Regularization Methods for Categorical Data

Gerhard Tutz Ludwig-Maximilians-Universität München

> Wien Oktober 2011

> > ◆□ → ◆□ → ◆三 → ◆三 → ○ へ ⊙ 1/62

Framework for Univariate Responses

Model for $\mu_i = E(y_i | \mathbf{x}_i)$

 $\mu_i = h(\eta_i)$ or $g(\mu_i) = \eta_i$

with link function g (response function $h=g^{-1}$) and η_i determined by predictors

Structuring of the influential term

Linear

$$\eta = \beta_0 + x_1\beta_1 + \dots + x_p\beta_p$$

Additive

$$\eta = \beta_0 + f_{(1)}(x_1) + \cdots + f_{(p)}(x_p),$$

with unknown functions $f_{(j)}$

Varying coefficients

$$\eta = \ldots x_j f(u_j) + \ldots$$

Selection Strategies

- Stepwise forward backward
- Lasso for metric predictors

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

The case of categorical predictors

$$\eta = \beta_0 + x_1\beta_1 + \cdots + x_p\beta_p + f(z_1) + \ldots$$

For categorical predictor $P \in \{1, \dots, k\}$ one obtains a linear predictor by using dummy variables.

Various coding schemes available:

0-1-Coding

$$x_{P(j)} = \begin{cases} 1 & \text{if } P = j \\ 0 & \text{otherwise} \end{cases} \quad j = 1, \dots, k-1$$

Effect Coding

$$x_{P(j)} = \begin{cases} 1 & \text{if } P = j \\ -1 & \text{if } P = k \\ 0 & \text{otherwise} \end{cases} \quad j = 1, \dots, k-1$$

Each categorical predictor increases the number of parameters by k-1

Lasso? Selection depends on coding!

Example: Urban Districts

- Response: monthly rent per m².
- Predictors: urban district, decade of construction, number of rooms, floor space, etc.

For categorical predictors

Two cases should be distinguished:

- Unordered factors: Permutation invariance postulated.
- Ordinal predictors: Palindromic invariance postulated.

In both cases the following questions should be answered:

- Which categorical predictors should be included in the model? Variable selection
- Which categories within one categorical predictor are to be distinguished? Clustering

Reduction to relevant variables/categories necessary since otherwise

- estimates are instable, do not exist or are not unique
- interpretation is harder because too much noise is fitted

(1) Ordinal Predictors

Given predictor x with ordered categories/levels $0, \ldots, K$, let the linear predictor be

$$\eta = \alpha + \beta_0 x_0 + \ldots + \beta_K x_K,$$

with dummy variables x_0, \ldots, x_K , i.e.

$$x_k = \left\{ egin{array}{cc} 1 & x = k \ 0 & ext{otherwise} \end{array}
ight.$$

Identifiability is obtained by specifying reference category k = 0, so that $\beta_0 = 0$.

- Since levels are ordered response y is assumed to change slowly between two adjacent levels of x.
- We try to avoid high jumps and prefer a smoother coefficient vector β .

Example: Choice of coffee brand

Logit Model with binary response: cheap discounter or branded product

Explanatory variables: Ordered variables age group, social class, monthly income

Linear model versus full model

Smooth Effects by Penalizing Differences

 \Rightarrow Maximization of the penalized log-likelihood

$$I_{\rho}(\beta) = -\frac{1}{2\sigma^2}(y - X\beta)^{T}(y - X\beta) - \frac{\psi}{2}J(\beta),$$

with design matrix X, vector of response values y, and penalty

$$J(\beta) = \sum_{k=1}^{K} (\beta_k - \beta_{k-1})^2 = \beta^T U^T U \beta = \beta^T \Omega \beta. \quad U = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ -1 & 1 & \cdots & 0 \\ & \ddots & \ddots & 0 \\ 0 & \cdots & -1 & 1 \end{pmatrix}$$

⇒ For linear model one obtains the generalized ridge estimator with tuning parameter $\lambda = \psi \sigma^2$ and $\Omega = U^T U$

$$\hat{\beta}^* = (X^T X + \lambda \Omega)^{-1} X^T y,$$

- For GLMs iterative estimation procedure
- Regularization ensures existence of estimates

Bias-Variance

$$\begin{split} E(\hat{\beta}^*) &= (X^T X + \lambda \Omega)^{-1} X^T X \beta = \beta - \lambda (X^T X + \lambda \Omega)^{-1} \Omega \beta, \\ V(\hat{\beta}^*) &= \sigma^2 (X^T X + \lambda \Omega)^{-1} X^T X (X^T X + \lambda \Omega)^{-1}. \end{split}$$

Illustration

▶ Balanced designs with *n* observations in each of K + 1 = 11 classes, $\sigma^2/n = 0.2$ and coefficient vectors ($\alpha = 0$):

• (squared) bias (···), variance (-·) and (scalar) MSE (-):

A B > A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A

Example: Chronic Widespread Pain

- > Pain involving several regions of the body, which causes
 - problems in functioning, psychological distress, poor sleep quality, difficulties in activities of daily life,...
- No systematic framework that covers the spectrum of symptoms and limitations of patients with CWP (cf. Cieza et al., 2004).

