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Preface

There’s no theorem like Bayes’ theorem
Like no theorem we know
Everything about it is appealing
Everything about it is a wow
Let out all that a priori feeling
You’ve been concealing right up to now!

G.E.P. Box
Music: Irving Berlin (“There’s no Business like Show Business”)

Bayes factors P values Generalized additive model selection References

Outline

Bayes factors

P values

Generalized additive model selection

Bayes factors P values Generalized additive model selection References

Bayes factors

� Consider two hypotheses H0 and H1 and some data x .

� Bayes’s theorem implies

P(H0 | x)

P(H1 | x)︸     ︷︷     ︸
Posterior odds

=
p(x |H0)

p(x |H1)︸     ︷︷     ︸
Bayes factor

·
P(H0)

P(H1)︸ ︷︷ ︸
Prior odds

� The Bayes factor (BF) quantifies the evidence of data x for
H0 vs. H1.

� BF is the ratio of the marginal likelihoods

p(x |Hi ) =

∫
p(x | θ,Hi )︸      ︷︷      ︸
Likelihood

p(θ |Hi )︸   ︷︷   ︸
Prior

dθ

of the two hypotheses Hi , i = 0, 1.
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Properties of Bayes factors

Bayes factors

1. need proper priors p(θ |Hi ).

2. reduce to likelihood ratios for simple hypotheses.

3. have an automatic penalty for model complexity.

4. work also for non-nested models.

5. are symmetric measures of evidence.

6. are related to the Bayesian Information Criterion (BIC).
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Scaling of Bayes factors

BF Strength of evidence

< 1:1 Negative (supports H1)
1:1 to 3:1 Barely worth mentioning

3:1 to 20:1 Substantial
20:1 to 150:1 Strong

>150:1 Very strong
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Jeffreys–Lindley “paradox”

When comparing models with different numbers of
parameters and using diffuse priors, the simpler model
is always favoured over the more complex one.

→ Priors matter.

→ The evidence against the simpler model is bounded.
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About P values

Harold Jeffreys
(1891-1989)

“What the use of P implies [. . .]
is that a hypothesis that may
be true may be rejected because
it has not predicted observable
results that have not occurred.
This seems a remarkable proce-
dure.”
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About Jeffreys’ book “Theory of Probability”

Ronald Fisher
(1890-1962)

“He makes a logical mistake
on the first page which invali-
dates all the 395 formulae in his
book.”
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Steve Goodman’s conclusion

“In fact, the P value is almost nothing sensible you
can think of. I tell students to give up trying.”

Q: What is the relationship between P values and Bayes factors?
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The Edwards et al. (1963) approach

� Consider a Gauss test for H0 : µ = µ0 where x ∼ N(µ, σ2).

� This scenario reflects, at least approximately, many of the
statistical procedures found in scientific journals.

� With T value t = (x − µ0)/σ we obtain p(x |H0) = ϕ(t)/σ.

� For the alternative hypothesis H1 we allow any prior
distribution p(µ) for µ, it then follows that

p(x |H1) =

∫
1

σ
ϕ
(x − µ

σ

)
p(µ)dµ ≤ ϕ(0)/σ.

� This corresponds to a prior density p(µ) concentrated at x .

� The Bayes factor BF for H0 vs. H1 is therefore bounded:

BF =
p(x |H0)

p(x |H1)
≥ exp(−0.5t2) =: BF

� Universal lower bound on BF for any prior on µ!
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The Edwards et al. (1963) approach cont.

Assuming equal prior probability for H0 and H1 we obtain:

P value
0.05 0.01 0.001

two-sided t 1.96 2.58 3.29
BF 0.15 0.04 0.004
min P(H0 | x) 12.8% 3.5% 0.4%
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The Edwards et al. (1963) approach cont.

