional bagplot

- Bivariate bagplot due to Rousseeuw et al. (1999).
- Rank points by halfspace location depth.
- Display median, 50% convex hull and outer convex hull (with 99% coverage if bivariate normal).
- Boundaries contain all curves inside bags.
 95% Cl for median curve also shown.

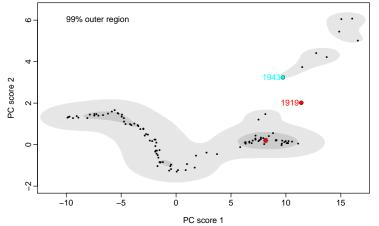


Demographic forecasting using functional data analysis

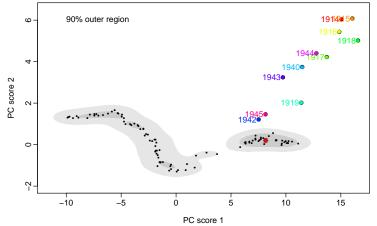
Functional bagplot



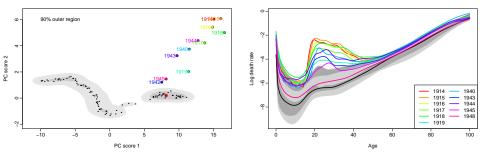
- Bivariate HDR boxplot due to Hyndman (1996).
- Rank points by value of kernel density estimate.
- Display mode, 50% and (usually) 99% highest density regions (HDRs) and mode.

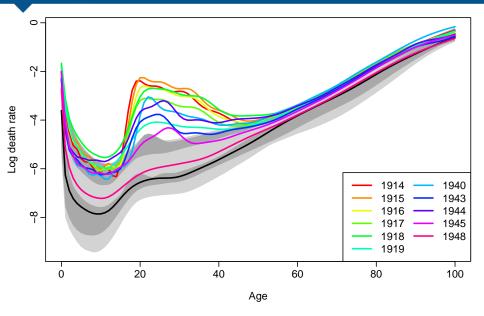


- Bivariate HDR boxplot due to Hyndman (1996).
- Rank points by value of kernel density estimate.
- Display mode, 50% and (usually) 99% highest density regions (HDRs) and mode.



- Bivariate HDR boxplot due to Hyndman (1996).
- Rank points by value of kernel density estimate.
- Display mode, 50% and (usually) 99% highest density regions (HDRs) and mode.
- Boundaries contain all curves inside HDRs.





Outline

- A functional linear model
- 2 Bagplots, boxplots and outliers
- Functional forecasting
- Forecasting groups
- Population forecasting
- 6 References

Functional time series model

$$y_{t,x} = f_t(x) + \sigma_t(x)\varepsilon_{t,x}$$

$$f_t(x) = \mu(x) + \sum_{k=1}^{K} \beta_{t,k} \phi_k(x) + e_t(x)$$

- The eigenfunctions $\phi_k(x)$ show the main regions of variation.
- The scores (β_{t,k}) are uncorrelated by construction. So we can forecast each β_{t,k} using a univariate time series model.
- Outliers are treated as missing values.
 Univariate ARIMA models are used for

$$y_{t,x} = f_t(x) + \sigma_t(x)\varepsilon_{t,x}$$

$$f_t(x) = \mu(x) + \sum_{k=1}^{K} \beta_{t,k} \phi_k(x) + e_t(x)$$

- The eigenfunctions $\phi_k(x)$ show the main regions of variation.
- The scores {β_{t,k}} are uncorrelated by construction. So we can forecast each β_{t,k} using a univariate time series model.
- Outliers are treated as missing values.
 Univariate ARIMA models are used for forecasting.

$$y_{t,x} = f_t(x) + \sigma_t(x)\varepsilon_{t,x}$$

$$f_t(x) = \mu(x) + \sum_{k=1}^{K} \beta_{t,k} \phi_k(x) + e_t(x)$$

- The eigenfunctions $\phi_k(x)$ show the main regions of variation.
- The scores {β_{t,k}} are uncorrelated by construction. So we can forecast each β_{t,k} using a univariate time series model.
- Outliers are treated as missing values.
 Univariate ARIMA models are used for forecasting.

$$y_{t,x} = f_t(x) + \sigma_t(x)\varepsilon_{t,x}$$

$$f_t(x) = \mu(x) + \sum_{k=1}^{K} \beta_{t,k} \phi_k(x) + e_t(x)$$

- The eigenfunctions $\phi_k(x)$ show the main regions of variation.
- The scores {β_{t,k}} are uncorrelated by construction. So we can forecast each β_{t,k} using a univariate time series model.
- Outliers are treated as missing values.
 Univariate ARIMA models are used for forecasting.

$$y_{t,x} = f_t(x) + \sigma_t(x)\varepsilon_{t,x}$$

$$f_t(x) = \mu(x) + \sum_{k=1}^{K} \beta_{t,k} \phi_k(x) + e_t(x)$$

- The eigenfunctions $\phi_k(x)$ show the main regions of variation.
- The scores {β_{t,k}} are uncorrelated by construction. So we can forecast each β_{t,k} using a univariate time series model.
- Outliers are treated as missing values.
 Univariate ARIMA models are used for forecasting.

Forecasts

$$y_{t,x} = f_t(x) + \sigma_t(x)\varepsilon_{t,x}$$

$$f_t(x) = \mu(x) + \sum_{k=1}^{K} \beta_{t,k} \phi_k(x) + e_t(x)$$

Forecasts

$$y_{t,x} = f_t(x) + \sigma_t(x)\varepsilon_{t,x}$$

$$f_t(x) = \mu(x) + \sum_{k=1}^{K} \beta_{t,k} \phi_k(x) + e_t(x)$$

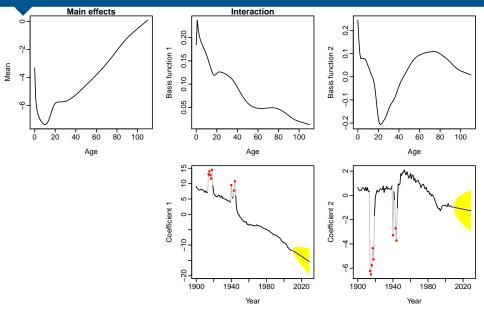
$$E[y_{n+h,x} | \mathbf{y}] = \hat{\mu}(x) + \sum_{k=1}^{K} \hat{\beta}_{n+h,k} \, \hat{\phi}_{k}(x)$$
$$Var[y_{n+h,x} | \mathbf{y}] = \hat{\sigma}_{\mu}^{2}(x) + \sum_{k=1}^{K} v_{n+h,k} \, \hat{\phi}_{k}^{2}(x) + \sigma_{t}^{2}(x) + v(x)$$