 \Rightarrow ICF - International Classification of Functioning, Disability and Health (WHO, 2001) to define the typical spectrum of problems of patients with CWP.

The ICF consists of \approx 1400 ordinally scaled factors (variables), e.g.:

Variable "walking" (component "activities and participation"):

0	1	 4
no difficulty	mild difficulty	 complete difficulty

From the ICF categories experts selected the *(Comprehensive)* **ICF Core Set** (67 variables) for CWP (see Cieza et al., 2004).

Some Coefficient Paths

ICF Core Sets \rightarrow SF36 (Wellness score)

- Environmental factor "social norms, practices and ideologies" (left).
- ▶ Factor "walking" (component "activities and participation", right).

Smooth Effects Including Variable Selection: Penalty Approach

For unordered response approaches available.

The Group Lasso (Yuan & Lin, 2006) works with a Lasso penalty at the factor level.

For p factors it has the form

$$J_{gl}(eta) = \sum_{j=1}^p \sqrt{df_j} \sqrt{eta_j^T eta_j} = \sum_{j=1}^p \sqrt{df_j} ||eta_j||_2$$

where β_i refers to the parameter vector of the jth variable. Thus the group of coefficients collected in β_i is shrunk by use of a lasso type penalty

Effects:

- Encourages sparsity at the factor level
- Designed for nominal factors, uses no ordering of categories
- R add-on package grplasso (Meier et al., 2008)

Group Lasso for Ordered Categories

Transform the problem with difference penalties

$$(\mathbf{y} - \mathbf{X}\beta)^T (\mathbf{y} - \mathbf{X}\beta) + \lambda J(\beta) = (\mathbf{y} - \widetilde{\mathbf{X}}\widetilde{\beta})^T (\mathbf{y} - \widetilde{\mathbf{X}}\widetilde{\beta}) + \lambda \widetilde{J}(\widetilde{\beta}),$$

with $\widetilde{\mathbf{X}} = (1|\widetilde{\mathbf{X}}_1| \dots |\widetilde{\mathbf{X}}_p)$, $\widetilde{\boldsymbol{\beta}} = (\alpha, \widetilde{\boldsymbol{\beta}}_1^T, \dots, \widetilde{\boldsymbol{\beta}}_p^T)^T$, and $\widetilde{\mathbf{X}}_j = \mathbf{X}_j \mathbf{U}_j^{-1}$, $\widetilde{\boldsymbol{\beta}}_j = \mathbf{U}_j \boldsymbol{\beta}_j$, New parameters have the form $\widetilde{\beta}_{jr} = \beta_{j,r+1} - \beta_{jr}$

Then the penalty becomes

$$\widetilde{J_{gl}}(\widetilde{oldsymbol{eta}}) = \sum_{j=1}^p \sqrt{\widetilde{oldsymbol{eta}}_j^{\mathsf{T}} \mathbf{I}_j \widetilde{oldsymbol{eta}}_j}, \; .$$

Equivalent to predictors given in split-coding

$$ilde{x}_{A(i)} = egin{cases} 1 & ext{if } A > i \ 0 & ext{otherwise} \end{cases}$$

Software for group lasso can be used by appropriate definition of design matrix

 \Rightarrow Enforces selection on the factor level including smoothness across categories

Smooth Effects Including Variable Selection: Boosting Approach

Blockwise Boosting

Componentwise *L*₂**-Boosting** (Bühlmann, 2006):

- Repeated least squares fitting of residuals.
- In each iteration only one predictors is selected, and the corresponding coefficient updated.

Blockwise Boosting:

- Groups or blocks of coefficients are updated.
- Blocks are formed by groups of dummy coefficients.
- In each iteration: Regression with difference penalty.
- Coefficients which are never updated remain zero.

\Rightarrow Variable Selection.

Likelihood-based Boosting

Let y_i be from an exponential family distribution with mean $\mu_i = E(y_i | \mathbf{x}_i)$ and the link between the mean and the structuring term specified by

$$\mu_i = h(\eta_i)$$
 or $g(\mu_i) = \eta_i$

1 Initialization

For given data $(y_i, \mathbf{x}_i), i = 1, ..., n$, fit the intercept model $\mu^{(0)}(\mathbf{x}) = h(\eta_0)$ by maximizing the likelihood, yielding $\eta^{(0)} = \hat{\eta}_0, \hat{\mu}^{(0)} = h(\hat{\eta}_0)$.

