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Abstract

Multivariate volatility has many important applications in finance, including asset
allocation and risk management. Estimating multivariate volatility, however, is not
straightforward because of two major difficulties. The first difficulty is the curse of
dimensionality. For p assets, there are p(p+ 1)/2 volatility and cross-correlation series.
In addition, the commonly used volatility models often have many parameters, making
them impractical for real application. The second difficulty is that the conditional
covariance matrix must be positive definite for all time points. This is not easy to
maintain when the dimension is high. In this paper, we develop a new approach to
modeling multivariate volatility. We name our approach Cholesky Stochastic Volatility
(CSV). Our approach is Bayesian and we carefully derive the prior distributions with
an appealing practical flavor that allows us to search for simplifying structure without
placing hard restrictions on our model space. We illustrate our approach by a number
of real and synthetic examples, including a real application based twenty of the S&P100
components.
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1 Introduction

Since the pioneering works of Rosenberg (1972) and Engle (1982), models for the evolution
of the variance have played a central role in time series analysis. Financial time series
in particular, clearly exhibit differing levels of variability as time progresses. Stochastic
volatility uses a state-space model approach. The latent state is the conditional variance of
the observed series and the state equation describes how this conditional variance evolves over
time. In this paper, we study multivariate stochastic volatility. We observe a multivariate
time series and our latent state is the conditional covariance matrix which evolves over time.
We wish to be able work with a large number of series without placing restrictions on the
form of the matrices beyond the intrinsic constraint that covariance matrix at each time be
positive definite.

Clearly, we face severe computational and modeling challenges. We focus on a strategy
that allows for straightforward use of parallel computing. We use a Bayesian approach
and develop priors that allows us to search for simplifying structure without placing hard
restrictions on the model space. Our starting point is the commonly employed approach
of reparameterizing the covariance as a series of regressions. That is, we model the joint
distribution as a marginal and then a series of conditionals. Given the basic assumption of
multivariate normality, each conditional is a linear regression. We then let all the parameters
of each regression be time-varying. Posterior computations can then be done using the well-
known Forward-Filter, Backward-Sampler (FFBS) algorithm of Carter & Kohn (1994) and
Frühwirth-Schnatter (1994). Posteriors of time-varying residual variances are computed
using the method proposed by Kim, Shephard & Chib (1998). While the basic components
of our approach are well known, we describe how to optimally use parallel computations and
document the gains in time. Crucially, we develop innovative priors which we have found to
be essential to make the whole thing work.

Our Cholesky stochastic volatility model is introduced and discussed in Section 2. Section 2.1
reviews the current literature on multivariate stochastic volatility models. Section 2.2 de-
tails the time-varying regression approach and the relationships between the time-varying
regression parameters, the covariance matrix, and the Cholesky decomposition. Section 2.3
illustrates the ideas and output of the approach by displaying the results obtained in a simple
example with p = 3 series of asset returns. Section 3 details the Markov Chain Monte Carlo
algorithm for posterior computation and the parallel computing strategy. Section 4 presents
our new prior and illustrates its effects. Section 5 presents real and simulated examples with
the number of series ranging from p = 3 to p = 20. Section 6 concludes the paper.

2 Cholesky stochastic volatility

Let Yt denote our random vector of dimension p observed at time t, with

Yt ∼ N(0,Σt).
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We assume that any mean structure has been subtracted out as part of a larger MCMC al-
gorithm. The main focus is on modeling the dynamic behavior of the conditional covariance
matrix Σt. Two challenges arise in the multivariate context. Firstly, the number of distinct
elements of Σt equals p(p+ 1)/2. This quadratic growth has made the modeling Σt compu-
tationally very expensive and, consequently, has created up to a few years ago a practical
upper bound for p. The vast majority of the papers available in the literature employed a
small p or use highly parameterized models to simplify the computation. For instance, Engle
(2002) and Tse & Tsui (2002) proposed dynamic conditional correlation (DCC) models that
employ two parameters to govern the time evolution of correlations. The DCC models are
often rejected in empirical volatility modeling. Secondly, the distinct elements of Σt can
not be modeled independently since positive definiteness has to be satisfied. Section 2.1
briefly reviews the literature on multivariate stochastic volatility models, while Section 2.2
introduces our proposed Cholesky stochastic volatility model. A simple illustrative example
is then presented in Section 2.3.

2.1 Brief literature review

There are at least three ways to decompose the covariance matrix Σt. In the first case,

Σt = DtRtDt

where Dt is a diagonal matrix with the standard deviations, Dt = diag(σ1t, . . . , σpt), and Rt

is the correlation matrix. The above two challenges remain in this parametrization, i.e. the
number of parameters increases with p2 and Rt has to be positive definite. In the second
case, a standard factor analysis structure is used to produce

Σt = βtHtβ
′
t + Ψt

where βt is the p × k matrix of factor loadings and is block lower triangular with diagonal
elements equal to one. Ψt and Ht are the diagonal covariance matrices of the specific factors
and common factors, respectively. This is the factor stochastic volatility (FSV) model of
Harvey, Ruiz & Shephard (1994), Pitt & Shephard (1999), Aguilar & West (2000), and,
more recently, Lopes & Migon (2002), Chib, Nardari & Shephard (2006), Han (2006), Lopes
& Carvalho (2007) and Philipov & Glickman (2006a), to name just a few1.

In this paper we take a third alternative that decomposes Σt via a Cholesky decomposition
as

Σt = AtHtA
′
t

1Philipov & Glickman (2006a) extended the FSV model by allowing Ht to follow a Wishart random
process and fit a 2-factor FSV to model the covariance of the returns of p = 88 S&P500 companies. Han
(2006) fitted a similar FSV model to p = 36 CRSP stocks. Chib et al. (2006) analyzed p = 10 international
weekly stock index returns (see also Nardari & Scruggs, 2007). Lopes & Carvalho (2007) extended the FSV
model to allow for Markovian regime shifts in the dynamic of the variance of the common factors and apply
their model to study p = 5 Latin America stock indexes.
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where AtH
1/2
t is the lower triangular Cholesky decomposition of Σt. Ht is a diagonal matrix,

the diagonal elements of At are all equal to one and, more importantly, its lower diagonal
elements are unrestricted since positive definiteness is guaranteed. In the next section we
show that there will be p(p + 1)/2 dynamic linear models to be estimated and 3p(p + 1)/2
static parameters. When p = 30, for example, there are 465 latent states and 1395 static
parameters.

