Alena Myšičková Piotr Majer Song Song Peter N. C. Mohr Wolfgang K. Härdle Hauke R. Heekeren

C.A.S.E. Centre for Applied Statistics and Economics Humboldt-Universität zu Berlin Freie Universität Berlin

Max Planck Institute for Molecular Genetics

http://lvb.wiwi.hu-berlin.de

http://www.languages-of-emotion.de

http://www.molgen.mpg.de

Risk Perception

- Can statistical analysis help to detect this area?
- □ Response curve (to stimuli)? classify "risky people"?

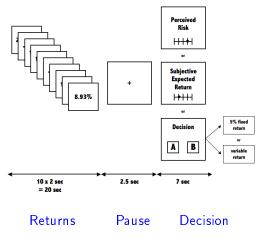
Risk Perception

- Survey conducted by Max Planck Institute
- 22 young, native German, right-handed and healthy volunteers
 3 subjects with extensive head movements (> 5mm)
 - 2 subjects with different stimulus frequency

$$n = 22 - (3+2) = 17$$

- Experiment
 - ightharpoonup Risk Perception and Investment Decision (RPID) task (×81)
 - ▶ fMRI images every 2.5 sec.
 - \blacktriangleright Analysis of the first part (\times 45)

Risk Perception



Risk Perception - Thermodynamics

Theoretical framework

Risk-return model Mohr et al., 2010 Mechanical Equivalent of Heat 1st law of thermodynamics
 Mayer, 1841

Empirical evidence

fMRI analysis

Experiments "Joule apparatus"Joule, 1843

Risk Perception

 Measuring Blood Oxygenation Level Dependent (BOLD) effect every 2-3 sec

High-dimensional, high frequency & large data set

Risk Perception

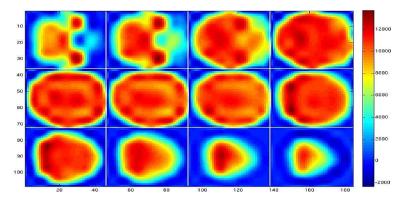
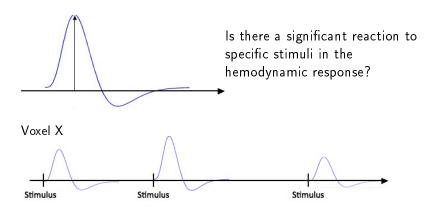


Figure 1: fMRI image observed every 2.5 sec, 12 horizontal slices of the brain's scan, $91 \times 92 \times 71(x, y, z)$ data points of size 22 MB; scan resolution:

2 × 2 × 2mm³ fMRI
Risk Patterns and Correlated Brain Activities

fMRI



fMRI methods

- Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Vo
 - linear model for each voxel separately
 - strong a priori hypothesis necessary
- Dynamic Semiparametric Factor Model (DSFM)
 - ▶ Use a "time & space" dynamic approach
 - ► Separate low dim time dynamics from space functions
 - Low dim time series exploratory analysis

Outline

- 1. Motivation ✓
- 2. DSFM
- 3. Results vs. Subject's Behaviour
- 4. Conclusion
- 5. Future Perspectives
- 6. References
- 7. Appendix

DSFM — 2-1

Notation

$$\underbrace{(X_{1,1}, Y_{1,1}), \ldots, (X_{J,1}, Y_{J,1})}_{t=1}, \ldots, \underbrace{(X_{1,T}, Y_{1,T}), \ldots, (X_{J,T}, Y_{J,T})}_{t=T},$$

 $X_{j,t} \in \mathbb{R}^d$, $Y_{j,t} \in \mathbb{R}$ T - the number of observed time periods J - the number of the observations in a period t $\mathsf{E}(Y_t|X_t) = F_t(X_t)$

Quantify $F_t(X_t)$. How does it move?