2 Iteration For $I = 0, 1, \ldots$

Fitting step

Fit the model

$$\mu_i = h(\hat{\eta}^{(l)}(\mathbf{x}_i) + \eta(\mathbf{x}_i, \boldsymbol{\gamma}))$$

to data $(y_i, \mathbf{x}_i), i = 1, ..., n$, where $\hat{\eta}^{(l)}(\mathbf{x}_i)$ is treated as an offset and the predictor is estimated by fitting the parametrically structured term $\eta(\mathbf{x}_i, \boldsymbol{\gamma})$, obtaining $\hat{\boldsymbol{\gamma}}$

Update step

The improved fit is obtained by

$$\hat{\eta}^{(l+1)}(\mathbf{x}_i) = \hat{\eta}^{(l)}(\mathbf{x}_i) + \hat{\eta}(\mathbf{x}_i, \hat{\gamma}), \quad \hat{\mu}_i^{(l+1)} = h(\hat{\eta}^{(l+1)}(\mathbf{x}_i))$$

For normally distributed response and least squares fitting equivalent to L2-boosting

Blockwise Boosting of Coefficients

Parametrically structured term includes only one factor

For predictor j

$$\eta(\mathbf{x}_i, \boldsymbol{\gamma}) = \mathbf{x}_j^T \mathbf{b}_j$$

Penalized fitting

Fit for all variables $j = 1, \ldots, p$ the one-variable model

$$\mu_i = h(\hat{\eta}_i^{(I)} + \mathbf{x}_j^T \mathbf{b}_j)$$

by one step Fisher scoring in the form $\hat{\mathbf{b}}_{j}^{new} = F_{\rho}(\hat{\beta}_{j}^{(r-1)})^{-1}s_{\rho}(\hat{\beta}_{j}^{(r-1)})$, where F_{ρ} is the penalized Fisher matrix, s_{ρ} is the penalized score function

For linear models one uses $\hat{\mathbf{b}}_j = (\mathbf{X}_j^T \mathbf{X}_j + \lambda \mathbf{\Omega}_j)^{-1} \mathbf{X}_j^T \mathbf{u}$, where $\mathbf{u}^T = (u_1, \dots, u_n)$ contains the residuals $u_i = y_i - \mathbf{x}_i^T \hat{\boldsymbol{\beta}}_j^{(r-1)}$, $i = 1, \dots, n$

Selection of block that is updated

Choose \hat{j}_r such that the deviance or AIC is minimized,

Update

$$\beta_{j_r}^{(r)} = \beta_{j_r}^{(r-1)} + \mathbf{b}_j, \quad \beta_j^{(r)} = \beta_j^{(r-1)}, j \neq j_r$$

Application to ICF Core Sets

Comparisons Blockwise Boosting / Group Lasso: Some Coefficients

class

walking

Application to ICF Core Sets

Comparisons Blockwise Boosting / Group Lasso: Selection Results

• The Group Lasso shows a slightly better fit (\approx 7 % lower RSS).

(2) Clustering of Categories for Categorical Predictors

Which categories should be distinguished?

Clustering Ordered Categories

Quadratic penalty is replaced by L_1 difference penalty:

$$J(\boldsymbol{\beta}) = \sum_{j=1}^{p} \sum_{i=1}^{k_j} |\beta_{ji} - \beta_{j,i-1}|$$

- Clustering if some adjacent dummy coefficients are set equal.
- Exclusion if all coefficients belonging to the same predictor are set to zero / equal.
- Equivalent to original Lasso based on split-coding
- Corresponds to blockwise Fused Lasso (Tibshirani et al., 2005).

General Lasso Type Differences

Penalty

Ordered Predictor

$$J(oldsymbol{eta}) = \sum_{j=1}^p \mathsf{w}_{il}^{(j)} \sum_{i=1}^{k_j} |eta_{ji} - eta_{j,i-1}|$$

Nominal Predictor

$$J(\boldsymbol{\beta}) = \sum_{j=1}^{p} w_{il}^{(j)} \sum_{i>l} |\beta_{ji} - \beta_{jl}|$$

Bondell & Reich, 2009 for ANOVA; Gertheiss & Tutz, 2009 for selection

Weights given by

$$w_{il}^{(j)} = w(n_i^{(j)}, n_l^{(j)}) |\beta_{ji}^{(LS)} - \beta_{jl}^{(LS)}|^{-1},$$

 \Rightarrow Include:

- Dependence on local sample sizes.
- Is adaptive by using consistent estimates (like Zou, 2006).

Illustration ordered case

Large Sample Properties (*p* = 1)

- $\theta = (\theta_{10}, \theta_{20}, \dots, \theta_{k,k-1})^T$: vector of pairwise differences $\theta_{il} = \beta_i \beta_l$.
- C = {(i, I) : β_i^{*} ≠ β_I^{*}, i > I}: set of indices i > I corresponding to differences of (true) dummy coefficients β_i^{*} which are truly non-zero.
- C_n : estimate of C with sample size n.
- $\theta_{\mathcal{C}}^*$ / $\hat{\theta}_{\mathcal{C}}$: true / estimated vector of pairwise differences included in \mathcal{C} .