The Cholesky decomposition approach has been studied elsewhere. Uhlig (1997) and Philipov
& Glickman (2006b), for example, proposed models for the covariance matrix based on the
temporal update of the parameters of a Wishart distribution (see also Asai & McAleer, 2009).
Uhlig (1997) models Σ−1

t = B−1
t−1Θt−1(B

−1
t−1)

′ν/(ν + 1), where Θt−1 ∼ Beta ((ν + pq)/2, 1/2),

Bt = AtH
1/2
t and Beta denotes the multivariate Beta distribution (Uhlig 1994). See also

Triantafyllopoulos (2008) for a similar derivation in the context of multivariate dynamic
linear models. Philipov & Glickman (2006b) model Σ−1

t ∼ W (ν, S−1
t−1), where S−1

t−1 =
1
ν
(C1/2)(Σ−1

t−1)
d(C1/2)′, such that E(Σt|Σt−1, θ) = ν(C−1/2)(Σt−1)

d(C−1/2)′/(ν − p − 1). The
parameter d controls the persistence in the conditional variance process. A constant covari-
ance model arises when d = 0, so E(Σt) = νC−1/(ν−p−1) and C plays the role of a precision
matrix. When d = 1 and C = Ip, it follows that E(Σt) = Σt−1 so generating random walk
evolution for the conditional covariance. See Dellaportas & Pourahmadi (2011) for a similar
model for time-invariant A and Ht following GARCH-type dynamics2. A thorough review of
the multivariate stochastic volatility literature up to a few years is provided in Asai, McAleer
& Yu (2006) and Lopes & Polson (2010).

2.2 Time-varying triangular regressions

In this section we lay out our basic parametrization of the time varying covariance structure.
Let Yt denote the mean-corrected vector of asset returns at time t, with Yt ∼ N(0,Σt).
We assume that any mean structure has been subtracted out as part of a larger MCMC
algorithm. The dependence structure between components of Yt is captured by a sequential
regression structure. The regression structure represents a reparametrization of Σt. We allow
all parameters of the regression structure to be time-varying.

Recall that Yt ∼ N(0,Σt) and let Σt = AtHtA
′
t where AtH

1/2
t is the lower triangular Cholesky

decomposition of Σt. The matrix At is lower triangular with ones in the main diagonal and
Ht = diag(ω2

1t, . . . , ω
2
pt). Therefore,

A−1
t Yt ∼ N(0, Ht).

Let the (i, j) element of the lower triangular matrix A−1
t be −φij for i < j, while the diagonal

element (i, i) is one. It follows that the joint normal distribution for Yt, that is N(0,Σt), can

2Uhlig (1997) models daily/current prices per tonne of aluminium, copper, lead and zinc, i.e. p = 4,
exchanged in the London Metal Exchange. Philipov & Glickman (2006b) fit their model to returns data on
p = 5 industry portfolios. Dellaportas & Pourahmadi (2011) model exchange rates of the US dollar against
p = 7 other country/regions.
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be rewritten as a set of p recursive conditional regressions where

Y1t ∼ N(0, ω2
1t) (1)

and, for i = 2, . . . , p,

Yit ∼ N(φi1tY1t + φp2tY2t + · · ·+ φi(i−1)tY(i−1)t, ω
2
it). (2)

Once φijts and ω2
its are available, so are A−1

t (and At), Ht and, consequently, Σt = AtHtA
′
t.

To make Σt fully time-varying without any restrictions, we simply make each parameter in
the regression representation time-varying. More precisely,

φijt ∼ N(αij + βij φij(t−1), τ
2
ij) (3)

for i = 2, . . . , p and j = 1, . . . , i− 1, and

dit ∼ N(αi + βi di(t−1), τ
2
i ) (4)

for dit = log(ω2
it) and i = 1, . . . , p.

The actual parameters we work with are the φijts and dits. These parameters are our states
variables in the state equations (3) and (4), while the recursive conditional regressions (or
simply triangular regressions) are our observation in the observation equations (1) and (2).
Our Cholesky stochastic volatility model comprises equations (1) to (4).

2.3 A simple example

In this section we present a simple example to illustrate the ideas in Section 2.2. Our example
has p = 3 series. Each series consists of weekly returns of a firm in the S&P100. In Section 5
we will consider p = 20 series.

The top panels of Figure 1 are time series plots of the three series in Yt. The middle panels
show the time-varying standard deviations and the bottom panels show the time varying
correlations. The solid lines in the middle and bottom panels are plots of the posterior
means of the standard deviations and correlations. The dashed lines in the middle and
bottom panels are estimates obtained using a moving window of 50 observations. At each
time t, we compute the sample covariance of 50 observations centered at t. We then plot the
corresponding sample standard deviations and correlations.

The estimates in the middle panels clearly capture the volatility patterns evident in time-
series plots of the data. Overall, the second series is more volatile. All series are less volatile
in the later part of the data. There is a clear time segment with increased volatility for
the second series around t = 1, 000. The posterior means are a “smoothed” version of the
estimates obtained from the simple moving-window approach.
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The estimates in the bottom three panels show that there is time variation in the level of
correlation amongst the three series. As with the standard deviations in the middle panels,
the posterior mean appears to be a nice smooth of the sample quantities obtained from the
moving-window. Unlike the standard deviations, the time-varying correlation cannot be seen
easily in the time-series plots of the data.

Notice that the estimates of the time varying-correlations obtained from the moving-window
are much more variable than those of the standard-deviations. Apparently, the correlations
are more difficult to estimate. Of course, we could make the moving-window estimates
smoother by increasing the size of the window. We control the smoothness of the posterior
means through the choice of prior as discussed in Section 4. Choosing the size of window
or “band-width” is always a difficult and important issue in practice. These issues become
acute for large p. A basic assertion of this paper (and others like it) is that the Bayesian
approach, with careful prior choice, is more effective in practice than any moving-window or
simple smoothing approach, especially for large p.