Assuming equal prior probability for H0 and H1 we obtain:

P value
0.05 0.01 0.001

one-sided t 1.64 2.33 3.09
BF 0.26 0.07 0.008
min P(H0 | x) 20.5% 6.3% 0.8%
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Some refinements by Berger and Sellke (1987)

Consider two-sided tests with

1. Symmetric prior distributions, centered at µ0

2. Unimodal, symmetric prior distributions, centered at µ0

3. Normal prior distributions, centered at µ0

P value
Prior 5% 1% 0.1%

Symmetric min P(H0 | x) 22.7% 6.8% 0.9%
+ Unimodal min P(H0 | x) 29.0% 10.9% 1.8%
Normal min P(H0 | x) 32.1% 13.3% 2.4%
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The Sellke et al. (2001) approach

� Idea: Work directly with the P value p

� Under H0: p ∼ U(0, 1)

� Under H1: p ∼ Be(ξ, 1) with 0 < ξ < 1

� The Bayes factor of H0 vs. H1 is then

BF = 1
/∫

ξpξ−1 p(ξ)dξ

for some prior p(ξ) under H1.

� Calculus shows that a lower limit on BF is

BF =

{
−e · p log(p) for p < e−1

1 else

P value
5% 1% 0.1%

min P(H0 | x) 28.9% 11.1% 1.8%
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Summary

� Using minimum Bayes factors, P values can be transformed to
lower bounds on the posterior probability of the null
hypothesis.

� It turns out that:

“Remarkably, this smallest possible bound is by no
means always very small in those cases when the
datum would lead to a high classical significance
level.
Even the utmost generosity to the alternative hy-
pothesis cannot make the evidence in favor of it as
strong as classical significance levels might suggest.”

Edwards et al. (1963), Psychological Review
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A Nomogram for P Values
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Example: p = 0.03
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Q: What prior do I need to achieve p = P(H0 | x)?

0.5

1

2

5

10

20

30

40

505050

60

70

80

90

95

98

99

99.5

1e−06

1e−05

1e−04

0.001

0.01

0.05

0.37

0.001

0.002

0.005

0.01

0.02

0.05

0.1

0.2

0.5

1

2

5

10

15
20

30

40

5050

% %

Prior P value Min. Posterior
Probability Probability



Bayes factors P values Generalized additive model selection References

Maximum difference between P(H0) and p = P(H0 | x)
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Bayesian regression

� Consider linear regression model

y ∼ N(1β0 + Xβ, σ2I)

� Zellner’s (1986) g -prior on the coefficients β

β | g , σ2 ∼ N
(
0, gσ2(XTX)−1

)
� Jeffreys’ prior on intercept: p(β0) ∝ 1

� Jeffreys’ prior on variance: p(σ2) ∝ (σ2)−1

� The factor g can be interpreted as inverse relative prior
sample size.

→ Fixed shrinkage factor g/(g + 1).
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Hyper-g prior in the linear model

� Prior with fixed g has unattractive asymptotic properties.

→ Hyperprior on g : g/(g + 1) ∼ U(0, 1)

⇒ Model selection consistency

⇒ Marginal likelihood p(y) has closed form.
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Model selection in generalized additive regression

� The problem of model selection in regression is pervasive in
statistical practice.

� Complexity increases dramatically if non-linear covariate
effects are allowed for.

� Parametric approaches:
� Fractional polynomials (FPs) (Sauerbrei and Royston, 1999)
� Bayesian FPs (Sabanés Bové and Held, 2011a)

� Semiparametric approaches:
� Generalized additive model selection
� Here we describe a Bayesian approach using penalized splines

(joint work with Daniel Sabanés Bové and Göran Kauermann)
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Additive semiparametric models

yi = β0 +

p∑
j=1

fj(xij) + εi , εi
iid
∼ N(0, σ2), i = 1, . . . , n

Effect of xj Functional form Degrees of freedom

not included fj(xij) ≡ 0 dj = 0

linear fj(xij) = xijβj dj = 1

smooth fj(xij) = xijβj + zj(xij)
Tuj dj > 1

Degrees of freedom vector d = (d1, . . . , dp) determines the model.
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Penalised splines in mixed model layout

If dj > 1 then (
fj(x1j), . . . , fj(xnj)

)T
= xjβj + Zjuj

xj n × 1 covariate vector, zero-centred (1Txj = 0)

Zj n × K spline basis matrix (1TZj = xTj Zj = 0)

uj K × 1 spline coefficients vector, uj ∼ N(0, σ2ρj I)