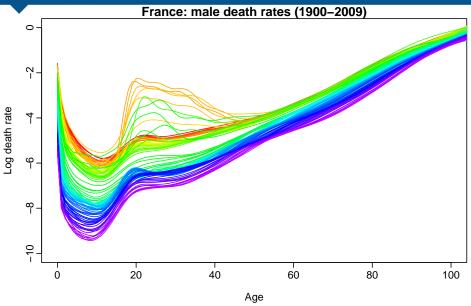
1/

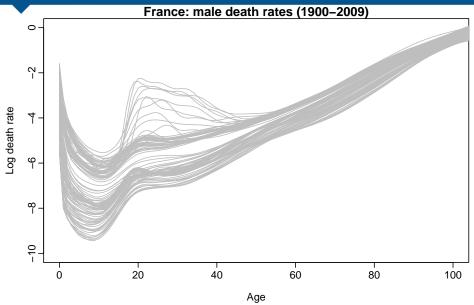
where
$$v_{n+h,k} = Var(\beta_{n+h,k} | \beta_{1,k}, \dots, \beta_{n,k})$$

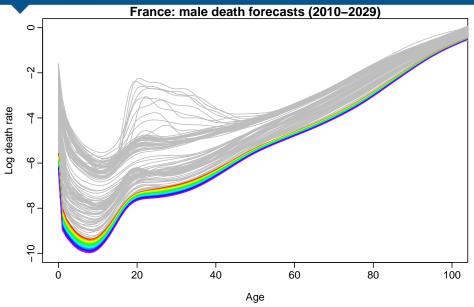
and $\boldsymbol{y} = [y_{1,x}, \dots, y_{n,x}].$

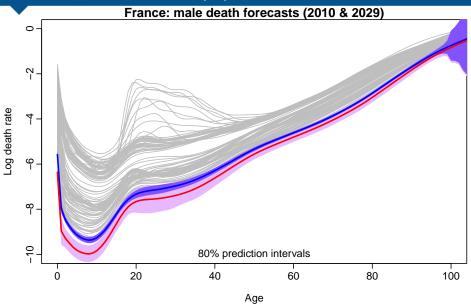
Forecasting the PC scores





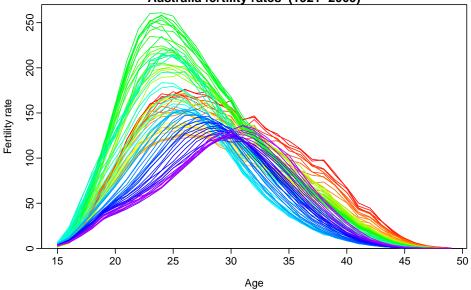




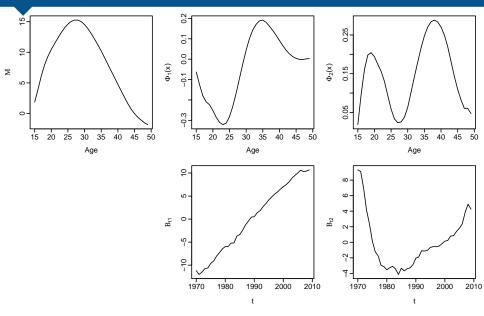


Fertility application

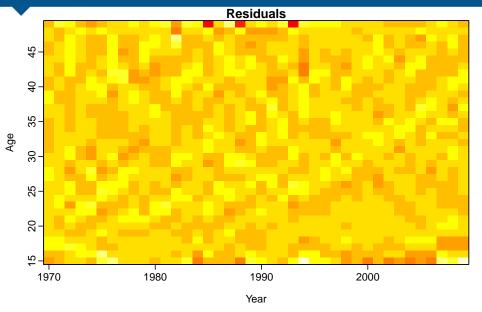
Australia fertility rates (1921-2009)



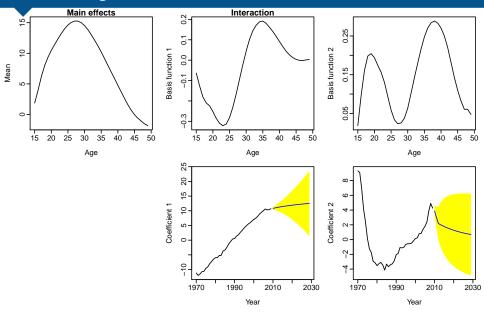
Fertility model



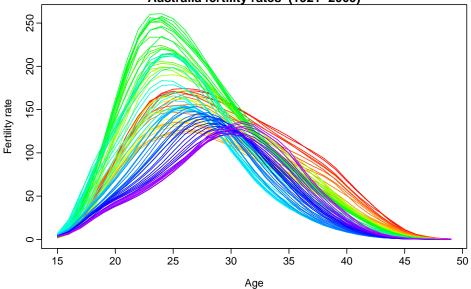
Fertility model



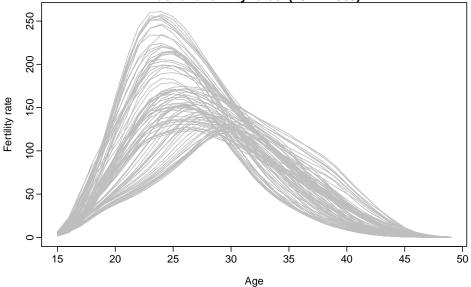
Fertility model



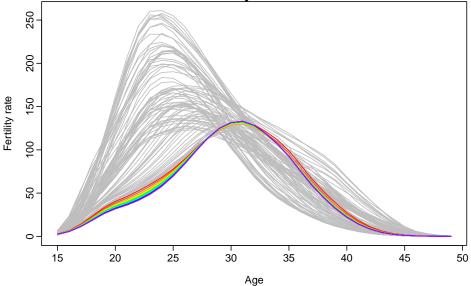
Australia fertility rates (1921-2009)



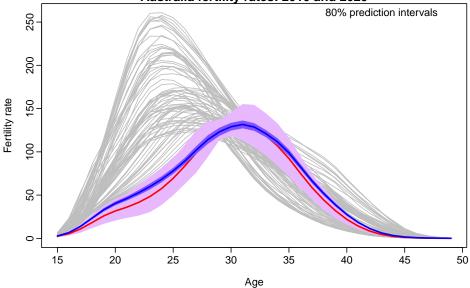
Australia fertility rates (1921-2009)



Australia fertility rates: 2010-2029



Australia fertility rates: 2010 and 2029



Outline

- A functional linear model
- 2 Bagplots, boxplots and outliers
- Functional forecasting
- Forecasting groups
- Population forecasting

6 References

- Groups may be males and females.
- Groups may be states within a country.
- Expected that groups will behave similarly.
- Coherent forecasts do not diverge over time.
- Existing functional models do not impose coherence.