Proposition

Suppose $\lambda = \lambda_n$ with $\lambda_n / \sqrt{n} \to 0$ and $\lambda_n \to \infty$, and all class-wise sample sizes n_i satisfy $n_i / n \to c_i$, where $0 < c_i < 1$. Then weights $w_{il} = \phi_{il}(n) |\hat{\beta}_i^{(LS)} - \hat{\beta}_l^{(LS)}|^{-1}$, with $\phi_{il}(n) \to q_{il}$ $(0 < q_{il} < \infty) \forall i, l$, ensure that

(a)
$$\sqrt{n}(\hat{\theta}_{\mathcal{C}} - \theta_{\mathcal{C}}^*) \rightarrow_d N(0, \Sigma)$$

(b)
$$\lim_{n\to\infty} P(\mathcal{C}_n = \mathcal{C}) = 1.$$

Computational Issues

Solution by Quadratic programming or Approximate Solution using LARS (much faster)

Vector of pairwise differences is $\theta = (\theta_{10}, \theta_{20}, \dots, \theta_{k,k-1})^T$ with $\theta_{il} = \beta_i - \beta_l$ Therefore parameters must fulfill restrictions. Since $\theta_{i0} = \beta_i$, one has $\theta_{il} = \theta_{i0} - \theta_{l0}$.

Use adaptive Net Penalty

With Z so that $Z\theta = X\beta$, minimize

$$\hat{\theta}_{\gamma,\lambda} = (y - Z\theta)^{\mathsf{T}} (y - Z\theta) + \gamma \sum_{i > j > 0} (\theta_{i0} - \theta_{j0} - \theta_{ij})^2 + \lambda \sum_{i > j} |\theta_{ij}|.$$

A simple choice of Z is Z = (X|0), since $\theta_{i0} = \beta_i$, i = 1, ..., k.

The exact solution of the is obtained as the limit

$$\hat{\theta} = \lim_{\gamma \to \infty} \hat{\theta}_{\gamma,\lambda}$$

Illustration ordered case

Approximate Solution

・ロ・・母・・ヨ・・ヨ・ うへぐ

24/62

Coefficient Paths for Munich Rent Data

Unordered and Ordered Categories

・ロト ・回ト ・ヨト ・ヨト э

Some Clustering Results (Adaptive Version with Refitting)

- ▶ All in all the estimated model has 32 df (i.e. unique non-zero coefficients).
- ► The full model has 58 df.

Some results (adaptive version with refitting)

predictor	label	coefficient
urban district	14, 16, 22, 24	-1.931
	11, 23	-1.719
	7	-1.622
	8, 10, 15, 17, 19, 20, 21, 25	-1.361
	6	-1.061
	9	-0.960
	13	-0.886
	2, 4, 5, 12, 18	-0.671
	3	-0.403
number of rooms	4, 5, 6	-0.502
	3	-0.180
	2	0.000
quality of residential area	good	0.373
	excellent	1.444

Some results (adaptive version with refitting)

predictor	label	coefficient
year of construction	1920s	-1.244
	1930s, 1940s	-0.953
	1950s	-0.322
	1960s	0.073
	1970s	0.325
	1980s	1.121
	1990s, 2000s	1.624
floor space (m ²)	$[140,\infty)$	-4.710
	[90, 100), [100, 110), [110, 120),	
	[120, 130), [130, 140)	-3.688
	[60, 70), [70, 80), [80, 90)	-3.443
	[50, 60)	-3.177
	[40, 50]	-2.838
	[30, 40)	-1.733

Prediction accuracies and model complexities (standard/adaptive with refitting)

- Based on random splitting of the data into independent training and test sets (1953/100 observations).
- 100 independent repetitions.

Generalizations to Non-Normal Outcomes

Example: Wisconsin breast cancer database (Wolberg & Mangasarian, 1990)

- Instances are to be classified as **benign** (y = 0) or **malignant** (y = 1)
- Available covariates are cytological characteristics as
 - marginal adhesion,
 - bare nuclei,
 - mitoses,
 - ▶ ...
- Predictors are graded on a 1 to 10 scale at the time of sample collection, with 1 being the closest to normal tissue and 10 the most anaplastic.
- We fit a logistic regression model using penalized likelihood estimation.
- Minimize the penalized negative log-likelihood

$$-I_{\rho}(\beta) = -I(\beta) + \lambda J(\beta).$$

Generalizations to Non-Normal Outcomes

Example: Wisconsin breast cancer database (Wolberg & Mangasarian, 1990)

Some estimated coefficient functions (cf. Stelz, 2010):

- standard/adaptive L₁-regularization (using R package glmpath (Park & Hastie, 2007)),
- quadratic difference penalty for smooth modeling (using R package ordPens (Gertheiss, 2010)).