Dynamic Semiparametric Factor Model

$$\mathsf{E}(Y_{t}|X_{t}) = \sum_{l=0}^{L} Z_{t,l} m_{l}(X_{t}) = Z_{t}^{\top} m(X_{t}) = Z_{t}^{\top} A^{*} \Psi$$

$$Z_t = (1, Z_{t,1}, \dots, Z_{t,L})^{\top}$$
 low dim (stationary) time series $m = (m_0, m_1, \dots, m_L)^{\top}$, tuple of functions $\Psi = \{\psi_1(X_t), \dots, \psi_K(X_t)\}^{\top}, \psi_k(x)$ space basis $A^* : (L+1) \times K$ coefficient matrix

DSFM Estimation

$$Y_{t,j} = \sum_{l=0}^{L} Z_{t,l} m_l(X_{t,j}) + \varepsilon_{t,j} = Z_t^{\top} A^* \psi(X_{t,j}) + \varepsilon_{t,j}$$

 $\ \ \ \ \ \psi(x) = \left\{\psi_1(x), \ldots, \psi_K(x)
ight\}^{ op}$ tensor *B*-spline basis

$$(\widehat{Z}_t, \widehat{A^*}) = \arg\min_{Z_t, A^*} \sum_{t=1}^{I} \sum_{i=1}^{J} \left\{ Y_{t,j} - Z_t^{\top} A^* \psi(X_{t,j}) \right\}^2 \tag{1}$$

Minimization by Newton-Raphson algorithm

DSFM ________2-4

B-Splines

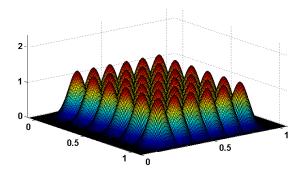


Figure 2: *B*-splines basis functions; order of *B*-splines: quadratic; number of knots: $6 \times 6 = 36$ P-Splines

DSFM — 2-5

DSFM Estimation

 \odot Selection of L by explained variance

$$EV(L) = 1 - \frac{\sum_{t=1}^{T} \sum_{j=1}^{J} \left\{ Y_{t,j} - \sum_{l=0}^{L} Z_{t,l} m_l(X_{t,j}) \right\}^2}{\sum_{t=1}^{T} \sum_{j=1}^{J} \left\{ Y_{t,j} - \bar{Y} \right\}^2}$$

number of *B*-splines (equally spaced) knots: K=12 imes14 imes14

$$L=2$$
 $L=4$ $L=5$ $L=10$ $L=20$ 92.07 92.25 92.29 93.66 95.19

Table 1: EV in percent of the model with different numbers of factors L, averaged over all 17 analyzed subjects.

DSFM — 2-6

Panel DSFM

$$Y_{t,j}^{i} = \sum_{l=0}^{L} (Z_{t,l}^{i} + \alpha_{t,l}^{i}) m_{l}(X_{t,j}) + \varepsilon_{t,j},^{i}, \quad 1 \leq j \leq J, \quad 1 \leq t \leq T,$$

- n = 17 weakly/strongly risk-averse subjects
- $Y_{t,j}$ BOLD signal; X_j voxel's index $\alpha_{t,j}^i$ fixed individual effect; Residual Analysis

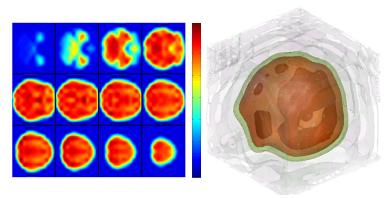
Panel DSFM Estimation

Feasible estimation algorithm:

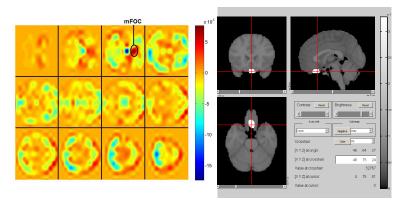
- 1. Average $Y_{t,j}^i$ over subjects i to obtain $\bar{Y}_{t,j}$
- 2. Estimate factors m_I for the "average brain" [via (1)]
- 3. Given \widehat{m}_{l} , for i, estimate $Z_{t,l}^{i}$

$$Y_{t,j}^{i} = \sum_{l=0}^{L} Z_{t,l}^{i} \widehat{m}_{l}(X_{t,j}) + \varepsilon_{t,j}^{i}$$

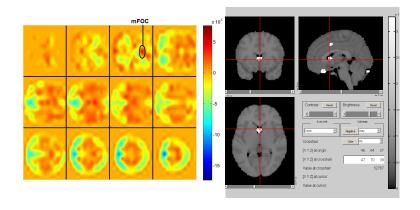
 \boxdot 26h - computing time; CPU - 2 \times 2.8GHz; data set of size 24.31 GB