- Groups may be males and females.
- Groups may be states within a country.
- Expected that groups will behave similarly.
- **Coherent** forecasts do not diverge over time.
- Existing functional models do not impose coherence.

- Groups may be males and females.
- Groups may be states within a country.
- Expected that groups will behave similarly.
- **Coherent** forecasts do not diverge over time.
- Existing functional models do not impose coherence.

- Groups may be males and females.
- Groups may be states within a country.
- Expected that groups will behave similarly.
- **Coherent** forecasts do not diverge over time.
- Existing functional models do not impose coherence.

- Groups may be males and females.
- Groups may be states within a country.
- Expected that groups will behave similarly.
- Coherent forecasts do not diverge over time.
- Existing functional models do not impose coherence.

- Groups may be males and females.
- Groups may be states within a country.
- Expected that groups will behave similarly.
- **Coherent** forecasts do not diverge over time.
- Existing functional models do not impose coherence.

Forecasting the coefficients

$$y_{t,x} = f_t(x) + \sigma_t(x)\varepsilon_{t,x}$$

$$f_t(x) = \mu(x) + \sum_{k=1}^{K} \beta_{t,k} \phi_k(x) + e_t(x)$$

- We use ARIMA models for each coefficient $\{\beta_{1,j,k}, \dots, \beta_{n,j,k}\}.$
- The ARIMA models are non-stationary for the first few coefficients (k = 1, 2)
- Non-stationary ARIMA forecasts will diverge.
 Hence the mortality forecasts are not coherent.

Forecasting the coefficients

$$y_{t,x} = f_t(x) + \sigma_t(x)\varepsilon_{t,x}$$

$$f_t(x) = \mu(x) + \sum_{k=1}^{K} \beta_{t,k} \phi_k(x) + e_t(x)$$

- We use ARIMA models for each coefficient $\{\beta_{1,j,k}, \dots, \beta_{n,j,k}\}.$
- The ARIMA models are non-stationary for the first few coefficients (k = 1, 2)

Non-stationary ARIMA forecasts will diverge.
 Hence the mortality forecasts are not coherent.

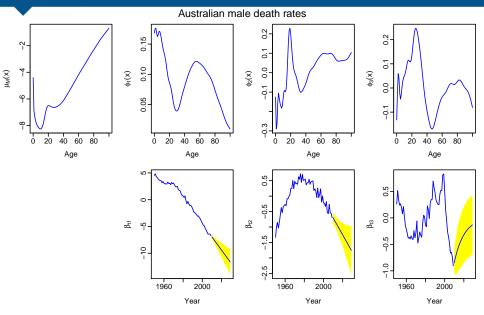
Forecasting the coefficients

$$y_{t,x} = f_t(x) + \sigma_t(x)\varepsilon_{t,x}$$

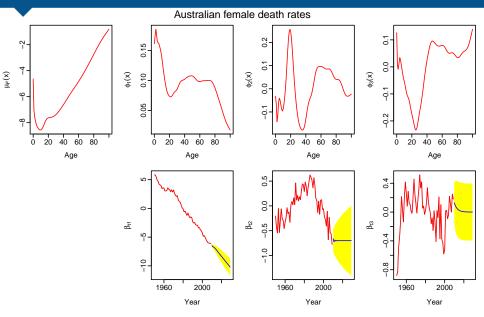
$$f_t(x) = \mu(x) + \sum_{k=1}^{K} \beta_{t,k} \phi_k(x) + e_t(x)$$

- We use ARIMA models for each coefficient $\{\beta_{1,j,k}, \dots, \beta_{n,j,k}\}.$
- The ARIMA models are non-stationary for the first few coefficients (k = 1, 2)
- Non-stationary ARIMA forecasts will diverge.
 Hence the mortality forecasts are not coherent.

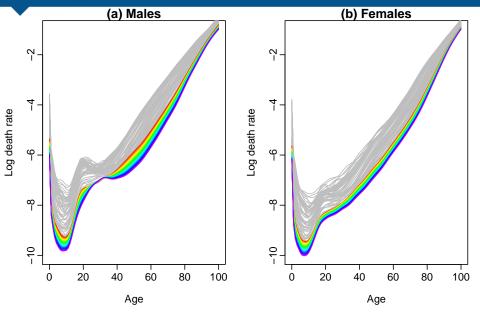
Male fts model



Female fts model



Australian mortality forecasts



Key idea

Model the geometric mean and the mortality ratio instead of the individual rates for each sex separately.

$$p_t(x) = \sqrt{f_{t,M}(x)f_{t,F}(x)}$$
 and $r_t(x) = \sqrt{f_{t,M}(x)/f_{t,F}(x)}$.

 Product and ratio are approximately independent

Key idea

Model the geometric mean and the mortality ratio instead of the individual rates for each sex separately.

$$p_t(x) = \sqrt{f_{t,M}(x)f_{t,F}(x)}$$
 and $r_t(x) = \sqrt{f_{t,M}(x)/f_{t,F}(x)}$.

 Product and ratio are approximately independent

Key idea

Model the geometric mean and the mortality ratio instead of the individual rates for each sex separately.

$$p_t(x) = \sqrt{f_{t,M}(x)f_{t,F}(x)}$$
 and $r_t(x) = \sqrt{f_{t,M}(x)/f_{t,F}(x)}$.

Product and ratio are approximately independent

Key idea

Model the geometric mean and the mortality ratio instead of the individual rates for each sex separately.

$$p_t(x) = \sqrt{f_{t,M}(x)f_{t,F}(x)}$$
 and $r_t(x) = \sqrt{f_{t,M}(x)/f_{t,F}(x)}$.