Numerical Experiments

Simulation Design

type	no. of levels	true dummy coefficients
nominal	4	(0,2,2)'
nominal	8	(0, 1, 1, 1, 1, -2, -2)'
nominal	4	(0,0,0)'
nominal	8	(0, 0, 0, 0, 0, 0, 0)'
ordinal	4	(0, -2, -2)'
ordinal	8	(0, 1, 1, 2, 2, 4, 4)'
ordinal	4	(0,0,0)'
ordinal	8	(0, 0, 0, 0, 0, 0, 0)'

• Setting with 8 predictors (intercept $\alpha = 1$):

- Standard normal error.
- Training set size n = 500.
- 100 simulation runs.
- Independent test set (n = 1000).
- Compare ordinary least squares (ols), standard, adaptive version, with/without refitting.

Refitting means the selected coefficients are fitted in the last step - selection of tuning parameters refers to the whole procedure.

Errors of Parameter Estimates and Prediction:

- MSE of parameter estimates.
- Prediction Accuracy: Empirical sum of squared test set errors.

Variable Selection and Clustering Performance:

- ► False Positive Rates / FPR:
 - Variable Selection: Any dummy coefficient of a pure noise factor is set to non-zero.
 - Clustering / Identifying Differences: A difference within a non-noise factor which is truly zero is set to non-zero.
- ► False Negative Rates / FNR:
 - Variable Selection: All dummy coefficients of a truly relevant factor are set to zero.
 - Clustering / Identifying Differences: A truly non-zero difference is set to zero.

Numerical Experiments

Errors of Parameter Estimates and Prediction

Numerical Experiments

Variable Selection and Clustering Performance

ols

35/62

(3) Varying-Coefficient Models

Varying-coefficient models (Hastie & Tibshirani, 1993) offer a quite flexible framework for regression modeling.

In a linear model, with one effect modifier u:

$$y = \beta_0(u) + x_1\beta_1(u) + \ldots + x_p\beta_p(u) + \epsilon,$$

with $E(\epsilon) = 0$ and $Var(\epsilon) = \sigma^2$.

 \hookrightarrow Functions $\beta_i(u)$ are allowed to vary with the effect modifier u.

Usually metric/continuous effect modifiers u are investigated, and $\beta_j(u)$ are modeled as smooth functions.

Varying-Coefficient Models

Model selection

Two questions should be answered:

- (1) Variable selection, i.e. selecting relevant predictors x_j . \hookrightarrow Determine if $\beta_i(u) = 0$.
- (2) Identify varying coefficients $\beta_j(\cdot)$.
 - \hookrightarrow Determine if $\beta_i(u)$ is a constant or not.

Given continuous u, penalty approaches have been used to answer (one of) these questions:

```
(1) Wang et al. (2008), Wang & Xia (2009);
```

```
(2) Leng (2009).
```

In this talk:

- **Categorical** effect modifier *u*.
- Penalty approach that accounts for both (1) and (2).

Categorical Effect Modifiers

▶ For categorical $u \in \{1, ..., k\}$ the varying functions have the form

$$\beta_j(u) = \sum_{r=1}^k \beta_{jr} I(u=r).$$

• The model with p predictors contains (p+1)k parameters:

$$y = \sum_{r=1}^{k} \beta_{0r} I(u=r) + \sum_{r=1}^{k} x_1 \beta_{1r} I(u=r) + \ldots + \sum_{r=1}^{k} x_p \beta_{pr} I(u=r) + \epsilon$$

On level r of u:

$$y = \beta_{0r} + x_1\beta_{1r} + \ldots + x_p\beta_{pr} + \epsilon$$

An Illustrative Example

 $u \in (1, 2) = (\mathsf{Pefere}, \mathsf{After})$

Whiteside's insulation data (Hand et al., 1994; Venables & Ripley, 2002)

$$E(y|x, u = r) = \beta_{0r} + x\beta_{1r} + x^2\beta_{2r}$$
Before insulation
$$f(y) = \int_{0}^{\infty} \int_$$

Penalized Estimation

Minimization of the penalized least-squares criterion

$$\hat{\beta} = \operatorname{argmin}_{\beta} Q_{p}(\beta),$$

with

$$Q_{p}(\beta) = \sum_{i=1}^{n} \left(y_{i} - \beta_{0}(u_{i}) - \sum_{j=1}^{p} x_{ij}\beta_{j}(u_{i}) \right)^{2} + \lambda J(\beta)$$

$$= (y - Z\beta)^{T}(y - Z\beta) + \lambda J(\beta),$$

$$y = (y_{1}, \dots, y_{n})^{T} \text{ and } \beta = (\beta_{1}^{T}, \dots, \beta_{k}^{T})^{T},$$

with $\beta_{r} = (\beta_{0r}, \beta_{1r}, \dots, \beta_{pr})^{T}.$

The *i*th row of design matrix Z is $((1, x_i^T)I(u_i = 1), \dots, (1, x_i^T)I(u_i = k))$.