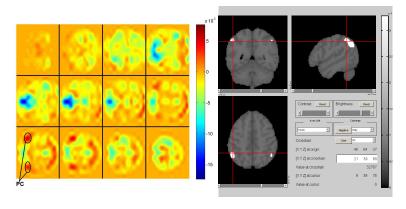
Estimated constant factor $\widehat{m}_0(X) = \sum_{k=1}^K \widehat{a}_{0,k} \psi_k(X)$ with L=20



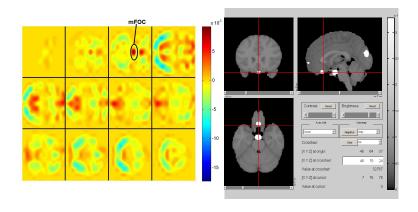
Estimated factor $\widehat{m}_5(X) = \sum_{k=1}^K \widehat{a}_{5,k} \psi_k(X)$ with L=20 (MOFC = Medial orbitofrontal cortex)



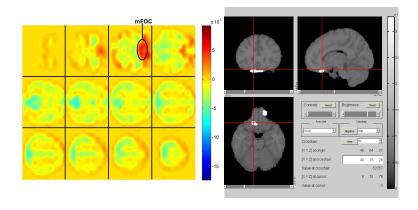
Estimated factor
$$\widehat{m}_9(X) = \sum_{k=1}^K \widehat{a}_{9,k} \psi_k(X)$$
 with $L = 20$



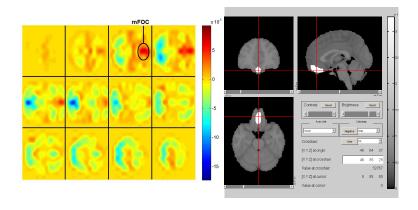
Estimated factor $\widehat{m}_{12}(X) = \sum_{k=1}^K \widehat{a}_{12,k} \psi_k(X)$ with L=20 (PC = Paretial Cortex)



Estimated factor
$$\widehat{m}_{16}(X) = \sum_{k=1}^{K} \widehat{a}_{16,k} \psi_k(X)$$
 with $L=20$



Estimated factor
$$\widehat{m}_{17}(X) = \sum_{k=1}^K \widehat{a}_{17,k} \psi_k(X)$$
 with $L=20$



Estimated factor
$$\widehat{m}_{18}(X) = \sum_{k=1}^K \widehat{a}_{18,k} \psi_k(X)$$
 with $L=20$

Estimated Factor Loading \widehat{Z}_5

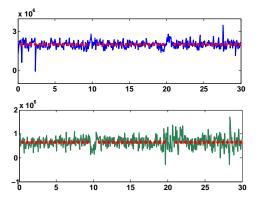


Figure 3: Estimated factor loading \widehat{Z}_5 for subjects within 30 minutes: 12 (upper panel) and 19 (lower panel) with L=20; red dots denote stimulus Risk Patterns and Correlated Brain Activities

Estimated Factor Loading \widehat{Z}_9

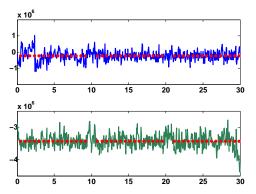


Figure 4: Estimated factor loading \widehat{Z}_9 for subjects within 30 minutes: 12 (upper panel) and 19 (lower panel) with L=20; red dots denote stimulus

Estimated Factor Loading \widehat{Z}_{12}

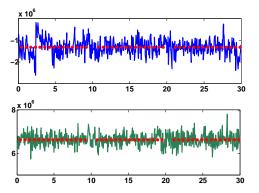


Figure 5: Estimated factor loading \widehat{Z}_{12} for subjects within 30 minutes: 12 (upper panel) and 19 (lower panel) with L = 20; red dots denote stimulus

Estimated Factor Loading \widehat{Z}_{16}

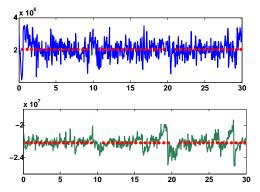


Figure 6: Estimated factor loading \widehat{Z}_{16} for subjects within 30 minutes: 12 (upper panel) and 19 (lower panel) with L = 20; red dots denote stimulus

Estimated Factor Loading \widehat{Z}_{17}

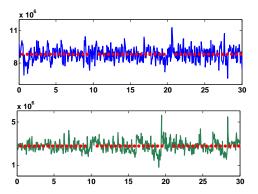


Figure 7: Estimated factor loading \widehat{Z}_{17} for subjects within 30 minutes: 12 (upper panel) and 19 (lower panel) with L = 20; red dots denote stimulus