 Product and ratio are approximately independent

Mortality rates

Mortality rates

$$p_t(x) = \sqrt{f_{t,M}(x)f_{t,F}(x)}$$
 and $r_t(x) = \sqrt{f_{t,M}(x)/f_{t,F}(x)}$.

$$\log[p_t(x)] = \mu_p(x) + \sum_{k=1}^{K} \beta_{t,k} \phi_k(x) + e_t(x)$$
$$\log[r_t(x)] = \mu_r(x) + \sum_{\ell=1}^{L} \gamma_{t,\ell} \psi_\ell(x) + w_t(x).$$

- $\{\gamma_{t,\ell}\}$ restricted to be stationary processes: either ARMA(p, q) or ARFIMA(p, d, q).
- No restrictions for $\beta_{t,1}, \dots, \beta_{t,K}$. Forecasts: $f_{a+b|a,M}(x) = p_{a+b|a}(x)r_{a+b|a}(x)$.

$$p_t(x) = \sqrt{f_{t,M}(x)f_{t,F}(x)}$$
 and $r_t(x) = \sqrt{f_{t,M}(x)/f_{t,F}(x)}$.

$$\log[p_t(x)] = \mu_p(x) + \sum_{k=1}^{K} \beta_{t,k} \phi_k(x) + e_t(x)$$
$$\log[r_t(x)] = \mu_r(x) + \sum_{\ell=1}^{L} \gamma_{t,\ell} \psi_\ell(x) + w_t(x).$$

- $\{\gamma_{t,\ell}\}$ restricted to be stationary processes: either ARMA(p, q) or ARFIMA(p, d, q).
- No restrictions for $\beta_{t,1}, \ldots, \beta_{t,K}$.
- Forecasts: $f_{n+h|n,M}(x) = p_{n+h|n}(x)r_{n+h|n}(x)$

$$p_t(x) = \sqrt{f_{t,M}(x)f_{t,F}(x)}$$
 and $r_t(x) = \sqrt{f_{t,M}(x)/f_{t,F}(x)}$.

$$\log[p_t(x)] = \mu_p(x) + \sum_{k=1}^{K} \beta_{t,k} \phi_k(x) + e_t(x)$$
$$\log[r_t(x)] = \mu_r(x) + \sum_{\ell=1}^{L} \gamma_{t,\ell} \psi_\ell(x) + w_t(x).$$

- $\{\gamma_{t,\ell}\}$ restricted to be stationary processes: either ARMA(p, q) or ARFIMA(p, d, q).
- No restrictions for $\beta_{t,1}, \ldots, \beta_{t,K}$.
- Forecasts: $f_{n+h|n,M}(x) = p_{n+h|n}(x)r_{n+h|n}(x)$

 $f_{n+h|n,F}(x) = p_{n+h|n}(x)/r_{n+h|n}(x).$

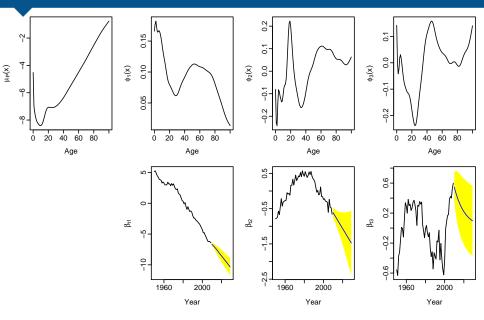
$$p_t(x) = \sqrt{f_{t,M}(x)f_{t,F}(x)}$$
 and $r_t(x) = \sqrt{f_{t,M}(x)/f_{t,F}(x)}$.

$$\log[p_t(x)] = \mu_p(x) + \sum_{k=1}^{K} \beta_{t,k} \phi_k(x) + e_t(x)$$
$$\log[r_t(x)] = \mu_r(x) + \sum_{\ell=1}^{L} \gamma_{t,\ell} \psi_\ell(x) + w_t(x).$$

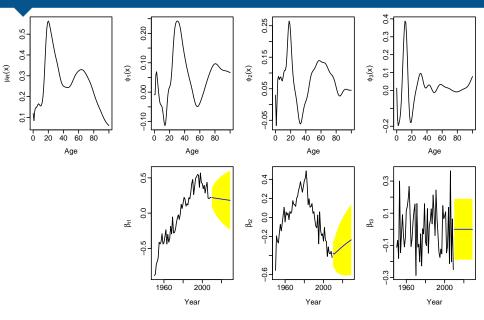
- $\{\gamma_{t,\ell}\}$ restricted to be stationary processes: either ARMA(p, q) or ARFIMA(p, d, q).
- No restrictions for $\beta_{t,1}, \ldots, \beta_{t,K}$.
- Forecasts: $f_{n+h|n,M}(x) = p_{n+h|n}(x)r_{n+h|n}(x)$

$$f_{n+h|n,F}(x) = p_{n+h|n}(x) / r_{n+h|n}(x)$$

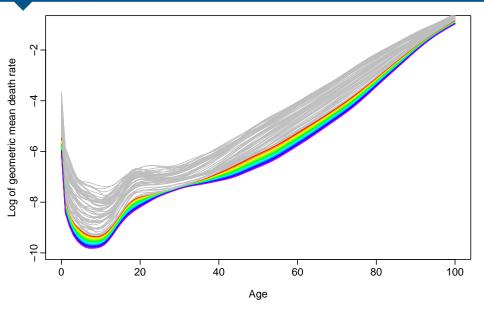
Product model



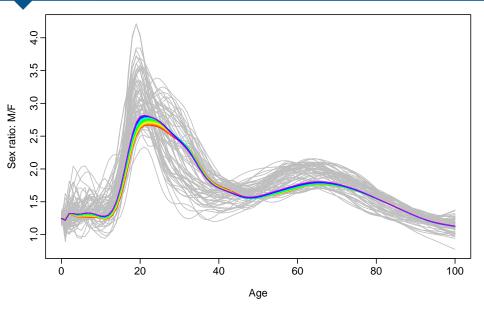
Ratio model



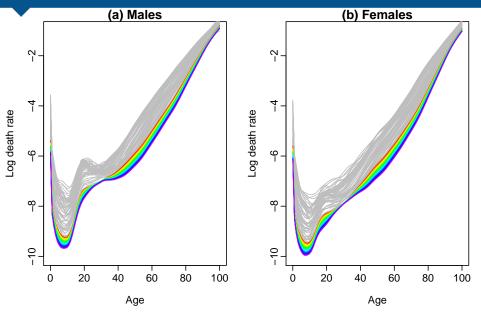
Product forecasts



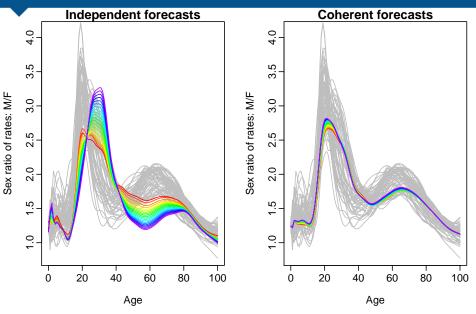
Ratio forecasts



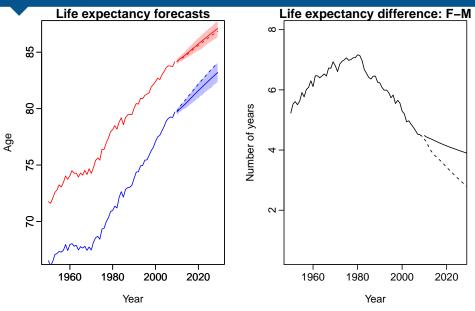
Coherent forecasts



Ratio forecasts



Life expectancy forecasts



and
$$p_t(x) = [f_{t,1}(x)f_{t,2}(x)\cdots f_{t,J}(x)]^{1/J}$$

 $r_{t,j}(x) = f_{t,j}(x)/p_t(x),$

$$\log[p_t(x)] = \mu_p(x) + \sum_{k=1}^{K} \beta_{t,k} \phi_k(x) + e_t(x)$$
$$\log[r_{t,j}(x)] = \mu_{r,j}(x) + \sum_{l=1}^{L} \gamma_{t,l,j} \psi_{l,j}(x) + w_{t,j}(x).$$

