Introducing Bayes Factors

Leonhard Held
Division of Biostatistics
University of Zurich

25 November 2011

There's no theorem like Bayes' theorem
Like no theorem we know
Everything about it is appealing
Everything about it is a wow
Let out all that a priori feeling
You've been concealing right up to now!

G.E.P. Box

Music: Irving Berlin ("There's no Business like Show Business")

Outline

Bayes factors

- Consider two hypotheses H_{0} and H_{1} and some data x.
- Bayes's theorem implies

$$
\underbrace{\frac{\mathrm{P}\left(H_{0} \mid x\right)}{\mathrm{P}\left(H_{1} \mid x\right)}}=\underbrace{\frac{\mathrm{p}\left(x \mid H_{0}\right)}{\mathrm{p}\left(x \mid H_{1}\right)}} \cdot \underbrace{\frac{\mathrm{P}\left(H_{0}\right)}{\mathrm{P}\left(H_{1}\right)}}
$$

Posterior odds Bayes factor Prior odds

- The Bayes factor (BF) quantifies the evidence of data x for H_{0} vs. H_{1}.
- BF is the ratio of the marginal likelihoods

$$
\mathrm{p}\left(x \mid H_{i}\right)=\int \underbrace{\mathrm{p}\left(x \mid \theta, H_{i}\right)}_{\text {Likelihood }} \underbrace{\mathrm{p}\left(\theta \mid H_{i}\right)}_{\text {Prior }} d \theta
$$

of the two hypotheses $H_{i}, i=0,1$.

Properties of Bayes factors

Bayes factors

1. need proper priors $\mathrm{p}\left(\theta \mid H_{i}\right)$.
2. reduce to likelihood ratios for simple hypotheses.
3. have an automatic penalty for model complexity
4. work also for non-nested models.
5. are symmetric measures of evidence.
6. are related to the Bayesian Information Criterion (BIC).

Universität
Zürich ${ }^{\text {trin }}$

| Bayes factors | Generalized additive model selection |
| :--- | :--- | References

P values
Abayes factors
Abent P values

Harold Jeffreys

(1891-1989)

What the use of P implies [...] is that a hypothesis that may be true may be rejected because it has not predicted observable results that have not occurred. This seems a remarkable procedure."
\rightarrow Priors matter.
\rightarrow The evidence against the simpler model is bounded.
When comparing models with different numbers of parameters and using diffuse priors, the simpler model is always favoured over the more complex one.

BF	Strength of evidence
$1: 1$	Negative (supports $\left.H_{1}\right)$
$1: 1$ to $3: 1$	Barely worth mentioning
$3: 1$ to $20: 1$	Substantial
$20: 1$ to $150: 1$	Strong
$>150: 1$	Very strong

Very strong

About P values

Zürich ${ }^{\text {vint }}$

About Jeffreys' book "Theory of Probability"

Ronald Fisher (1890-1962)

"He makes a logical mistake on the first page which invalidates all the 395 formulae in his book." Zürich ${ }^{\text {STL }}$

P values

References

Steve Goodman's conclusion

"In fact, the P value is almost nothing sensible you can think of. I tell students to give up trying."

Q: What is the relationship between P values and Bayes factors?

A Dirty Dozen: Twelve P-Value Misconceptions

 Steven Goodman| 1 | If $P=.05$, the null hypothesis has only a 5% chance of being true. |
| :---: | :---: |
| 2 | A nonsignificant difference (eg, P $\geq .05$) means there is no difference between groups. |
| 3 | A statistically significant finding is clinically important. |
| 4 | Studies with P values on opposite sides of . 05 are conflicting. |
| 5 | Studies with the same P value provide the same evidence against the null hypothesis. |
| 6 | $P=.05$ means that we have observed data that would occur only 5\% of the time under the null hypothesis. |
| 7 | $P=.05$ and $P \leq .05$ mean the same thing. |
| 8 | P values are properly written as inequalities (eg, "P $P \leq .02$ " when $P=.015$) |
| 9 | $P=.05$ means that if you reject the null hypothesis, the probability of a type I error is only 5%. |
| 10 | With a $P=.05$ threshold for significance, the chance of a type I error will be 5%. |
| 11 | You should use a one-sided P value when you don't care about a result in one direction, or a difference in that direction is impossible. |
| 12 | A scientific conclusion or treatment policy should be based on whether or not the P value is significant. |

Zürich ${ }^{\text {Su2 }}$
$\begin{array}{cc}\text { Bayes factors } & \text { Gelues } \\ \text { The Edwards et al. (1963) apdditive model selection } \\ \end{array}$