Figure 1 about here.

Figure 1 presents point estimates. Our Bayesian approach also allows us to assess the
uncertainty. Figure 2 displays our inference for {ρ12t}, the time-varying correlation between
Y1 and Y2. The solid line in the middle is the posterior mean (this is the same as in the bottom
left panel of Figure 1). The smooth lines above and below the center lines give pointwise
90% posterior intervals for ρ12t at each t. The more jumbly line is the estimate from the
moving window (again, just as in Figure 1). The interval at time t = 900 is (−0.32,−0.011)
while the interval at time t = 1500 is (0.12, 0.43). The intervals indicate that, while there
is substantial uncertainty, the dependence structure at time t = 900 is quite different from
that at time t = 1500.

Figure 2 about here.

Figure 3 displays the posteriors means of the actual states underlying our state-space repre-
sentation of the time-varying Σt. The reader may wish to refer back to the first three lines of
the first equation of Section 2.2. The diagonal panels plot the time series of posterior means
of d1t, d2t and d3t, respectively. Time series of the posterior means of φ21t, φ31t and φ32t are
shown in the middle left, bottom left and bottom middle panels, respectively. The top left
panel of Figure 3 is quite easy to understand. For the first series, we are simply estimating
univariate stochastic volatility, so that σ1t = ω1t, ω1t = exp(d1t/2), and σ1t = exp(d1t/2).
Hence, the pattern is very similar to that of the top left panel of Figure 1. The patterns in
bottom left panel of Figure 1 and middle left panel of Figure 3 also correspond fairly closely
since ρ12t is strongly related to φ12t. After that, things are less transparent as detailed in
Section 2.2.
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Figure 3 about here.

For larger p it is quite difficult to display the fit of the model. In order to illustrate the fit
and use of the model, we consider a simple application in the case where all of our series are
asset returns. Let wt denote the portfolio weights of the global minimum variance portfolio.
That is, w minimizes w′ Σ w subject to the constraint that

∑
wi = 1, or

w(Σ) =
Σ−1 1p

1′p Σ−1 1p
,

where 1p is a vector of ones. Figure 4 plots the posterior means of the components of w(Σt).
The dashed vertical lines at the ends of the time series plots indicates 80% posterior intervals
for the weights at the final time. While the global minimum variance problem is admittebly
a very stylized problem, we can still infer that the substantial time variation in both the
volatility and dependence structure could have considerable implications for portfolio choice.

Figure 4 about here.

3 Posterior inference

We detail here the Markov Chain Monte Carlo algorithm for posterior computation of our
CSV model introduced in Section 2.2. We also discuss how parallel computing can ease the
heavy computational burden for moderate and large systems.

3.1 MCMC algorithm

Let p denote the number of series and T denote the number of time series observations on each
series. Let Yi = {Yit}Tt=1 and di = {dit}Tt=1, i = 1, 2, . . . , p. Let φij = {φijt}Tt=1, i = 1, 2, . . . , p,
j = 1, 2, . . . , (i − 1). That is, Yi is the time series of observations on the ith variable, di
is the time-varying state corresponding to the residual variance of the regression of Yit on
Yjt, j < i, and φij is the time-varying state corresponding to the regression coefficient of Yit
on Yjt. Let di0 and φij0 denote initial states.

With p(·) denoting a generic probability density function, the full joint distribution of every-
thing we need to think about is then given by the product of the following four hierarchical
terms:

• Likelihood:
∏p

i=1 p(Yi | Y1, . . . , Yi−1, di, φi1, . . . , φi(i−1)),

• (d, φ) states:
∏p

i=1 p(di | αi, βi, τi, di0)
∏

j<i p(φij | αij, βij, τij, φij0),
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• AR parameters:
∏p

i=1 p(αi, βi, τi)
∏

j<i p(αij, βij, τij), and

• Initial states:
∏p

i=1 p(di0)
∏

j<i p(φij0).

The terms p(α, β, τ) and p(s0) (with i and j dropped and s standing for d or φ) denotes
our prior on the parameters of the autoregressive specification of the state evolution and our
prior on the initial state, respectively. The choice of this prior is a key component of our
approach and is discussed in Section 4.

Our Markov Chain Monte Carlo is a (large-scale) Gibbs sampler where we (efficiently) draw
from the following full conditional distributions (with ◦ denoting “everything else”):

• d states: (di0, di) | ◦,

• φ states: (φij0, φij) | ◦,

• d AR parameters: (αi, βi, τi) | ◦,

• φ AR parameters: (αij, βij, τij) | ◦.

The key property in this potentially large system is that, in the conditionals above, the states
and parameters for a given equation are independent of the states and parameters of the
other equations. This is readily seen in the structure of the full joint given above. Thus, to
draw di, we simply compute Ỹit = Yit −

∑
j<i φijt Yjt and use standard methods developed

for univariate stochastic volatility given the model:

Ỹit ∼ N(0, exp{dit/2}),
dit ∼ N(αi + βi di(t−1), τ

2
i ).

Similarly, the draw of φij reduces to the analysis of a basic dynamic linear model (DLM) for

Ỹijt = Yit −
∑

k<i,k 6=j φikt Ykt:

Ỹijt ∼ N(φijt Yjt, exp{dit/2}),
φijt ∼ N(αij + βij φij(t−1), τ

2
ij).

The draws of the AR parameter also reduce to consideration of a single state,

(αi, βi, τi) | ◦ ≡ (αi, βi, τi) | (di0, di),

(αij, βij, τij) | ◦ ≡ (αij, βij, τij) | (φij0, φij).

Thus, all the φij draws reduce to simple applications of FFBS and all of the di draws reduce
to univariate stochastic volatility (we use the method of Kim, Shephard and Chib (1998),
again based on the FFBS).
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In order to keep the entire system manageable for large p, we use a univariate DLM for each φ
in each equation rather than running a multivariate FFBS to jointly draw all the φ series for
a given equation. This approach avoids a great many high-dimensional matrix operations.
Potentially, this could put dependence into our chain depending upon the application. This
does not seem to be a severe problem in our examples.