 $p_t(x)$ and all $r_{t,i}(x) = \mathbb{R}$. Ratios satisfy constraint are approximately $r_{t,i}(x)r_{t,i}(x) \cdots r_{t,i}(x) = 1$. independent.

and
$$p_t(x) = [f_{t,1}(x)f_{t,2}(x)\cdots f_{t,J}(x)]^{1/2}$$

 $r_{t,j}(x) = f_{t,j}(x)/p_t(x),$

$$\log[p_t(x)] = \mu_p(x) + \sum_{k=1}^{K} \beta_{t,k} \phi_k(x) + e_t(x)$$

$$\log[r_{t,j}(x)] = \mu_{r,j}(x) + \sum_{l=1}^{L} \gamma_{t,l,j} \psi_{l,j}(x) + w_{t,j}(x).$$

 $p_t(x) \text{ and all } r_{t,j}(x)$ Ratios satisfy constraint are approximately $r_{t,1}(x)r_{t,2}(x)\cdots r_{t,J}(x) = 1.$ independent.

and
$$p_t(x) = [f_{t,1}(x)f_{t,2}(x)\cdots f_{t,J}(x)]^{1/2}$$

 $r_{t,j}(x) = f_{t,j}(x)/p_t(x),$

$$\log[p_t(x)] = \mu_p(x) + \sum_{k=1}^{K} \beta_{t,k} \phi_k(x) + e_t(x)$$
$$\log[r_{t,j}(x)] = \mu_{r,j}(x) + \sum_{l=1}^{L} \gamma_{t,l,j} \psi_{l,j}(x) + w_{t,j}(x).$$

p_t(x) and all *r_{t,j}(x)* are approximately independent. Ratios satisfy constraint $r_{t,1}(x)r_{t,2}(x)\cdots r_{t,J}(x) = 1.$

Demographic forecasting using functional data analysis

and
$$p_t(x) = [f_{t,1}(x)f_{t,2}(x)\cdots f_{t,J}(x)]^{1/J}$$

 $r_{t,j}(x) = f_{t,j}(x)/p_t(x),$

$$\log[p_t(x)] = \mu_p(x) + \sum_{k=1}^{K} \beta_{t,k} \phi_k(x) + e_t(x)$$
$$\log[r_{t,j}(x)] = \mu_{r,j}(x) + \sum_{l=1}^{L} \gamma_{t,l,j} \psi_{l,j}(x) + w_{t,j}(x).$$

• $p_t(x)$ and all $r_{t,j}(x)$ are approximately independent. Ratios satisfy constraint $r_{t,1}(x)r_{t,2}(x)\cdots r_{t,J}(x) = 1.$

and
$$p_t(x) = [f_{t,1}(x)f_{t,2}(x)\cdots f_{t,J}(x)]^{1/J}$$

 $r_{t,j}(x) = f_{t,j}(x)/p_t(x),$

$$\log[p_t(x)] = \mu_p(x) + \sum_{k=1}^{K} \beta_{t,k} \phi_k(x) + e_t(x)$$
$$\log[r_{t,j}(x)] = \mu_{r,j}(x) + \sum_{l=1}^{L} \gamma_{t,l,j} \psi_{l,j}(x) + w_{t,j}(x).$$

 $p_t(x)$ and all $r_{t,j}(x)$ Ratios satisfy constraint $r_{t,1}(x)r_{t,2}(x)\cdots r_{t,J}(x) = 1.$ $\log[f_{t,j}(x)] = \log[p_t(x)r_{t,j}(x)]$

$$\log[f_{t,j}(x)] = \log[p_t(x)r_{t,j}(x)] = \log[p_t(x)] + \log[r_{t,j}]$$
$$= \mu_j(x) + \sum_{k=1}^{K} \beta_{t,k} \phi_k(x) + \sum_{\ell=1}^{L} \gamma_{t,\ell,j} \psi_{\ell,j}(x) + z_{t,j}(x)$$

• $\mu_j(x) = \mu_p(x) + \mu_{r,j}(x)$ is group mean

- $z_{t,j}(x) = e_t(x) + w_{t,j}(x)$ is error term.
- (γ_{t,t}) restricted to be stationary processes:
 either ARMA(p, q) or ARFIMA(p, d, q).

No restrictions for $\beta_{1,1},\ldots,\beta_{n,k}$

$$\log[f_{t,j}(x)] = \log[p_t(x)r_{t,j}(x)] = \log[p_t(x)] + \log[r_{t,j}]$$
$$= \mu_j(x) + \sum_{k=1}^{K} \beta_{t,k} \phi_k(x) + \sum_{\ell=1}^{L} \gamma_{t,\ell,j} \psi_{\ell,j}(x) + z_{t,j}(x)$$

•
$$\mu_j(x) = \mu_p(x) + \mu_{r,j}(x)$$
 is group mean

$$z_{t,j}(x) = e_t(x) + w_{t,j}(x)$$
is error term.

• { $\gamma_{t,\ell}$ } restricted to be stationary processes: either ARMA(p, q) or ARFIMA(p, d, q).

• No restrictions for $\beta_{t,1}, \ldots, \beta_{t,K}$.

$$\log[f_{t,j}(x)] = \log[p_t(x)r_{t,j}(x)] = \log[p_t(x)] + \log[r_{t,j}]$$
$$= \mu_j(x) + \sum_{k=1}^{K} \beta_{t,k} \phi_k(x) + \sum_{\ell=1}^{L} \gamma_{t,\ell,j} \psi_{\ell,j}(x) + z_{t,j}(x)$$

•
$$\mu_j(x) = \mu_p(x) + \mu_{r,j}(x)$$
 is group mean

•
$$z_{t,j}(x) = e_t(x) + w_{t,j}(x)$$
 is error term.