But: classical penalties are not designed for categorical effect modifiers.

Categorical Effect Modifiers

Penalized estimation

Nominal *u*:

$$J(\beta) = \sum_{j=0}^{p} \sum_{r>s} |\beta_{jr} - \beta_{js}| + \sum_{j=1}^{p} \sum_{r=1}^{k} |\beta_{jr}|, \text{ or}$$
$$J(\beta; \psi) = \psi \sum_{j=0}^{p} \sum_{r>s} |\beta_{jr} - \beta_{js}| + (1 - \psi) \sum_{j=1}^{p} \sum_{r=1}^{k} |\beta_{jr}|$$

Ordinal u:

$$J(\beta) = \sum_{j=0}^{p} \sum_{r=2}^{k} |\beta_{jr} - \beta_{j,r-1}| + \sum_{j=1}^{p} \sum_{r=1}^{k} |\beta_{jr}|, \text{ or}$$
$$J(\beta; \psi) = \psi \sum_{j=0}^{p} \sum_{r=2}^{k} |\beta_{jr} - \beta_{j,r-1}| + (1-\psi) \sum_{j=1}^{p} \sum_{r=1}^{k} |\beta_{jr}|$$

・ロ・ ・ 回・ ・ ヨ・ ・ ヨ・ ・ ヨ ・ のへで

41/62

Large Sample Properties

Suppose $0 \le \lambda < \infty$ has been fixed, and all class-wise sample sizes n_r satisfy $n_r/n \to c_r$, where $0 < c_r < 1$.

- The non-adaptive estimator β̂ is consistent in terms of lim_{n→∞} P(||β̂ − β*||² > ε) = 0 for all ε > 0, if β* denotes the vector of true coefficient functions β_i(u), resp. true β_{ir}.
- ▶ No consistency in terms of variable selection and the identification of relevant differences $\hat{\beta}_{jr} \hat{\beta}_{js}$.

Choose $\lambda = \lambda_n$ with $\lambda_n / \sqrt{n} \to 0$ and $\lambda_n \to \infty$.

Adaptive version for selection and fusion consistency.

Large Sample Properties

Given nominal u, we employ the adaptive penalty

$$J(\beta) = \sum_{j=0}^{p} \sum_{r>s} w_{rs(j)} |\beta_{jr} - \beta_{js}| + \sum_{j=1}^{p} \sum_{r=1}^{k} w_{r(j)} |\beta_{jr}|,$$

with adaptive weights (similarly to Zou, 2006)

$$w_{rs(j)} = \phi_{rs(j)}(n)|\hat{\beta}_{jr}^{(LS)} - \hat{\beta}_{js}^{(LS)}|^{-1}$$
 and $w_{r(j)} = \phi_{r(j)}(n)|\hat{\beta}_{jr}^{(LS)}|^{-1}$,

with $\hat{\beta}_{jr}^{(LS)}$ denoting the ordinary least squares estimator of β_{jr} .

▶ $\phi_{rs(j)}(n) \rightarrow q_{rs(j)}$ and $\phi_{r(j)}(n) \rightarrow q_{r(j)}$ respectively, with $0 < q_{rs(j)}, q_{r(j)} < \infty$. ▶ $\phi_{rs(j)}(n)$ and $\phi_{r(j)}(n)$ will usually be fixed, for example as ψ and $(1 - \psi)$.

Large Sample Properties

The adaptive version

- $\triangleright \ \beta_{-0,r} = (\beta_{1r}, \ldots, \beta_{pr})^T,$
- $\delta_j = (\beta_{j2} \beta_{j1}, \beta_{j3} \beta_{j1}, \dots, \beta_{jk} \beta_{j,k-1})^T$, $j = 0, \dots, p$.
- $\beta_{-0}^T = (\beta_{-0,1}^T, \dots, \beta_{-0,k}^T), \ \delta^T = (\delta_0^T, \dots, \delta_p^T), \text{ and } \theta^T = (\beta_{-0}^T, \delta^T).$
- C the set of indices corresponding to entries of θ which are truly non-zero, C_n the estimate with sample size n.
- $\theta_{\mathcal{C}}^*$ the true vector of θ -entries included in \mathcal{C} , and $\hat{\theta}_{\mathcal{C}}$ the corresponding estimate.

Suppose $\lambda = \lambda_n$ with $\lambda_n/\sqrt{n} \to 0$ and $\lambda_n \to \infty$, and all class-wise sample sizes n_r satisfy $n_r/n \to c_r$, where $0 < c_r < 1$. Then the adaptive penalty ensures

- (a) Asymptotic normality: $\sqrt{n}(\hat{\theta}_{\mathcal{C}} \theta_{\mathcal{C}}^*) \rightarrow_d N(0, \Sigma)$.
- (b) Selection/fusion consistency: $\lim_{n\to\infty} P(\mathcal{C}_n = \mathcal{C}) = 1$.