Thus, the whole thing boils down to repeated applications of the basic Gibbs sampler that
cycles through (s0, s) | (α, β, τ) and (α, β, τ) | (s0, s), where s denotes a state series and s0 the
intial state. Since we need to put a strong prior on (α, β, τ) there is unavoidable dependence
in the basic chain. Because of this dependence, we have found it useful to draw (α, β, τ)
jointly.

3.2 Parallel processing

One of the strengths of our CSV framework is that the triangular representation of the
model naturally leads to parallelization in the MCMC scheme. More specifically, the Ti-
dimensional state-space vector (di, φi1, . . . , φi,i−1) and the 3i-dimensional parameter vector
(αi, βi, τi, αi1, βi1, τi1, . . . , αi,i−1, βi,i−1, τi,i−1) corresponding to the ith recursive conditional re-
gression can be drawn independently from the other recursive conditional regressions.

However, it is well known that sampling di (log-volatilities) is more computationally expen-
sive (more time consuming) than sampling φij. In fact, for a small to moderate i, it is likely
that the computational burden is due to di almost exclusively. Let cd, cφ and cθ be the
computational cost (in seconds, for instance) to draw the T -dimensional vectors di and φij
and the 3-dimensional vectors (αi, βi, τi), for any i and j (see full conditional distributions
in Section 3.1). Usually cθ is negligible when compared to cd and cφ. The cost to draw the
states from recursive conditional regression i is ci = cd + (i− 1)cφ + icθ, and the total cost is

c = κ1(p)cd + κ2(p)cφ + κ3(p)cθ

where κ1(p) = p, κ2(p) = p(p − 1)/2 and κ3(p) = p(p + 1)/2. Similarly, the total cost of
running regressions ia + 1 to ib (ib − ia regressions) is

cia:ib = ∆κab1 cd + ∆κab2 cφ + ∆κab3 cθ

where ∆κabj = κj(ib)−κj(ia), for j = 1, 2, 3. Assume that computation can be split in between
two parallel processors. Due to the imbalance between (mainly) cd and cφ (and cθ), it is not
immediately obvious which recursive conditional regression i1 will make c1:i1 = c(i1+1):p = c/2.
Similarly, what are the optimal i1 and i2 when three processors are available? In general, for
m processors, the goal is to find the cut-offs (i1, i2, . . . , im−1) such that the cost within each
group of recursive conditional regressions is the same:

c1:i1 = c(i1+1):i2 = · · · = c(im−2+1):im−1 = c(im−1+1):p = c/m.
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The search for the cut-offs is performed recursively with i1 selected from {1, . . . , p} such that
c1:i1 < c/m and c1:(i1+1) > c/m, i2 selected from {i1 + 1, . . . , p} such that c1:i2 < 2c/m and
c1:(i2+1) > 2c/m, and so forth.

Figure 5 provides an illustration when there are p = 100 time series and up to m = 20
processors. The costs (cd, cφ, cθ) = (30, 2, 0) are based on actual run times (in seconds) for
T = 2516 time points and 10,000 MCMC draws. It takes 15 times longer to draw di than it
does to draw φij. These costs were based on our code running in a 2.93 GHz Intel Core 2
Duo processor. For m = 1 processor, the total cost is 215 minutes. For m = 2 processors,
i1 = 67 and the cost per processor is 107 minutes. For m = 3 processors, (i1, i2) = (52, 79)
and the cost per processor is 71 minutes. For m = 4 processors, (i1, i2, i3) = (44, 67, 84)
and cost per processor is 53 minutes. For m = 20 processors, cost per processor is about 11
minutes.

Figure 5 about here.

4 Prior specification

For each i = 1, 2, . . . , p we need to specify priors for the initial condition di0 and the AR pa-
rameters (αi, βi, τi). For each i = 2, 3, . . . , p and j = 1, 2, . . . , (i−1) (a total of p(p− 1)/2 in-
stances) we need to specify priors for the initial state φij0 and the AR parameters (αij, βij, τij).
The choice of these priors is key to any approach that hopes to work for large p since it is
only through these priors that we can smooth or “regularize” our high-dimensional model.
The choice of these priors is, inevitably, influential.

We start by assuming that we are able to standardize our observations so each variable may
be thought of as being on the same scale. To center ideas at a familiar location, we think
of the base case as Σt = I, where I is the p × p identity matrix. This leads to the simple
practical expedient of initially dividing each series by its sample standard deviation (we have
already assumed the data is centered). We emphasize however, that is not necessary to use
this data driven approach and a more subjective approach to using a common scale may be
used.

Even with common-scale data we may want to choose different priors for different states.
There are many more φ series than d series, so a stronger prior may be useful. If we had the
prior belief that k factors drive the p series then we might want to tighten up our priors for
k < j < i. In this way we can shrink towards a factor model without imposing it.

For the rest of this section we focus on the specification of a prior for s0 and (α, β, τ) in the
univariate state-space model

Yt = f(st, xt, Zt), st = α + β st−1 + εt, εt ∼ N(0, τ 2),
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where both Zt and εt are the random shocks in the observation and state equations respec-
tively. As discussed in Section 3, all of our state draws reduce to this case. In our application,
st is either φijt (in which case f is linear), or st is dit.

4.1 The initial state

Thinking of our prior as roughly centered at Σt = I, it we can shrink s0 towards zero in both
the case where s stands for a d state or a φ state. Shrinking φ towards zero shrinks towards
independence and shinking d towards zero shrinks towards a variance of exp(0) = 1.

To shrink towards zero we use a mixture prior along the lines of that used by George &
McCulloch (1992) for variable selection:

s0 ∼ γ N(0, (cw)2) + (1− γ)N(0, w2)

γ ∼ Bernoulli(p).

The variable γ is a latent variable which we introduce for each d and φ state. The basic
Gibbs sampler discussed in Section 3 is augmented with draws (for each d and φ)

γ | ◦ ≡ γ | s0.

Conditional on a draw of γ, we have a normal prior for the initial state with mean zero and
standard deviation w in the case γ = 0 and standard deviation (cw) in the case γ = 1. This
makes our repeated applications of FFBS straightforward.