• $\{\gamma_{t,\ell}\}$ restricted to be stationary processes: either ARMA(p, q) or ARFIMA(p, d, q).

■ No restrictions for $\beta_{t,1}, \ldots, \beta_{t,K}$.

$$\log[f_{t,j}(x)] = \log[p_t(x)r_{t,j}(x)] = \log[p_t(x)] + \log[r_{t,j}]$$
$$= \mu_j(x) + \sum_{k=1}^{K} \beta_{t,k} \phi_k(x) + \sum_{\ell=1}^{L} \gamma_{t,\ell,j} \psi_{\ell,j}(x) + z_{t,j}(x)$$

•
$$\mu_j(x) = \mu_p(x) + \mu_{r,j}(x)$$
 is group mean

•
$$z_{t,j}(x) = e_t(x) + w_{t,j}(x)$$
 is error term.

• $\{\gamma_{t,\ell}\}$ restricted to be stationary processes: either ARMA(p, q) or ARFIMA(p, d, q).

• No restrictions for $\beta_{t,1}, \ldots, \beta_{t,K}$.

$$\log[f_{t,j}(x)] = \log[p_t(x)r_{t,j}(x)] = \log[p_t(x)] + \log[r_{t,j}]$$
$$= \mu_j(x) + \sum_{k=1}^{K} \beta_{t,k} \phi_k(x) + \sum_{\ell=1}^{L} \gamma_{t,\ell,j} \psi_{\ell,j}(x) + z_{t,j}(x)$$

•
$$\mu_j(x) = \mu_p(x) + \mu_{r,j}(x)$$
 is group mean

•
$$z_{t,j}(x) = e_t(x) + w_{t,j}(x)$$
 is error term.

- $\{\gamma_{t,\ell}\}$ restricted to be stationary processes: either ARMA(p, q) or ARFIMA(p, d, q).
- No restrictions for $\beta_{t,1}, \ldots, \beta_{t,K}$.

Outline

- A functional linear model
- 2 Bagplots, boxplots and outliers
- Functional forecasting
- Forecasting groups
- Population forecasting

6 References

Demographic growth-balance equation

Demographic growth-balance equation

$$P_{t+1}(x+1) = P_t(x) - D_t(x, x+1) + G_t(x, x+1)$$

$$P_{t+1}(0) = B_t - D_t(B, 0) + G_t(B, 0)$$

= 0, 1, 2,....

$$P_t(x) = population of age x at 1 January, year t$$

$$B_t = births$$
 in calendar year t

- $D_t(x, x+1) =$ deaths in calendar year t of persons aged x at the beginning of year t
 - $D_t(B,0) = -$ infant deaths in calendar year t
 - (x, x + 1) = net migrants in calendar year t of persons aged x at the beginning of year t

 $G_t(B,0) = -$ net migrants of infants born in calendar year t

Х

Demographic growth-balance equation

Demographic growth-balance equation

$$P_{t+1}(x+1) = P_t(x) - D_t(x, x+1) + G_t(x, x+1)$$
$$P_{t+1}(0) = B_t - D_t(B, 0) + G_t(B, 0)$$
$$= 0, 1, 2, \dots$$

- $P_t(x) = population of age x at 1 January, year t$
 - $B_t =$ births in calendar year t
- $D_t(x, x + 1) =$ deaths in calendar year t of persons aged x at the beginning of year t
 - $D_t(B,0) =$ infant deaths in calendar year t
- $G_t(x, x + 1) =$ net migrants in calendar year t of persons aged x at the beginning of year t
 - $G_t(B,0) =$ net migrants of infants born in calendar year t

X =

- Build a stochastic functional model for each of mortality, fertility and net migration.
- Treat all observed data as functional (i.e., smooth curves of age) rather than discrete values.
- Use the models to simulate future sample paths of all components giving the entire age distribution at every year into the future.
- Compute future births, deaths, net migrants. and populations from simulated rates.
- Combine the results to get age-specific stochastic population forecasts.

- Build a stochastic functional model for each of mortality, fertility and net migration.
- Treat all observed data as functional (i.e., smooth curves of age) rather than discrete values.
- Use the models to simulate future sample paths of all components giving the entire age distribution at every year into the future.
- Compute future births, deaths, net migrants. and populations from simulated rates.
- Combine the results to get age-specific stochastic population forecasts.

- Build a stochastic functional model for each of mortality, fertility and net migration.
- Treat all observed data as functional (i.e., smooth curves of age) rather than discrete values.
- Use the models to simulate future sample paths of all components giving the entire age distribution at every year into the future.
- Compute future births, deaths, net migrants. and populations from simulated rates.
- Combine the results to get age-specific stochastic population forecasts.

- Build a stochastic functional model for each of mortality, fertility and net migration.
- Treat all observed data as functional (i.e., smooth curves of age) rather than discrete values.
- Use the models to simulate future sample paths of all components giving the entire age distribution at every year into the future.
- Compute future births, deaths, net migrants. and populations from simulated rates.
- Combine the results to get age-specific stochastic population forecasts.

- Build a stochastic functional model for each of mortality, fertility and net migration.
- Treat all observed data as functional (i.e., smooth curves of age) rather than discrete values.
- Use the models to simulate future sample paths of all components giving the entire age distribution at every year into the future.
- Compute future births, deaths, net migrants. and populations from simulated rates.
- Combine the results to get age-specific stochastic population forecasts.

The available data

In most countries, the following data are available:

- $P_t(x) =$ **population** of age x at 1 January, year t
- $E_t(x) =$ **population** of age x at 30 June, year t
- $B_t(x) =$ births in calendar year t to females of age x
- $D_t(x) =$ deaths in calendar year t of persons of age x

From these, we can estimate:

- $m_t(x) = D_t(x)/E_t(x) = \text{central death rate in calendar year } t;$
- $f_t(x) = B_t(x)/E_t^F(x)$ = fertility rate for females of age x in calendar year t.

In most countries, the following data are available:

- $P_t(x) =$ population of age x at 1 January, year t
- $E_t(x) =$ **population** of age x at 30 June, year t
- $B_t(x) =$ births in calendar year t to females of age x
- $D_t(x) =$ deaths in calendar year t of persons of age x

From these, we can estimate:

- *m_t*(*x*) = *D_t*(*x*)/*E_t*(*x*) = central death rate in calendar year *t*;
- $f_t(x) = B_t(x)/E_t^F(x)$ = fertility rate for females of age x in calendar year t.