- Consider a Gauss test for $H_{0}: \mu=\mu_{0}$ where $x \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$.
- This scenario reflects, at least approximately, many of the statistical procedures found in scientific journals.
- With T value $t=\left(x-\mu_{0}\right) / \sigma$ we obtain $\mathrm{p}\left(x \mid H_{0}\right)=\varphi(t) / \sigma$.
- For the alternative hypothesis H_{1} we allow any prior distribution $\mathrm{p}(\mu)$ for μ, it then follows that

$$
\mathrm{p}\left(x \mid H_{1}\right)=\int \frac{1}{\sigma} \varphi\left(\frac{x-\mu}{\sigma}\right) \mathrm{p}(\mu) d \mu \leq \varphi(0) / \sigma .
$$

- This corresponds to a prior density $\mathrm{p}(\mu)$ concentrated at x.
- The Bayes factor BF for H_{0} vs. H_{1} is therefore bounded:

$$
\mathrm{BF}=\frac{\mathrm{p}\left(x \mid H_{0}\right)}{\mathrm{p}\left(x \mid H_{1}\right)} \geq \exp \left(-0.5 t^{2}\right)=: \underline{\mathrm{BF}}
$$

- Universal lower bound on BF for any prior on μ !

The Edwards et al. (1963) approach cont.
The Edwards et al. (1963) approach cont.

Assuming equal prior probability for H_{0} and H_{1} we obtain:

		P value		
		0.05	0.01	0.001
two-sided	t	1.96	2.58	3.29
	BF	0.15	0.04	0.004
	$\min P\left(H_{0} \mid x\right)$	12.8%	3.5%	0.4%

Universität
Zunivers
P values
Some refinements by Berger and Sellke (1987)

Consider two-sided tests with

1. Symmetric prior distributions, centered at μ_{0}
2. Unimodal, symmetric prior distributions, centered at μ_{0}
3. Normal prior distributions, centered at μ_{0}

		P value		
Prior		5%	1%	0.1%
Symmetric	$\min \mathrm{P}\left(H_{0} \mid x\right)$	22.7%	6.8%	0.9%
+ Unimodal	$\min \mathrm{P}\left(H_{0} \mid x\right)$	29.0%	10.9%	1.8%
Normal	$\min \mathrm{P}\left(H_{0} \mid x\right)$	32.1%	13.3%	2.4%

Assuming equal prior probability for H_{0} and H_{1} we obtain:

		P value		
		0.05	0.01	0.001
one-sided	t	1.64	2.33	3.09
	$\frac{B F}{\min P}\left(H_{0} \mid x\right)$	0.26	0.07	0.008
	20.5%	6.3%	0.8%	

The Sellke et al. (2001) approach

- Idea: Work directly with the P value p
- Under $H_{0}: p \sim \mathrm{U}(0,1)$
- Under $H_{1}: p \sim \operatorname{Be}(\xi, 1)$ with $0<\xi<1$
- The Bayes factor of H_{0} vs. H_{1} is then

$$
\mathrm{BF}=1 / \int \xi p^{\xi-1} \mathrm{p}(\xi) d \xi
$$

for some prior $\mathrm{p}(\xi)$ under H_{1}.

- Calculus shows that a lower limit on BF is

$$
\underline{\mathrm{BF}}= \begin{cases}-e \cdot p \log (p) & \text { for } p<e^{-1} \\ 1 & \text { else }\end{cases}
$$

\[

\]

- Using minimum Bayes factors, P values can be transformed to lower bounds on the posterior probability of the null hypothesis.
- It turns out that:
"Remarkably, this smallest possible bound is by no means always very small in those cases when the datum would lead to a high classical significance level.
Even the utmost generosity to the alternative hypothesis cannot make the evidence in favor of it as strong as classical significance levels might suggest."

Edwards et al. (1963), Psychological Review

A Nomogram for P Values

Example: $p=0.03$

Universität Zürich ${ }^{\text {z2 }}$

values

Q: What prior do I need to achieve $p=\mathrm{P}\left(H_{0} \mid x\right)$?