In all applications in this paper we use p = 0.5, w = 0.1 and c = 10. This is a fairly weak
prior. In most applications, interest is not focused on the initial time periods. This prior
gives us a very simple way to stabilize results in those applications where the initial parts of
the series are of interest.

4.2 A mixture prior for AR parameters

In this section we present a mixture prior for (α, β, τ). We found the standard normal and
inverted chi-squared priors to be inadequate. With τ 2 ∼ νλ/χ2

ν , we could not find choices
of (ν, λ) that worked well in a variety of applications. The basic notions our prior must be
able to express are (i) we may want τ small, and (ii) the cases

Case (1): (α, β) = (0, 1)

Case (2): β = 0

Case (3): (α, β) = (0, 0)
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are of particular interest. Our prior mixes over these three cases and the residual case
β ∈ (0, 1). We put zero prior weight on β < 0.

Case (1) corresponds to the classic “random-walk” prior. With τ small, this prior succinctly
expresses the notion that the state evolves smoothly. Just using (α, β) = (0, 1) and a
version of our τ prior given below (which pushes τ towards small values) is not a bad
option, paricularly for large p. However, we found it useful to develop a more flexible
prior by including the other components to give the investigator additional options whose
attractiveness may depend on the application. Case (2) says the state simply varies about
a fixed level α. With small τ this is practically equivalent to a fixed value for the state.
Case (3) says that the state is fixed near zero, which, given our standardization, is a value
of interest for both d states and φ states.

Note that in some cases the posterior is largely identified by the prior. A near constant state
can be achieved with (α, β) = (0, 1) (Case (1)) or (α, β) = (α, 0) (Case (2)), given τ small,
and the data does not care how you do it. Depending on the application, the user may
choose to weight different mixture components. For example, if we are only extrapolating a
few periods ahead, β ≈ 1 may be fine. If, however, we are foolish enough to predict farther
ahead, we may be more comfortable going with β ≈ 0, if the data allows it. As usual,
the mixture representation allows us to push the inference in desired directions, without
imposing it.

We have chosen not to consider the case τ = 0. There is no great practical advantage in
considering τ to be zero as opposed to small. Our experience suggests that the key is to be
able to weight the cases enumerated above in a flexible manner and draw (α, β, τ) | (s0, s)
jointly.

In order to make a joint draw and have a minimally restricted choice of prior specification, we
put β and τ on a bivariate grid. We then restrict ourselves to a normal density for p(α |β, τ).
Given this normal prior we can integrate out α analytically to obtain p(β, τ | s0, s) which
is used to draw from the bivariate grid. Given a draw of (β, τ), we are in a conditionally
conjugate situation so that the draw of α | β, τ, s0, s is just a normal. The likelihood is that
of a univariate regression, so that all of these computations are easy and fast and based on
a small number of sufficient statistics.

To specify a prior for τ on a grid of values, we first choose minimum and maximum values
τmin and τmax. Using n grid points, we have evenly spaced values (t1, t2, . . . , tn) with t1 = τmin
and tn = τmax. We let P (τ = τmin) ≡ pmin. For i > 1, P (τ = ti) ∝ exp(−cτ |ti−τmin|). Thus,
our τ prior has the four hyper-paramters (τmin, τmax, pmin, cτ ). This prior is very simple. We
pick an interval, and then our choice of cτ determines the degree to which we push τ towards
smaller values. In principle, this could be done with the commonly used prior, τ 2 ∼ ν λ/χ2

ν .
We found it very difficult to choose values for ν and λ that gave consistently good results.

To specify a prior for β ∈ (0, 1), on a grid of points (b1, b2, . . . , bn), we let p(β = bi) ∝
n(bi | β̄, σ2

β), where n(· | β̄, σ2
β) denotes a normal density with mean β̄ and standard deviation

σβ. Values we use in application are β̄ = 1.0 and σβ = 1.0.
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Our full mixture prior has the form

p(α, β, τ) = p01 p(τ | β = 1) δ{α=0,β=1}

+ p00 p(τ | β = 0) δ{α=0,β=0}

+ pu0 p(τ | β = 0) p(α | β = 0, τ) δ{β=0}

+ puu p(β) p(τ | β 6= 0) p(α | β 6= 0, τ),

where p01, p00, pu0, and puu are the mixture weights of our four components. The notation
δx represents the distribution such that x happens for sure. p01 is the probability that
(α, β) = (0, 1), p00 is the probability that (α, β) = (0, 0), pu0 is the probability that β = 0
and α is unrestricted, and puu is the probability that β ∈ (0, 1) and α is unrestricted. p(τ |β)
denotes a discrete distribution on a grid as dicussed above. We allow for the possibility that
the choice of the parameters (τmin, τmax, pmin, c) could depend on β. We may want to suggest
smaller values of τ when β = 0. For example, in all our applications, the choice of c given
β = 0 is twice the value used for non-zero β. p(β) is the discrete distribution described
above.

As discussed previously, our computational approach constrains us to choose a normal dis-
tribution for α | β, τ . However, we are free to let the paramters of normal depend on β and
τ in any way. We use,

α | β, τ ∼ N(0, σ2
α (1− β2)).

When β = 0 we simply have α ∼ N(0, σ2
α). As β increases, we shrink our prior down towards

the case where α = 0 at β = 1. A choice used in application is σα = 2.0.

4.3 Mixture prior examples

In this section we illustrate our prior on (α, β, τ) in the simple normal dynamic linear model,

Yt = xt st + Zt, st = α + β st−1 + εt, εt ∼ N(0, τ 2).

We simulate series of length T = 200 with Var(Zt) = 0.1, s0 = 0, and xt ∼ N(0, 9). As
discussed in Sections (3) and (4.1), the posterior is computed using the Gibbs sampler with
full conditionals given by i) (s0, s) | (α, β, τ), γ, y, x, ii) (α, β, τ) | (s0, s), γ, and iii) γ | s0.