In most countries, the following data are available:

- $P_t(x) =$ **population** of age x at 1 January, year t
- $E_t(x) =$ **population** of age x at 30 June, year t
- $B_t(x) =$ births in calendar year t to females of age x
- $D_t(x) =$ deaths in calendar year t of persons of age x

From these, we can estimate:

- *m_t*(*x*) = *D_t*(*x*)/*E_t*(*x*) = central death rate in calendar year *t*;
- $f_t(x) = B_t(x)/E_t^F(x)$ = fertility rate for females of age x in calendar year t.

We need to estimate migration data based on difference in population numbers after adjusting for births and deaths.

Demographic growth-balance equation $G_t(x, x+1) = P_{t+1}(x+1) - P_t(x) + D_t(x, x+1)$ $G_t(B,0) = P_{t+1}(0) - B_t + D_t(B,0)$ $x = 0, 1, 2, \dots$

Note: "net migration" numbers also include **errors** associated with all estimates. i.e., a "residual".

We need to estimate migration data based on difference in population numbers after adjusting for births and deaths.

Demographic growth-balance equation $G_t(x, x+1) = P_{t+1}(x+1) - P_t(x) + D_t(x, x+1)$ $G_t(B,0) = P_{t+1}(0) - B_t + D_t(B,0)$ $x = 0, 1, 2, \dots$

Note: "net migration" numbers also include **errors** associated with all estimates. i.e., a "residual".

We need to estimate migration data based on difference in population numbers after adjusting for births and deaths.

Demographic growth-balance equation

$$G_t(x, x+1) = P_{t+1}(x+1) - P_t(x) + D_t(x, x+1)$$

$$G_t(B, 0) = P_{t+1}(0) - B_t + D_t(B, 0)$$

0, 1, 2,....

Note: "net migration" numbers also include **errors** associated with all estimates. i.e., a "residual".

x = 1

We need to estimate migration data based on difference in population numbers after adjusting for births and deaths.

Demographic growth-balance equation

$$G_t(x, x+1) = P_{t+1}(x+1) - P_t(x) + D_t(x, x+1)$$

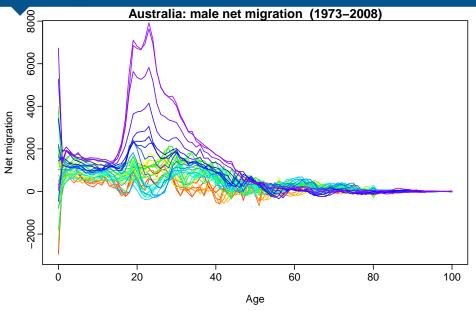
$$G_t(B,0) = P_{t+1}(0) - B_t + D_t(B,0)$$

0, 1, 2,....

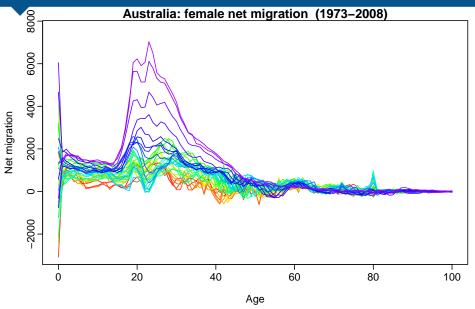
Note: "net migration" numbers also include **errors** associated with all estimates. i.e., a "residual".

x =

Net migration



Net migration



- Data: age/sex-specific mortality rates, fertility rates and net migration.
- Models: Functional time series models for mortality (M/F), fertility and net migration (M/F) assuming independence between components and coherence between sexes.
- Generate random sample paths of each component conditional on observed data.
- Use simulated rates to generate $B_t(x)$, $D_t^F(x, x + 1)$, $D_t^M(x, x + 1)$ for t = n + 1, ..., n + h, assuming deaths and births are Poisson.

- Data: age/sex-specific mortality rates, fertility rates and net migration.
- Models: Functional time series models for mortality (M/F), fertility and net migration (M/F) assuming independence between components and coherence between sexes.
- Generate random sample paths of each component conditional on observed data.
 Use simulated rates to generate B_t(x), D_t^F(x, x + 1), D_t^M(x, x + 1) for t = n + 1,...,n + h, assuming deaths and births are Poisson.

- Data: age/sex-specific mortality rates, fertility rates and net migration.
- Models: Functional time series models for mortality (M/F), fertility and net migration (M/F) assuming independence between components and coherence between sexes.
- Generate random sample paths of each component conditional on observed data.
- Use simulated rates to generate $B_t(x)$, $D_t^F(x, x + 1)$, $D_t^M(x, x + 1)$ for t = n + 1, ..., n + h, assuming deaths and births are Poisson.

- Data: age/sex-specific mortality rates, fertility rates and net migration.
- Models: Functional time series models for mortality (M/F), fertility and net migration (M/F) assuming independence between components and coherence between sexes.
- Generate random sample paths of each component conditional on observed data.
- Use simulated rates to generate $B_t(x)$, $D_t^F(x, x+1)$, $D_t^M(x, x+1)$ for t = n+1,...,n+h, assuming deaths and births are Poisson.

Simulation

X =

Demographic growth-balance equation used to get population sample paths.

Demographic growth-balance equation

$$P_{t+1}(x+1) = P_t(x) - D_t(x, x+1) + G_t(x, x+1)$$
$$P_{t+1}(0) = B_t - D_t(B, 0) + G_t(B, 0)$$
$$= 0, 1, 2, \dots$$

10000 sample paths of population P_t(x), deaths D_t(x) and births B_t(x) generated for t = 2004,..., 2023 and x = 0, 1, 2, ...,.
 This allows the computation of the empirical forecast distribution of any demographic quantity that is based on births, deaths and

Simulation

X =

Demographic growth-balance equation used to get population sample paths.

Demographic growth-balance equation

$$P_{t+1}(x+1) = P_t(x) - D_t(x, x+1) + G_t(x, x+1)$$
$$P_{t+1}(0) = B_t - D_t(B, 0) + G_t(B, 0)$$
$$= 0, 1, 2, \dots$$

10000 sample paths of population P_t(x), deaths D_t(x) and births B_t(x) generated for t = 2004,..., 2023 and x = 0, 1, 2,...,.
 This allows the computation of the empirical forecast distribution of any demographic quantity that is based on births, deaths and population numbers.

Demographic forecasting using functional data analysis

Simulation

X =

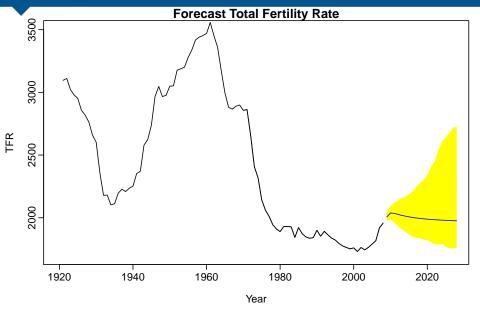
Demographic growth-balance equation used to get population sample paths.