Bayesian regression

- Consider linear regression model

$$
\mathbf{y} \sim \mathrm{N}\left(\mathbf{1} \beta_{0}+\mathbf{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}\right)
$$

- Zellner's (1986) g-prior on the coefficients β

$$
\beta \mid g, \sigma^{2} \sim \mathrm{~N}\left(\mathbf{0}, g \sigma^{2}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}\right)
$$

- Jeffreys' prior on intercept: $\mathrm{p}\left(\beta_{0}\right) \propto 1$
- Jeffreys' prior on variance: $\mathrm{p}\left(\sigma^{2}\right) \propto\left(\sigma^{2}\right)^{-1}$
- The factor g can be interpreted as inverse relative prior sample size.
\rightarrow Fixed shrinkage factor $g /(g+1)$.
- The problem of model selection in regression is pervasive in statistical practice
- Complexity increases dramatically if non-linear covariate effects are allowed for.
- Parametric approaches:
- Fractional polynomials (FPs) (Sauerbrei and Royston, 1999)
- Bayesian FPs (Sabanés Bové and Held, 2011a)
- Semiparametric approaches.
- Generalized additive model selection
- Here we describe a Bayesian approach using penalized splines (joint work with Daniel Sabanés Bové and Göran Kauermann)

Additive semiparametric models

$$
y_{i}=\beta_{0}+\sum_{j=1}^{p} f_{j}\left(x_{i j}\right)+\varepsilon_{i}, \quad \varepsilon_{i} \stackrel{i i d}{\sim} \mathrm{~N}\left(0, \sigma^{2}\right), \quad i=1, \ldots, n
$$

Effect of x_{j}	Functional form	Degrees of freedom
not included	$f_{j}\left(x_{i j}\right) \equiv 0$	$d_{j}=0$
linear	$f_{j}\left(x_{i j}\right)=x_{i j} \beta_{j}$	$d_{j}=1$
smooth	$f_{j}\left(x_{i j}\right)=x_{i j} \beta_{j}+\mathbf{z}_{j}\left(x_{i j}\right)^{T} \mathbf{u}_{j}$	$d_{j}>1$

Degrees of freedom vector $\mathbf{d}=\left(d_{1}, \ldots, d_{p}\right)$ determines the model.

Seneralized additive model selection

Transformation to standard linear model

1. Conditional model

$$
\mathbf{y} \mid \mathbf{u}_{j}^{\prime} \mathrm{S} \sim \mathrm{~N}(\mathbf{1} \beta_{0}+\overbrace{\sum_{j: d_{j} \geq 1} \mathbf{x}_{j} \beta_{j}}^{\mathbf{x} \beta}+\sum_{j: d_{j}>1} \mathbf{Z}_{j} \mathbf{u}_{j}, \sigma^{2} \mathbf{I})
$$

2. Marginal model:

$$
\mathbf{y} \sim \mathrm{N}\left(\mathbf{1} \beta_{0}+\mathbf{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{V}\right) \text { where } \mathbf{V}=\mathbf{I}+\sum_{j: d_{j}>1} \rho_{j} \mathbf{Z}_{j} \mathbf{Z}_{j}^{T}
$$

3. Decorrelated marginal model:

$$
\tilde{\mathbf{y}} \sim \mathrm{N}\left(\tilde{\mathbf{1}} \beta_{0}+\tilde{\mathbf{X}} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}\right) \text { with } \tilde{\mathbf{y}}=\mathbf{V}^{-T / 2} \mathbf{y}, \tilde{\mathbf{1}}=\mathbf{V}^{-T / 2} \mathbf{1}, \tilde{\mathbf{X}}=\mathbf{V}^{-T / 2} \mathbf{X}
$$

\rightarrow g-prior:

$$
\beta \mid g, \sigma^{2} \sim \mathrm{~N}\left(\mathbf{0}, g \sigma^{2}\left(\mathbf{X}^{\top} \mathbf{v}^{-1} \mathbf{X}\right)^{-1}\right)
$$

Penalised splines in mixed model layout
If $d_{j}>1$ then

$$
\left(f_{j}\left(x_{1 j}\right), \ldots, f_{j}\left(x_{n j}\right)\right)^{T}=\mathbf{x}_{j} \beta_{j}+\mathbf{Z}_{j} \mathbf{u}_{j}
$$

$\mathbf{x}_{j} n \times 1$ covariate vector, zero-centred ($\left.\mathbf{1}^{T} \mathbf{x}_{j}=0\right)$
$\mathbf{Z}_{j} n \times K$ spline basis matrix $\left(\mathbf{1}^{T} \mathbf{Z}_{j}=\mathbf{x}_{j}^{T} \mathbf{Z}_{j}=\mathbf{0}\right)$
$\mathbf{u}_{j} K \times 1$ spline coefficients vector, $\mathbf{u}_{j} \sim \mathrm{~N}\left(\mathbf{0}, \sigma^{2} \rho_{j} \mathbf{I}\right)$
Variance factor ρ_{j} corresponds to degrees of freedom