In all three examples, we have (p, w, c) = (0.5, 0.1, 10) for the γ prior, (β̄, σβ) = (1.0, 1.0) for
the β prior, σα = 2.0 for the α prior, and τmin = 0.005 (when β 6= 0) or τmin = 0.001 (when
β = 0) and pmin = 0.5 for the τ prior. Also, cτ is twice as big when β = 0 as it is when
β 6= 0. We consider three different settings for the remaining hyper-parameters p01, p00, pu0,
puu, τmax, and cτ :

Prior 0 : p01 = 0.50, p00 = 0.15, pu0 = 0.15, puu = 0.20, τmax = 0.15, cτ = 100.

Prior 1 : p01 = 0.85, p00 = 0.05, pu0 = 0.05, puu = 0.05, τmax = 0.05, cτ = 200.

Prior 2 : p01 = 0.85, p00 = 0.05, pu0 = 0.05, puu = 0.05, τmax = 0.02, cτ = 300.
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As we go from prior 0 to prior 2, we tighten up our prior on smaller values of τ by decreas-
ing τmax and increasing cτ . Priors 1 and 2 put more weight on the random-walk mixture
component than prior 0.

Figure 6 displays prior 0. The top two panels are density smooths of prior 0 draws of β and
τ respectively. The density smooths naturally “jitter” the draws (add a bit of normal noise)
so that our mixture of discrete and continuous distributions can be displayed as a single
continuous distribution. The marginal for β displays our preference for expressing a smooth
state with either β ≈ 0 or β ≈ 1 with more weight being given to the vicinity of 1. The prior
for τ expresses our desire for small values. Again, this is driven by our desire for a smooth
state. The two τ modes reflect the choice of a smaller τmin when β = 0. In this case the
two modes are not very separated so this aspect of our prior has little practical effect. If we
separated these modes more dramatically, we could use this aspect for our prior to identify
β ≈ 0 versus β ≈ 1 be saying you can only have a really small τ if β ≈ 0. The long right
tail of our τ prior allows the data to push the inference towards larger values if needed.

The bottom two panels of Figure 6 display the joint prior of (α, β). The bottom left panel
displays contours from a bivariate smooth of prior 0 draws of (α, β). The bottom right panel
is a scatterplot of jittered prior 0 draws of (α, β). In the bivariate distribution we can see
our preference for (α, β) ≈ (0, 1) or (α, β) ≈ (0, 0) with more weight given to the first pair of
values. As β decreases, the conditional prior for α becomes more spread out. The contours
appear to tighten as β approaches 0 because the choice (β̄, σβ) = (1, 1) puts weight on larger
β.

Figure 6 about here.

First simulated example. We set (α, β, τ) = (0, 1, 0.04), which is consistent with the
random-walk component of our mixture prior, and use prior 0. The results are depicted in
Figure 7). The top left panel plots the time series of y and the top middle panel plots x
against y. The top right panel plots the simulated {st} state sequence and the posterior
mean of the draws of s from our Gibbs sampler. The posterior mean does a good job of
tracking the true state sequence. The bottom panels show the MCMC draws of α, β, and
τ , respectively. Virtually all the draws of α and β are exactly equal to the true values of 0
and 1, respectively. Of course, if we drew long enough, we would get some (α, β) draws not
equal to (0,1), but our mixture prior, gives us a very sharp posterior. The draws of τ vary
about the true value of 0.04.

Figure 7 about here.

Figure 8 plots the posterior means of the states (as in the top right panel of Figure 7)
obtained using all three of our priors. The posterior means corresponding to priors 0 and 1
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are virtually identical and plot almost right on top of each other. The posterior mean from
prior 2 is the smoother fit. Prior 2 has a tighter prior on smaller values of τ resulting in a
smoother inference for the states.

Figure 8 about here.

Second simulated example. We set (α, β, τ) = (0, 0.8, 0.1) and use prior 0. Figure 9
has the same format as Figure 7. The posterior mean does a very good job of fitting the
simulated states. The draws of α are very tight about the true value. The draws of τ
cover the true value, but the prior shinks the posterior somewhat towards smaller values.
The draws of β are more interesting. With a 50% prior weight on β = 1, we see that the
posterior draws split their time between β = 1 and variation about the true value of β = 0.8.

Figure 9 about here.

Third simulated example. We set (α, β, τ) = (0.5, 0, 0.01) and use prior 0. Figure 10
reports results. In this case the state varies very slightly about the fixed level of 0.5. The
state is fit very well and is essentially a flat line. The posteriors of α and β show that our
posterior is concentrated on the mixture component where β is zero with α unrestricted and
the component where β is in (0, 1). 50% of the draws have β = 0, so the posterior probability
of that mixture component is about 0.5 compared with the prior probability of 0.15.

The posterior for τ covers the true value. However, the draws exhibit substantial dependence.
In the case where the state is essentially constant, we can fit the data with any (α, β)
combination as long as τ is small. This, combined with the dependence built into the sampler
which draws the state given the parameters and the parameters given the state, can lead to
chains with strong dependence. The dependence can always be “remedied” by choosing a
strong prior and how this prior is chosen will depend on the goals of the application. For
example, setting p01 = 1, will certainly simplify things and give reasonable inference for the
states. However, we feel that the full mixture prior provides the investigator with additional
options.

Figure 10 about here.
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5 Illustrations

5.1 A simulated example

In this section we present results from a simple simulated example. We let p = 3, Σ0 be
the identity and Σ1 be the covariance matrix corresponds to standard deviations of σ1 = 4,
σ2 = 1, σ3 = 0.25, and correlations ρ12 = ρ23 = 0.9, ρ13 = 0.81. We then let Σt =
(1−wt) Σ0 +wt Σ1 where wt increases from 0 to 1 as t goes from 1 to T . At each t we draw
Yt ∼ N(0,Σt). We simulate T = 500 tri-variate observations.

Results obtained using priors 0 and 1 from Section 4.3 are shown in Figure 11 and Figure 12
respectively. The same (α, β, τ) prior was used for each of the six state series (three d
state series and three φ state series). The time-varying standard deviations are plotted in
the diagonal panels and the (i, j) correlation is plotted in the (i, j) lower panel below the
diagonal. The very smooth line is the true value, the lighter smooth line is the posterior mean
of the parmameter (σit or ρijt) and the dashed line is the estimate obtained by computing
the standard sample covariance of a moving window of observations. The moving window
for estimation of Σt, includes all available observations within 50 time periods of t.