Demographic growth-balance equation

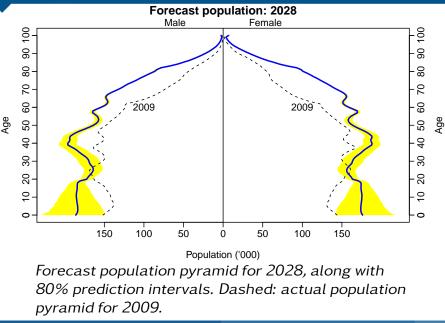
$$P_{t+1}(x+1) = P_t(x) - D_t(x, x+1) + G_t(x, x+1)$$
$$P_{t+1}(0) = B_t - D_t(B, 0) + G_t(B, 0)$$
$$= 0, 1, 2, \dots$$

- 10000 sample paths of population P_t(x), deaths D_t(x) and births B_t(x) generated for t = 2004,..., 2023 and x = 0, 1, 2,...,.
- This allows the computation of the empirical forecast distribution of any demographic quantity that is based on births, deaths and population numbers.

Forecasts of TFR

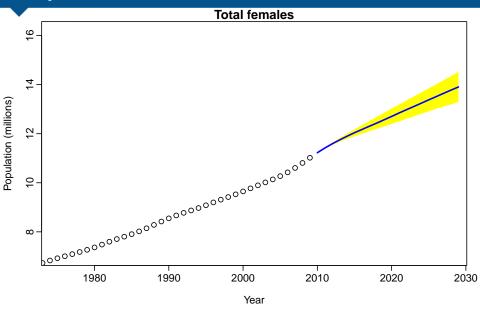


Population forecasts

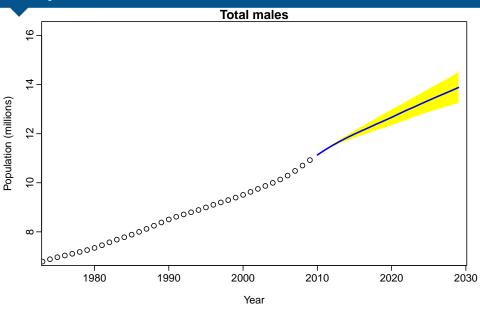


Demographic forecasting using functional data analysis

Population forecasts

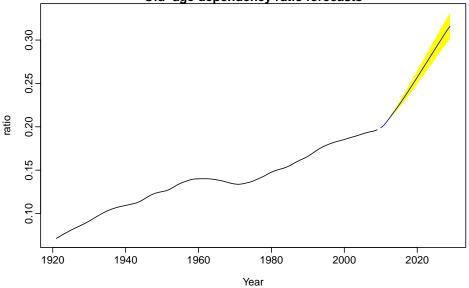


Population forecasts



Old-age dependency ratio

Old-age dependency ratio forecasts



- Functional data analysis provides a way of forecasting age-specific mortality, fertility and net migration.
- Stochastic age-specific cohort-component simulation provides a way of forecasting many demographic quantities with prediction intervals.
- No need to select combinations of assumed rates.
- True prediction intervals with specified coverage for population and all derived variables (TFR, life expectancy, old-age dependencies, etc.)

- Functional data analysis provides a way of forecasting age-specific mortality, fertility and net migration.
- Stochastic age-specific cohort-component simulation provides a way of forecasting many demographic quantities with prediction intervals.
- No need to select combinations of assumed rates.
- True prediction intervals with specified coverage for population and all derived variables (TFR, life expectancy, old-age dependencies, etc.)

- Functional data analysis provides a way of forecasting age-specific mortality, fertility and net migration.
- Stochastic age-specific cohort-component simulation provides a way of forecasting many demographic quantities with prediction intervals.
- No need to select combinations of assumed rates.

True prediction intervals with specified coverage for population and all derived variables (TFR, life expectancy, old-age dependencies, etc.)

- Functional data analysis provides a way of forecasting age-specific mortality, fertility and net migration.
- Stochastic age-specific cohort-component simulation provides a way of forecasting many demographic quantities with prediction intervals.
- No need to select combinations of assumed rates.

True prediction intervals with specified coverage for population and all derived variables (TFR, life expectancy, old-age dependencies, etc.)

Outline

- A functional linear model
- Bagplots, boxplots and outliers
- Functional forecasting
- 4 Forecasting groups
- Population forecasting
- 6 References

Selected references

- Hyndman, Shang (2010). "Rainbow plots, bagplots and boxplots for functional data". Journal of Computational and Graphical Statistics 19(1), 29–45
- Hyndman, Ullah (2007). "Robust forecasting of mortality and fertility rates: A functional data approach". Computational Statistics and Data Analysis 51(10), 4942–4956
- Hyndman, Shang (2009). "Forecasting functional time series (with discussion)". Journal of the Korean Statistical Society 38(3), 199–221
- Shang, Booth, Hyndman (2011). "Point and interval forecasts of mortality rates and life expectancy : a comparison of ten principal component methods". *Demographic Research* 25(5), 173–214
- Hyndman, Booth (2008). "Stochastic population forecasts using functional data models for mortality, fertility and migration". International Journal of Forecasting 24(3), 323–342
- Hyndman, Booth, Yasmeen (2012). "Coherent mortality forecasting: the product-ratio method with functional time series models". *Demography*, to appear
- Hyndman (2012). demography: Forecasting mortality, fertility, migration and population data.
 - cran.r-project.org/package=demography

Demographic forecasting using functional data analysis

Selected references

- Hyndman, Shang (2010). "Rainbow plots, bagplots and boxplots for functional data". Journal of Computational and Graphical Statistics 19(1), 29–45
- Hyndman, Ullah (2007). "Robust forecasting of mortality and fertility rates: A functional data approach". Computational Statistics and Data Analysis 51(10), 4942–4956
- Hyndman, Shang (2009). "Forecasting functional time series (with discussion)". Journal of the Korean Statistical Society 38(3), 199–221
- Shang, Booth, Hyndman (2011). "Point and interval forecasts of mortality rates and life expectancy : a comparison of ten principal component methods". *Demographic Research* 25(5), 173–214
- Hyndman, Booth (2008). "Stochastic population forecasts using functional data models for martality fortility and migrating"

Papers and R code:

robjhyndman.com

Email: Rob.Hyndman@monash.edu

cran.r-project.org/package=demography

Demographic forecasting using functional data analysis