Response:	Monthly income	in Euro
Predictors:	Age	in years between 21 and 60
	Job tenure	in months
	Body height	in cm
	Gender	male/female
	Married	no/yes
	Abitur ($pprox$ A-levels)	no/yes
	Blue-collar worker	no/yes

Model:

 $\log(\text{Income}) = \beta_0(\text{Gender}) + \beta_1(\text{Gender})\text{Age} + \beta_2(\text{Gender})\text{Age}^2$

- + β_3 (Gender)Tenure + β_4 (Gender)Height
- + β_5 (Gender)Married + β_6 (Gender)Abitur
- + β_7 (Gender)Blue-collar + ϵ .

Coefficient paths I (adaptive estimator with fixed $\psi=$ 0.5)

Coefficient paths II (adaptive estimator with fixed $\psi=$ 0.5)

Coefficient paths III (adaptive estimator with fixed $\psi=$ 0.5)

Coefficient paths IV (adaptive estimator with fixed $\psi=$ 0.5)

(4) Multinomial Response Models

For data $(Y_i, \mathbf{x}_i), i = 1, ..., n$, with $Y_i \in \{1, ..., p\}$ denoting the response variable and \mathbf{x}_i the predictor, the multinomial logit model specifies

$$P(Y_i = r | \mathbf{x}_i) = \frac{\exp(\beta_{r0} + \mathbf{x}_i^T \boldsymbol{\beta}_r)}{\sum_{s=1}^k \exp(\beta_{s0} + \mathbf{x}_i^T \boldsymbol{\beta}_s)} = \frac{\exp(\eta_{ir})}{\sum_{s=1}^k \exp(\eta_{is})},$$

with predictor

$$\eta_{ir} = \beta_{r0} + \mathbf{x}_i^T \boldsymbol{\beta}_r,$$

where $\boldsymbol{\beta}_r^T = (\beta_{r1}, \dots, \beta_{rp}).$

More generally in the linear predictor category-specific variables $\mathbf{w}_{i1}, \ldots, \mathbf{w}_{ik}$ can be included yielding the predictor

$$\eta_{ir} = \beta_{r0} + \mathbf{x}_i^T \boldsymbol{\beta}_r + (\mathbf{w}_{ir} - \mathbf{w}_{ik})^T \boldsymbol{\alpha}, \qquad r = 1, \dots, k-1.$$

Penalized log-likelihood approach maximizes

$$I_p(\boldsymbol{\beta}) = I(\boldsymbol{\beta}) - \lambda J(\boldsymbol{\beta}).$$

Straightforward use of the lasso uses

$$J(\boldsymbol{\beta}) = \sum_{r=1}^{k-1} ||\boldsymbol{\beta}_r||_1 = \sum_{r=1}^{k-1} \sum_{j=1}^{p} |\beta_{rj}|,$$

(Friedman et al, 2010).

Drawback:

 Single effects are selected, no variable selection because one variable has k-1 effects

A Grouping Penalty for the Multinomial Logit Model

With the focus on variable selection one collects all the parameters linked to variable j in $\beta_{j}^{T} = (\beta_{1j}, \ldots, \beta_{k-1,j})$. We propose the penalty

$$\begin{split} J(\boldsymbol{\beta}) = &\gamma \sum_{j=1}^{p} s(k-1) ||\boldsymbol{\beta}_{j}||_{2} + (1-\gamma) s(1) ||\boldsymbol{\alpha}|| \\ &= \gamma \sum_{j=1}^{p} s(k-1) (\beta_{1j}^{2} + \dots + \beta_{k-1,j}^{2})^{1/2} + (1-\gamma) \sum_{j=1}^{L} s(1) |\alpha_{j}|, \end{split}$$

where γ is an additional tuning parameter that balances the penalty on the global and the category-specific variables, and $s(m) = m^{1/2}$ accounts for the number of penalized parameters within one term.

Minimization by appropriate block coordinate ascent algorithm.

Example Spatial Election Theory

Response is party

- Christian Democratic Union (CDU: 1)
- Social Democratic Party (SPD: 2)
- Green Party (3)
- Liberal Party (FDP: 4)
- Left Party (Die Linke: 5)

Global Predictors

- age, political interest (1: less interested 0: very interested),
- religion (1: evangelical, 2: catholic, 3: otherwise),
- regional provenance (west; 1: former West Germany, 0: otherwise),
- gender (1: male, 0: female),
- union (1: member of a union 0: otherwise),
- satisfaction with the functioning of democracy (democracy; 1: not satisfied 0: satisfied),
- unemployment (1: currently unemployed, 0: otherwise),
- high school degree (1: yes, 0: no)

Category-specific predictors are distances between position of the voter and the perceived position of the party on

- attitude toward immigration of foreigners
- attitude toward the use of nuclear energy
- positioning on a left-right scale

Figure: Coefficient buildups for selected global variables of party choice data.