In both cases the posterior mean seems to nicely smooth the evidence from the data, with
the tighter prior 1 giving smoother results.

Figures 11 and 12 about here.

5.2 Return predictors

Pástor & Stambaugh (2009) develop a predictive systems approach for investigating market
return predictability. In Pástor & Stambaugh (2011) the predictive systems approach is used
to assess the widely held belief that it is wise to invest in stocks when investing “for the long
run” with the rather startling suggestion that this may not be the case.

The predictive systems approach is an vector autogression (VAR) for the observed market
return, the observed variables thought to be predictive of market returns, and the unobserved
expected value of the market return at time (t+1) given information at time t. Three predic-
tor variables are used in Pástor and Stambaugh’s empirical results giving a five-dimenional
VAR.

In the predictive systems model the covariance matrix of the innovations in the VAR is
assumed to be constant over time. Pástor & Stambaugh (2011) discuss the possibility that
the error covariance matrix may be time varying and argue that the basic results of the
paper would not change if this was the case. However, no attempt is made to see what the
data has to say about time variation. In this section we use the methods of this paper to
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show that there is evidence of time variation. Carvalho, Lopes & McCulloch (2011) assess
long run investment in stocks in the presence of multivariate stochastic volatility.

We focus on the three predictor variables (and thank Pástor and Stambaugh for providing us
with the data). Allowing time variation for the covariance of market returns and expectation
involves complex issues of prior specification discussed in Carvalho et al. (2011). The three
predictor variables are dividend yield, consumption-wealth ratio (CAY), and bond-yield. We
have quarterly data from 1952-Q1 to 2008-Q4 giving 228 quarters of observations. To get a
simple look at the error distribution and demean the series, we used least-squares to fit first
order autoregressive models, or AR(1) models, to each series individually and work with the
residuals from these fits.

The data and inference are displayed in Figure 13. We used Prior 1 of Section 4.3. The top
three panels plot the times series of AR(1) residuals (labelled y1, y2, and y3, respectively).
The lines in the data plots are at ± 2 σ̂it where σ̂it is the posterior mean as estimated by
our MCMC. The third series clearly exhibits time variation in the volatility. The first series
suggests time variation, but not as strongly as the third. There is no clear indication of time
variation for the second series.

The middle three panels report inference for the σit, i = 1, 2, 3 and the bottom three report
inference for ρ21t, ρ31t, and ρ32t. In each plot the solid line in the middle is the posterior
mean, the dotted inner lines are the pointwise (at each t) 50% posterior intervals and the
outer dashed lines are 95% intervals. While pointwise intervals are somewhat unsatisfactory,
the middle panels do tend to confirm our impression from the data that the third series
has time varying volatility. The bottom three panels suggest that there is strong, but not
overwhelming evidence for time variation in ρ31t and ρ32t.

Figure 13 about here.

Figure 14 investigates the senstivity of our results to the choice of prior. Posterior means
are plotted for three different prior specifications. The top three panels are for σit and
the bottom three panels are for ρ21t, ρ31t, and ρ32t (as in the middle and bottom rows of
Figure 13). The vertical range for each σit is (0.2 σ̂i, 1.8 σ̂i) where σ̂i is the sample standard
deviation of the ith series. The solid line in each plot corresponds to Prior 1 from Section 4.3
(thus repeating information from Figure 13). The dashed lines correspond to Prior 0 from
Section 4.3. Compared to Prior 1, Prior 0 puts more weight on larger τ and more weight on
mixture components with β = 0. For the ρijt and σ2t there is negligible difference between
the Prior 0 results and the Prior 1 results. For σ1t and, particularly, σ3t, the results from
Prior 0 indicate more substantial variation in the volatility.

The dot-dash line in Figure 14 corresponds to a third prior having p00 = 0.1, pu0 = 0.4,
p01 = 0.1, and puu = 0.4. This prior puts more weight on β = 0 than the other two priors.
Given β = 0, the prior on τ is specified by the choices τmin = 0.001, and cτ = 400. Given
β = 1, the prior on τ is specified by the choices τmin = 0.01, and cτ = 200. In both cases
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pmin = 0.5 and τmax = 0.1. This prior distinguishes the cases β = 0 and β = 1 more sharply
than the other two priors by preferring substantially smaller τ when β = 0. When β = 1 this
prior supports τ which are larger than Prior 1 but smaller than Prior 0. Overall, this prior
allows for more time-variation than Prior 1 (bigger τ) but is more focused on identifying
β = 0. For most states, we obtain similar fit from the third prior. The fit for σ3t is more
like that of Prior 0 than Prior 1 because larger τ are allowed. The most markedly different
posterior mean is that of ρ31t. The third prior’s emphasis on β = 0 has substantially reduced
the time variation.

Figure 14 about here.

Figure 15 looks at some of the marginal posteriors of the state AR coefficients. We display
density smooths of the draws of (βi, τi) from the state equations dit ∼ N(αi + βidi(t−1), τ

2
i ),

i = 1, 2, 3. The top panels depict the posteriors of the three βi and the bottom panels depict
the posteriors of the three τi. In each plot the solid line is the posterior obtained using
Prior 1 while the dashed line corresponds to the third prior described above. For the first
and third series we see that the posterior for β is tight around β ≈ 1 for both priors. For
both the first and third series, the posterior for τ supports larger values under the third
prior. Prior 1 may be “over smoothing” the states. The most striking difference is in the
posteriors for β2. The posterior from Prior 1 is concentrated at β ≈ 1 while the posterior
from the third prior allows for the possibility that the near constant variance of the second
series may be obtained with either β ≈ 0 or β ≈ 1. The posterior of τ2 under the third prior
is concentrated on small τ values but exhibits two modes corresponding to the modes for β2.

Figure 15 about here.

5.3 Many assets from the S&P100

Recall that Section 2.3 reports an example with p = 3 series are from the S&P100. We can
now tell the reader that the results given there were obtained using prior 1 from Section 4.3.
In this section we choose more assets (firms) from the S&P500 in order to illustrate the
procedure with larger p.