$$
\begin{aligned}
d_{j} & =\operatorname{tr}\left\{\left(\mathbf{Z}_{j}^{T} \mathbf{Z}_{j}+\rho_{j}^{-1} \mathbf{I}\right)^{-1} \mathbf{Z}_{j}^{T} \mathbf{Z}_{j}\right\}+1 \\
& <K+1(K: \text { number of knots })
\end{aligned}
$$

$$
x^{2}+2
$$

Zürich ${ }^{\text {Su2 }}$

1. The number of covariates included $\left(i_{d}\right)$ is uniform on $\{0,1, \ldots, p\}$.
2. For fixed i_{d}, all covariate choices are equally likely.
3. Degrees of freedom are uniform on $\{1,3, \ldots, K\}$.
$\Rightarrow \mathrm{P}\left(d_{j}=0\right)=\mathrm{P}\left(d_{j} \geq 1\right)=1 / 2$
\Rightarrow Note: d_{j} 's are dependent, prior is multiplicity-corrected.
(Scott and Berger, 2010)

- Prior can be modified to have fixed prior for linear effect, e.g. $\mathrm{P}\left(d_{j}=1\right)=1 / 4$.

Hyper-g prior for generalized additive models

We use the working normal model

$$
\mathbf{z}_{0} \mid \beta_{0}, \boldsymbol{\beta}_{\mathbf{d}}, \mathbf{u}_{\mathbf{d}} \quad \stackrel{a}{\sim} \mathrm{~N}\left(\mathbf{1}_{n} \beta_{0}+\mathbf{X}_{\mathbf{d}} \boldsymbol{\beta}_{\mathbf{d}}+\mathbf{Z}_{\mathbf{d}} \mathbf{u}_{\mathbf{d}}, \mathbf{W}_{0}^{-1}\right)
$$

with $\mathbf{z}_{0}=\boldsymbol{\eta}_{0}+\operatorname{diag}\left\{d h\left(\boldsymbol{\eta}_{0}\right) / d \boldsymbol{\eta}\right\}^{-1}\left(\mathbf{y}-h\left(\boldsymbol{\eta}_{0}\right)\right), \mathbf{W}_{0}=\mathbf{W}\left(\boldsymbol{\eta}_{0}\right)$ and $\boldsymbol{\eta}_{0}=\mathbf{0}_{n}$
The generalised g-prior can now be derived as

$$
\boldsymbol{\beta}_{\mathbf{d}} \mid g \sim \mathrm{~N}\left(\mathbf{0}, g\left\{\tilde{\mathbf{X}}_{\mathbf{d}}^{T}\left(\mathbf{I}_{n}+\tilde{\mathbf{Z}}_{\mathbf{d}} \mathbf{D}_{\mathbf{d}} \tilde{\mathbf{Z}}_{\mathbf{d}}^{T}\right)^{-1} \tilde{\mathbf{X}}_{\mathbf{d}}\right\}^{-1}\right)
$$

where $\tilde{\mathbf{X}}_{d}=\mathbf{W}_{0}^{1 / 2} \mathbf{X}_{d}, \tilde{\mathbf{Z}}_{d}=\mathbf{W}_{0}^{1 / 2} \mathbf{Z}_{d}$ and $\mathbf{D}_{\mathbf{d}}$ is block-diagonal with entries $\rho_{j} \mathbf{l}_{K}\left(d_{j}>1\right)$.

Model search

- Model space grows exponentially in number of covariates p.
- Exhaustive model search may still be possible.
- Otherwise efficient stochastic search algorithms are necessary.
- Easy setup is Metropolis-Hastings with proposals:

Move Choose a covariate j and de-/increase d_{j}
Switch Choose a pair (i, j) and switch d_{i} and d_{j}
\rightarrow "MCMC model composition" (Madigan and York, 1995)

Marginal likelihood computation

Approximate the marginal likelihood of model \mathbf{d} via numerical integration with respect to g (Sabanés Bové and Held, 2011b):

$$
\mathrm{p}(\mathbf{y} \mid \mathbf{d})=\int_{0}^{\infty} \mathrm{p}(\mathbf{y} \mid g, \mathbf{d}) \mathrm{p}(g) d g .
$$

Here $\mathrm{p}(\mathbf{y} \mid g, \mathbf{d})$ is computed using a Laplace approximation based on a Gaussian approximation of $\mathrm{p}\left(\beta_{0}, \boldsymbol{\beta}_{\mathbf{d}}, \mathbf{u}_{\mathbf{d}} \mid \mathbf{y}, g, \mathbf{d}\right)$ using the Bayesian IWLS algorithm (West, 1985).