Estimated Factor Loading \widehat{Z}_{18}

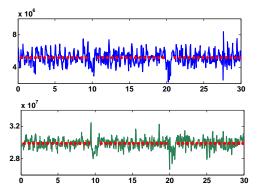


Figure 8: Estimated factor loading \widehat{Z}_{18} for subjects within 30 minutes: 12 (upper panel) and 19 (lower panel) with L = 20; red dots denote stimulus

Reaction to the stimulus

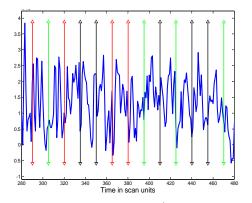


Figure 9: Detailed view of factor loading \widehat{Z}_1 for subject 12 with vertical lines in time points of stimuli of 3 different task: decision (red), subjective expected return (green) and perceived risk (black)
Risk Patterns and Correlated Brain Activities

Reaction to the stimulus

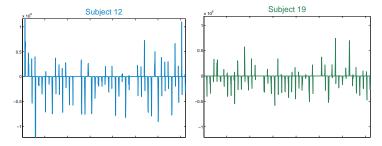


Figure 10: Reaction to stimulus $\overline{\Delta} \widehat{Z}_{s,l}^i = \frac{1}{3} \sum_{\tau=1}^3 \Delta \widehat{Z}_{s+\tau,l}^i$, where $\Delta \widehat{Z}_{t,l}^i \stackrel{\text{def}}{=} \widehat{Z}_{s+t,l}^i - \widehat{Z}_{s,l}^i$, t=1,2,3, s is the time of stimulus for factors loadings $\widehat{Z}_{t,12}^i$, for subjects 12 (left) and 19 (right) during the experiment (45 stimuli).

- \odot Subject's risk perception $\widetilde{R}_{i,s}$ \bigcirc Risk Metrics
 - standard deviation
 - empirical frequency of loss (negative return)
 - difference between highest an lowest return (range)
 - coefficient of range (range/mean)
 - empirical frequency of ending below 5%
 - coefficient of variation (standard deviation/mean)
- ☑ Different subject different risk perception fitted by correlation between risk metrics of return streams and $R_{i,j,s}$ answers for "perceived risk" task Q1, N=27

- \odot Subjective expected return $\widetilde{m}_{i,s}$ \bigcirc Return Ratings
 - recency (higher weights on later returns)
 - primacy (higher weights on earlier returns)
 - below 0% (higher weights on returns below 0%)
 - below 5% (higher weights on returns below 5%)
 - mean
- \odot Selecting return ratings for each subject individually best model selected by prediction power of one-leave-out cross validation procedure, N=27

- \Box Each subject *i* has (R_i, m_i)
- Risk-return choice model

$$V_i(x_s) = m_i(x_s) - \beta_i R_i(x_s), \quad 1 \le i \le n, 1 \le s \le 27$$

 x_s - return stream, m_i -subjective expected return, R_i - perceived risk, V_i - subjective value (unobserved), 5% - risk free return

 \Box β Risk attitude parameter

$$P \{ risky \ choice | (m, R) \} = \frac{1}{1 + exp(m - \beta R - 5)}$$

$$P \{ sure \ choice | (m, R) \} = 1 - \frac{1}{1 + exp(m - \beta R - 5)}$$

risky choice - unknown return, sure choice - fixed, 5% return

 $oxdot \widehat{eta}$ derived by maximum likelihood method

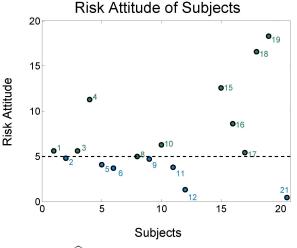


Figure 11: Risk attitude $\widehat{\beta}_i$ for 17 subjects; modeled by the softmax function from individuals' decisions, estimated by ML method \bigcirc Mohr et al.