Figure: Coefficient buildups for category-specific variables of party choice data (L denotes left right scale, R denotes the rest).

Summary

- Common shrinking methods are typically designed for metric predictors.
- In case of categorical covariates penalties must be modified.
- Quadratic regularization for smooth modeling of ordinal predictors.
- ► L₁-penalization of pairwise differences of dummy coefficients allows for:
 - Variable Selection.
 - ▶ Clustering of categories ↔ Identification of relevant differences/jumps.
- Sparser representations of varying-coefficient models with categorical effect modifiers via penalizing absolute differences and L₁-norms of coefficients.
- Simulation studies and real-world data evaluation showed:
 - Model complexity can be reduced, which facilitates interpretation.
 - Estimation accuracy can be increased.
- Appropriate Penalization allows Variable Selection in Multinomial Response Models.

References

Tutz, G (2011) Regression for Categorical Data. Cambridge University Press, to appear

Tutz, G., Binder, H. (2006): Generalized additive modelling with implicit variable selection by likelihood based boosting. *Biometrics*, 62, 961-971.

Gertheiss, J., Hogger, S., Oberhauser, C. & Tutz, G. (2011): Selection of ordinally scaled independent variables with applications to international classification of functioning core sets, *Applied Statistics* (to appear).

Gertheiss, J. & Tutz, G. (2009b): Penalized regression with ordinal predictors, *International Statistical Review*, 77, 345–365.

Gertheiss, J. & Tutz, G. (2010): Sparse modeling of categorial explanatory variables, *The Annals of Applied Statistics*, 4, 2150–2180.

Gertheiss, J. & Tutz, G. (2011): Regularization and model selection with categorial effect modifiers, *Statistica Sinica* (to appear).

Gertheiss, J. (2010): *ordPens: Selection and/or Smoothing of Ordinal Predictors*, R package version 0.1-4 (test version).

Tutz, G. & Uhlmann, L. (2011): Variable Selection for the Multinomial Logit Model with L_1 Type Penalization (Preprint)

Numerical Experiments / Finite Sample Performances Simulation design

True model on level
$$u = 1$$
:
$$y = -1 - 2x_1 + 2x_2 + 0x_3 + 0x_4 + 0x_5 + 0x_6 + 0x_7 + 0x_8 + \epsilon,$$
on level $u = 2$:
$$y = +1 - 4x_1 + 2x_2 + 2x_3 + 0x_4 + 0x_5 + 0x_6 + 0x_7 + 0x_8 + \epsilon,$$
on level $u = 3$:
$$y = +1 + 2x_1 + 2x_2 + 2x_3 - 4x_4 + 0x_5 + 0x_6 + 0x_7 + 0x_8 + \epsilon,$$
on level $u = 4$:
$$y = -1 + 1x_1 + 2x_2 + 3x_3 - 4x_4 - 2x_5 + 0x_6 + 0x_7 + 0x_8 + \epsilon.$$

> Data: balanced design with respect to u, training set size n = 400, independent test set (n = 1200), $x_i \sim U[0, 1]$ (iid), $\epsilon \sim N(0, 2)$ (iid), 100 simulation runs.

 $+\epsilon$,

 $+\epsilon$,

 $+\epsilon$,

Numerical Experiments / Finite Sample Performances

Performance measures

Errors of Parameter Estimates and Prediction:

- Empirical **MSE** of parameter estimates.
- > Prediction Accuracy: Empirical sum of squared test set errors.

Variable Selection and Fusion Performance:

- Sensitivity:
 - Variable Selection: Proportion of relevant variables which are selected.
 - Fusion / Identifying Differences: Proportion of relevant differences between coefficients which are set to non-zero.
- Specificity:
 - Variable Selection: Proportion of noise variables which are not selected.
 - Fusion / Identifying Differences: Proportion of zero differences which are set to zero.

Numerical Experiments / Finite Sample Performances

Errors of parameter estimates and prediction

We compare:

- ordinary least squares (ols) estimation,
- L_1 -regularization standard/adaptive version with fixed $\psi = 0.5$ or flexible ψ ,
- forward selection based on AIC/BIC.

method	MSE	MSEP
ols	11.380 (.380)	2.219 (.011)
stdrd, fixed ψ	7.500 (.240)	2.163 (.010)
stdrd, flex. ψ	8.183 (.455)	2.173 (.010)
adapt, fixed ψ	6.920 (.334)	2.149 (.010)
adapt, flex. ψ	7.091 (.334)	2.151 (.010)
forward select, AIC	9.755 (.414)	2.191 (.011)
forward select, BIC	10.856 (.698)	2.215 (.016)

Numerical Experiments / Finite Sample Performances

Variable selection and fusion performance