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}
not included $\left(d_{j}=0\right)$	0.63	0.00	0.81	0.84	0.00	0.02	0.01
linear $\left(d_{j}=1\right)$	0.09	0.48	0.09	0.06	0.11	0.26	0.00
smooth $\left(d_{j}>1\right)$	0.28	0.52	0.09	0.10	0.88	0.72	0.99

```
Universität
Zürich \({ }^{\text {sen }}\)
```


(means with pointwise and simultaneous 95% credible intervals)

- Meta-model: posterior probabilities of sub-models are added and used as weights for model averaging
- Best variable-selection meta-model includes x_{2}, x_{5}, x_{6} and x_{7} and has posterior probability 46.6%
- We may define the median probability model comprising all models including those covariates that have more than 50% posterior inclusion probability.
Here: identical to the best variable-selection meta-model.
- We can also optimize the degrees of freedom of included covariates with respect to the marginal likelihood:

$$
\begin{gathered}
\mathbf{d}=(0,1,0,0,3,2,4) \longrightarrow \mathbf{d}^{*}=(0,1,0,0,3.42,2.13,3.69) \\
\log p(\mathbf{y} \mid \mathbf{d})=-243.39
\end{gathered} \log _{p}\left(\mathbf{y} \mid \mathbf{d}^{*}\right)=-243.23
$$

MAP model

$\begin{array}{llll}60 & 100 & 140 & 180\end{array}$

$20 \quad 30 \quad 40 \quad 50 \quad 60$
x_{5} (BM [kg/m²))
X_{2} (Glucose concentration $\left.[m g / d]\right)$

$\begin{array}{lllllll}0.0 & 0.5 & 1.0 & 1.5 & 2.0 & 2.5\end{array}$
x_{6} (Diabetes pedigree function)

$20 \quad 3040 \quad 50607080$
$x_{7}\left(\mathrm{Age}_{\mathrm{g}}\right)$
means with pointwise and simultaneous 95% credible intervals)

References

Berger, J. O. and Sellke, T. (1987). Testing a point null hypothesis: Irreconcilability of P values and evidence (with discussion), Journal of the American Statistical Association 82: 112-139.
Edwards, W., Lindman, H. and Savage, L. J. (1963). Bayesian statistical inference in psychological research, Psychological Review 70: 193-242,
Held, L. (2010). A nomogram for P values, BMC Med Res Methodol 10: 21
Madigan, D. and York, J. (1995). Bayesian graphical models for discrete data, International Statistical Review
banés Bové D. and Held L. (2011a). Bayesian fractional polynomials, Statistics and Computing 21: 309-324 Available from: http://dx.doi.org/10.1007/s11222-010-9170-7
Sabanés Bové, D. and Held, L. (2011b). Hyper-g priors for generalized linear models, Bayesian Analysis
Forthcoming article as of $18 / 2 / 2011$. Available from: http://ba.stat.cmu.edu/abstracts/Sabanes.php
Sauerbrei, W. and Royston, P. (1999). Building multivariable prognostic and diagnostic models: transformation of the predictors by using f
Society) $162(1): 71-94$.

Scott, J. G. and Berger, J. O. (2010). Bayes and empirical-Bayes multiplicity adjustment in the variable-selection cott, J. G. and Berger, J. O. (2010). Bayes and en
problem, Annals of Statistics 38(5): $2587-2619$.
Sellke, T., Bayarri, M. J. and Berger, J. O. (2001). Calibration of p values for testing precise null hypotheses, The American Statistician 55: 62-71.
West, M. (1985). Generalized linear models: scale parameters, outlier accommodation and prior distributions, in

Zellner, A. (1986). On assessing prior distributions and Bayesian regression analysis with g-prior distributions, in
P. K. Goel and A. Zellner (eds), Bayesian Inference and Decision Technaque. Essays in Hond Finetti, Vol. 6 of Studies in Bayesian Econometrics and Statistics, North-Holland, Amsterdam, chapter-5 pp. 233-243.

$\begin{array}{llll}60 & 100 & 140 & 180\end{array}$
x_{2} (Glucose concentration $[m /$ /Ill $)$

$\begin{array}{llllll}0.0 & 0.5 & 1.0 & 1.5 & 2.0 & 2.5\end{array}$
x_{6} (Diabetes pedigree function)

$\begin{array}{lllll}20 & 30 & 40 & 50 & 60\end{array}$
$\left.x_{5}\left(\mathrm{BMM} \mid \mathrm{kg} / \mathrm{m}^{2}\right)\right)$

$20 \quad 304050607080$
x_{7} (Age)
(means with pointwise and simultaneous 95% credible intervals)