Risk Patterns and Correlated Brain Activities

SVM Classification Analysis

- Support Vector Machines (SVM)17 subjects, 20 factor loading time series per subject
- Leave-one-out method to train and estimate classification rate SVM with Gaussian kernel; (R, C) chosen to maximize classification rate
- Weakly/strongly risk-averse subjects differ in reaction to stimulus $\Delta \widehat{Z}_{t,l}^i$ Reaction to Stimulus

SVM Classification Analysis

- 1. factors attributed to risk patterns: l = 5, 9, 12, 16, 17, 18
- 2. only "Decision under Risk" (Q3) stimulus
- 3. average reaction to s stimulus $\overline{\Delta} \widehat{Z}_{s,l}^i = \frac{1}{3} \sum_{\tau=1}^3 \Delta \widehat{Z}_{s+\tau,l}^i$

SVM input data: volatility of $\overline{\Delta} \widehat{Z}_{s,l}^i$ over all Q3

Std		Estimated	
		Strongly	Weakly
Data	Strongly	1.00	0.00
	Weakly	0.14	0.86

Table 2: Classification rates of the SVM method, without knowing the subject's estimated risk attitude SVM Scores

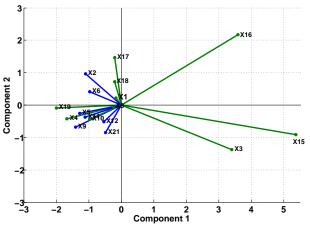


Figure 12: Normalized Principal Component Analysis on volatility of $\overline{\Delta} \widehat{Z}_{s,l}^i$ after stimulus for weakly/strongly risk-averse subjects; variance explained by the first and second components: 72%, 85%, respectively

Risk Patterns and Correlated Brain Activities

Conclusion — 4-1

Conclusion

- oxdot Factors \widehat{m} identify activated areas, neurological reasonable
- Estimated factor loadings show differences for individuals with different risk attitudes (e.g. 12 vs. 19)
- $oxed{SVM}$ classification analysis of measurements in $\widehat{Z}_{t,l}$, l=5,9,12,16,17,18 after stimulus, can distinguish weakly/strongly risk-averse individuals with high classification rate, without knowing the subject's answers

Future Perspectives

- Comparison with the PCA/ICA (PARAFAC) approach
- Analysis of the second part of the experiment (under assumption of independency) to "generate" larger number of subjects
- Improvement of the classification criterion
- □ Penalized DSFM with seasonal effects

Risk Patterns and Correlated Brain Activities

Alena Myšičková Piotr Majer Song Song Peter N. C. Mohr Wolfgang K. Härdle Hauke R. Heekeren

C.A.S.E. Centre for Applied Statistics and Economics
Humboldt-Universität zu Berlin
Freie Universität Berlin
Max Planck Institute for Molecular Genetics
http://lvb.wiwi.hu-berlin.de
http://www.languages-of-emotion.de
http://www.molgen.mpg.de

References — 6-1

References

Mayer, R.
Remarks on the Forces of Nature
The Benjamin/Cummings Publishing Company, London, 1841.

Mohr, P., Biele G., Krugel, L., Li S., Heekeren, H. Risk attitudes
Neural foundations of risk-return trade-off in investment
decisions

Neurolmage, 49: 2556-2563, 2010.

References — 6-2

References

Park, B., Mammen, E., Härdle, W. and Borak, S. Time Series Modelling with Semiparametric Factor Dynamics J. Amer. Stat. Assoc., 104(485): 284-298, 2009.

Ramsay, J. O. and Silverman, B. W. Functional Data Analysis New York: Springer, 1997.

Woolrich, M., Ripley, B., Brady, M., Smith, S.
Temporal Autocorrelation in Univariate Linear Modelling of FMRI Data

Neurolmage, 21: 2245-2278, 2010

Voxel-wise GLM of MRI methods

- □ GLM framework

$$Y = XB + \eta$$
,

Y - single voxel BOLD time series, X - design matrix (regressors, i.e. visual, auditory)

☑ Significant, active areas (*B*) selected by *z-scores* $\equiv \frac{B_i - 0}{\sqrt{\text{Var}(B_i)}}$ and grouping (20 neighbors) scheme

B-Splines P-Splines

Univariate B-spline basis $\Psi = \{\psi_1(X), \dots, \psi_K(X)\}^{\top}$ is a series of $\psi_k(X)$ functions defined by $x_0 \leq x_2 \leq \dots \leq x_{K-1}$, K knots and order p, i.e. for p = 2 (quadratic)

$$\psi_{j}(x) = \begin{cases} \frac{1}{2}(x - x_{j})^{2} & \text{if } x_{j} \leq x < x_{j+1} \\ \frac{1}{2} - (x - x_{j+1})^{2} + (x - x_{j+1}) & \text{if } x_{j+1} \leq x < x_{j+2} \\ \frac{1}{2} \left\{ 1 - (x - x_{j+2})^{2} \right\} & \text{if } x_{j} \leq x < x_{j+1} \\ x & \text{otherwise} \end{cases}$$