We first consider a random selection of returns on p = 20 of the firms. Again, we use prior
1. Figure 16 plots the posterior means of the σit and ρijt series. The top panel show the
20 standard deviations series and the bottom panel shows the 20(19)/2 = 190 correlations
series. There is no simple way to plot so much information, but even with the many series,
we can see that there is substantial time variation in both the standard deviations and the
correlations. There is variation in the variation in the correlation for some pairs of series,
clearly varies much more than that of most pairs and the variation in the standard deviation
is clearly much large for a few series.
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Figure 16 about here.

Figure 17 plots the posterior means of the states with the d states in the top panel and the φ
states in the bottom panel. The top panel shows the time variation in the residual variances.
The bottom panel shows that most of the φ series have relatively little time variation and
are centered near zero. This figure shows how our Bayesian model, with our particular prior
choice, seeks a parsimonious representation of our very high dimensional problem. There is
substantial information in the data about the p and d series and the posteriors exhibit time
variation. The are p(p− 1)/2 φ series. Unless the data has the strength to demand it, these
series are estimated to be constant, and possibly, near zero.

Of course, the amount of “parsimony”, “smoothness”, or “regularization” inevitably is heav-
ily influenced by our choice of prior. Figure 18 shows the posterior means of the states
obtained when we use prior 2. This figure looks like a smoothed version of Figure 17. The
“flat-line” appearance of many of the φ states is striking. The corresponding standard-
deviation-correlation plot is, again, a smoothed version of Figure 16.

Figures 17 and 18 about here.

Figure 19 plots the posterior means of the portfolio weights for the global minimum variance
portfolio using prior 1. Figure 20 plots two different estimates of a time-varying standard
deviation. One of the estimates is the same as one of series in the top panel of Figure 16.
We obtained the other by reversing the order of the series. So, one estimate is the result of a
simple univariate stochastic volatility fit. The other is the result of a time varying regression
with 19 regressors. These two fits result from different priors, so there is no reason that they
be identical. However, their similarity is striking.

Figures 19 and 20 about here.

6 Conclusion
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Figure 1: Trivariate example. The top three plots are time series of the three time series of
weekly returns. The middle three show the time-varying standard deviations and the bottom
three show the time-varying correlations.
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Figure 2: Trivariate example. Posterior mean and intervals for the time-varying correlation
between Y1 and Y2.
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Figure 3: Trivariate example. Posterior means of time-varying states. The ith diagonal
panels plot the posterior mean of {dit} and the (i, j) diagonal panel plots the posterior mean
of {φijt} for i = 2, 3, j < i.
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Figure 4: Trivariate example. Portolio weights for the global minimum variance portfolio.
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● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

Figure 5: Multiple processors. In panel (a) we plot the number of processors vs. the total
time in minutes to run 50,000 iterations for a 100 × 100 (p = 100) time varying covariance
matrix. It takes 15 times longer to draw a d state than it does to draw a φ state. Code was
run on a 2.93 GHz Intel Core 2 Duo processor. With 20 processors, the time is about 11
minutes. In panel (b) we have the number of processsors on the vertical axis and each set
of points along the dotted lines indicate how the 100 conditional regressions in the Cholesky
decomposition are allocated to the different processors. For example, when m = 2 the cut-
off is regression i1 = 67, i.e. the first processor runs regressions 1 to 67 while the second
processor runs regressions 68 to 100.
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Figure 6: Prior 0. The top two panels are density smooths of draws of β and τ . The bottom
left panel displays contours from a bivariate smooth of draws of (α, β). The bottom right
panel are jittered draws of (α, β).
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Figure 7: Prior 0. Inference for a DLM with a random walk state, β = 1.0.
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Figure 8: Priors 0, 1 and 2. Simulated states and posterior mean estimates from the three
priors. The smoother fit corresponds to prior 2 (blue line), while priors 0 and 1 give very
similar results.
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Figure 9: Prior 0. Inference for a DLM with a stationary state, β = 0.8.

Figure 10: Prior 0. Simulation and inference for a DLM with a flat-line state, β = 0.
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Figure 11: Simulated example - prior 0. Time-varying standard deviations are plotted in
the diagonal panels and correlations are plotted in the lower panel below the diagonal. True
values: very smooth black lines. Posterior means: lighter smooth blue lines. Moving window
estimates: red dashed lines.
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Figure 12: Simulated example - prior 1. Time-varying standard deviations are plotted in
the diagonal panels and correlations are plotted in the lower panel below the diagonal. True
values: very smooth black lines. Posterior means: lighter smooth blue lines. Moving window
estimates: red dashed lines.
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Figure 13: Return predictors. The top three panels are time series plots of the data with
±2 σ̂it. The middle three panels display inference for σit, i = 1, 2, 3, and the bottom three
panels display inference for ρ21t ρ31t and ρ32t. In each “inference”, the solid line is the
posterior mean, the inner dotted lines are pointwise 50% intervals and the outer dashed lines
are pointwise 95% intervals.
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Figure 14: Return predictors. Posterior means from three different priors. The top three
panels display inference for σit, i = 1, 2, 3, and the bottom three panels display inference for
ρ21t ρ31t and ρ32t. In each panel the solid line is the posterior obtained using prior 1, the
dashed line is the posterior obtained using prior 0, and the dot-dash line is the posterior
obtained using the prior which places more weight on β = 0.
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Figure 15: Return predictors. Inference for (βi, τi) from the dit state equations dit ∼ N(αi +
βi di(t−1), τ

2
i ). In each panel the solid curve is the posterior density obtained using prior 1

and the dashed curve is the posterior obtained using the prior which places more weight on
β = 0. The top row give densities for βi and the bottom row gives densities for τi.
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Figure 16: S&P100 data. Posterior means of time-varying standard deviations and correla-
tions.
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Figure 17: S&P100 data - prior 1. Posterior means of d and φ states.
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Figure 18: S&P100 data - prior 2. Posterior means of d and φ states.
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Figure 19: S&P100 data - prior 1. Posterior means of portolio weights for the global mini-
mum variance portfolio.
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Figure 20: S&P100 data. Comparison of the posterior means of the time-varying standard
deviation of a series with the original order of the series and the order reversed.
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