B-Splines P-Splines

- Knots K and order p has to be specified in advance (EV criterion); K corresponds to bandwidth
- □ In higher dimensions, for dim(X) = d > 1

$$\Psi = \{\psi_1(X_1), \dots, \psi_{K_1}(X_1)\} \times \dots \times \{\psi_1(X_d), \dots, \psi_{K_d}(X_d)\}$$

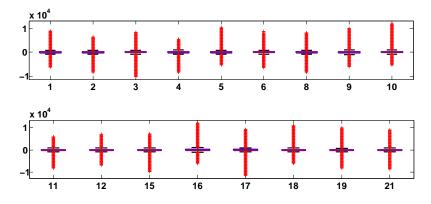


Figure 13: Boxplots of random subsets (size 3×10^7) from $\varepsilon_{t,j}^i$ (4.3 × 10⁹ points) for all 17 analyzed subjects. Kurtosis exceeds 10 Risk Patterns and Correlated Brain Activities

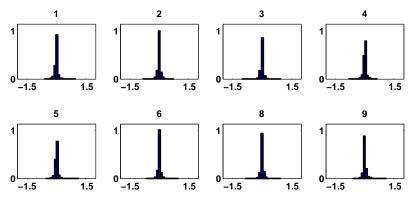


Figure 14: Histograms of random subsets (size 3×10^7) from $\varepsilon^i_{t,j}$ (4.3 × 10^9 points) for subjects i=1,2,3,4,5,6,8,9, respectively. Normality hypothesis (**KS test**) for standardized $\varepsilon^i_{t,j}$ rejected for all subjects, $\alpha=5\%$ Risk Patterns and Correlated Brain Activities

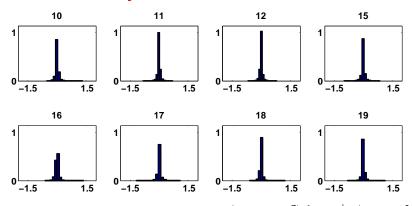


Figure 15: Histograms of random subsets (size 3×10^7) from $\varepsilon_{t,j}^i$ (4.3 × 10⁹ points) for subjects i = 10, 11, 12, 15, 16, 17, 18, 19 respectively

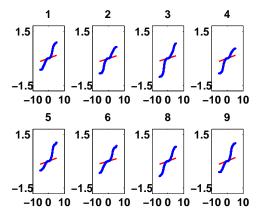


Figure 16: QQplots of random subsets (size 3×10^7) from $\varepsilon_{t,j}^i$ (4.3 × 10⁹ points) for subjects i=1,2,3,4,5,6,8,9, respectively Risk Patterns and Correlated Brain Activities

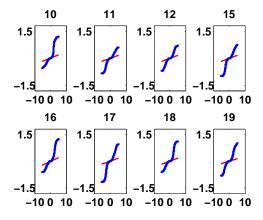


Figure 17: QQplots of random subsets (size 3×10^7) from $\varepsilon_{t,j}^i$ (4.3 × 10⁹ points) for subjects i = 10, 11, 12, 15, 16, 17, 18, 19 respectively Risk Patterns and Correlated Brain Activities

Reaction to stimulus OSVM Analysi

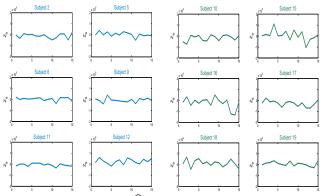


Figure 18: Averaged reaction $\overline{\Delta} \widehat{Z}_{s,9}^i$ to stimulus for all 15 Q3 questions for weakly/strongly risk-averse individuals

Reaction to stimulus SVM Analysis SVM Analysis

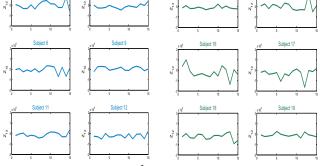


Figure 19: Averaged reaction $\overline{\Delta} \widehat{Z}_{s,12}^i$ to stimulus for all 15 Q3 questions for weakly/strongly risk-averse individuals

Return Ratings Risk Attitude

 r_i , i = 1, ..., 10 denotes sequence of random returns in each trial Subjective Expected Return (**SER**) models:

Mean

$$SER = \frac{\sum_{i=10-m}^{10} r_i}{m}$$

m-number of returns remembered, $2 \le m \le 10$

Recency

$$SER = \frac{\sum_{i=10-m}^{10} r_i p}{\sum_{i=10-m}^{10} p}, \quad p = (i-9+m)^g$$

g - weighting parameter of returns, 0 < g < 1

Return Ratings Risk Attitude

Primacy

$$SER = \frac{\sum_{i=10-m}^{10} r_i p}{\sum_{i=10-m}^{10} p}, \quad p = (11-i)^g$$

m-number of returns remembered, $2 \le m \le 10$ g - weighting parameter of returns, 0 < g < 1

 \odot Overweight < 0%

$$SER = rac{\sum_{i=10-m}^{10} r_i p}{\sum_{i=10-m}^{10} p}, p = \left\{ egin{array}{ll} 1, & ext{if } r_i \geq 0 \\ 1+w, & ext{otherwise} \end{array} \right.$$

w - additional weight of returns, 0 < w < 1; 1 < m < 9

Return Ratings Risk Attitude

 \odot Overweight < 5%

$$SER = \frac{\sum_{i=10-m}^{10} r_i p}{\sum_{i=10-m}^{10} p}, p = \begin{cases} 1, & \text{if } r_i \ge 5\\ 1+w, & \text{otherwise} \end{cases}$$

w - additional weight of returns, 0 < w < 1; 1 < m < 9

Parameters fitted by Cross Validation over all 27 trials

Return Ratings

▶ Risk Attitude

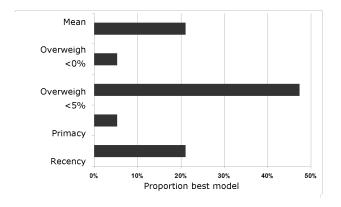


Figure 20: Distribution of return ratings over analyzed subjects

Risk Metrics • Risk Attitu

Risk perception - risk metrics used by individuals

- Standard deviation of a return sequence
- Range difference between highest an lowest return in a sequence
- □ Coefficient of range (range / mean)
- $oxed{oxed}$ Empirical frequency of ending below 5% (returns < 5% / all returns)
- □ Coefficient of variation (standard deviation / mean)

Risk Metrics Risk Attitude

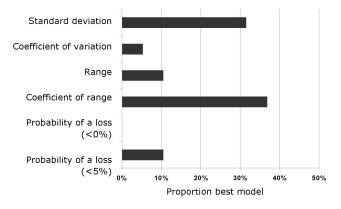


Figure 21: Distribution of risk metrices over analyzed subjects

SVM Scores SVM Classification

	Strongly											
i	1	3	4	8	10	15	16	17	18	19		
β	5.6	5.6	11.3	5.0	6.3	12.6	8.6	5.4	16.6	18.3		
Score	0.02	0.43	0.43	0.32	0.58	0.40	0.44	0.23	0.68	0.59		
	Weakly											
i	2	5	6	9	11	12	21					
β	4.8	4.1	3.7	4.7	3.8	1.3	1.8					
Score	0.32	-1.03	-0.32	-0.44	-0.79	-0.04	-0.08					

Table 3: Estimated risk attitude and SVM scores (obtained without knowing the subject's answers)

SVM Scores

→ SVM Classification

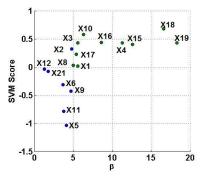


Figure 22: Scatter plot of $\widehat{\beta_i}$ vs SVM scores

Risk Metrics

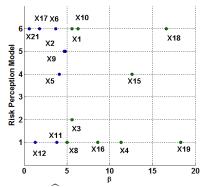


Figure 23: Scatter plot of $\widehat{\beta}_i$ vs risk perception models (vertical line). 1 - Standard deviation, 2 - Coefficient of variation, 3 - Empirical frequency of loss; 4 - Empirical frequency of ending below 5%, 5 - Coefficient of range, 6 - Coefficient of variation.

Risk Patterns and Correlated Brain Activities