Variance factor ρj corresponds to degrees of freedom

dj = tr{(ZT
j Zj + ρj

−1I)−1ZT
j Zj }+ 1

< K + 1 (K : number of knots)

Bayes factors P values Generalized additive model selection References

Transformation to standard linear model

1. Conditional model:

y |uj
′s ∼ N

(
1β0 +

Xβ︷     ︸︸     ︷∑
j :dj≥1

xjβj +
∑
j :dj>1

Zjuj , σ
2I
)

2. Marginal model:

y ∼ N(1β0 + Xβ, σ2V) where V = I +
∑
j :dj>1

ρjZjZ
T
j

3. Decorrelated marginal model:

ỹ ∼ N(1̃β0+X̃β, σ2I) with ỹ = V−T/2y, 1̃ = V−T/21, X̃ = V−T/2X

→ g -prior:
β | g , σ2 ∼ N

(
0, gσ2(XTV−1X)−1

)
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Model prior

1. The number of covariates included (id) is uniform on {0, 1, . . . , p}.

2. For fixed id, all covariate choices are equally likely.

3. Degrees of freedom are uniform on {1, 3, . . . ,K }.

⇒ P(dj = 0) = P(dj ≥ 1) = 1/2

⇒ Note: dj ’s are dependent, prior is multiplicity-corrected.

(Scott and Berger, 2010)

� Prior can be modified to have fixed prior for linear effect,
e.g. P(dj = 1) = 1/4.
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Hyper-g prior for generalized additive models

We use the working normal model

z0 | β0,βd,ud
a
∼ N

(
1nβ0 + Xdβd + Zdud, W

−1
0

)
with z0 = η0 + diag{dh(η0)/dη}−1(y − h(η0)), W0 = W(η0) and
η0 = 0n.

The generalised g -prior can now be derived as

βd | g ∼ N

(
0, g

{
X̃

T
d (In + Z̃dDdZ̃

T
d )−1X̃d

}−1
)
,

where X̃d = W1/2
0 Xd , Z̃d = W1/2

0 Zd and Dd is block-diagonal with
entries ρj IK (dj > 1).
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Marginal likelihood computation

Approximate the marginal likelihood of model d via numerical
integration with respect to g (Sabanés Bové and Held, 2011b):

p(y |d) =

∫ ∞

0
p(y | g ,d) p(g) dg .

Here p(y | g ,d) is computed using a Laplace approximation based
on a Gaussian approximation of p(β0,βd,ud | y, g ,d) using the
Bayesian IWLS algorithm (West, 1985).
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Model search

� Model space grows exponentially in number of covariates p.

� Exhaustive model search may still be possible.

� Otherwise efficient stochastic search algorithms are necessary.

� Easy setup is Metropolis-Hastings with proposals:

Move Choose a covariate j and de-/increase dj
Switch Choose a pair (i , j) and switch di and dj

→ “MCMC model composition” (Madigan and York, 1995)
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Application: Pima Indians Data

Variable Description

y Signs of diabetes according to WHO criteria (Yes = 1, No = 0)
x1 Number of pregnancies
x2 Plasma glucose concentration in an oral glucose tolerance test [mg/dl]
x3 Diastolic blood pressure [mm Hg]
x4 Triceps skin fold thickness [mm]
x5 Body mass index (BMI) [kg/m2]
x6 Diabetes pedigree function
x7 Age [years]

� Cubic O’Sullivan splines with K = 6 quintile-based knots

� Exhaustive model search: 823 543 models in 94.3 hours

� Stochastic model search: 43 766 models in 3.6 hours
⇒ 489 top models (66% probability mass) identical, in total
98% probability mass has been found.
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Posterior inclusion probabilities

x1 x2 x3 x4 x5 x6 x7

not included (dj = 0) 0.63 0.00 0.81 0.84 0.00 0.02 0.01
linear (dj = 1) 0.09 0.48 0.09 0.06 0.11 0.26 0.00
smooth (dj > 1) 0.28 0.52 0.09 0.10 0.88 0.72 0.99
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MAP model

60 100 140 180

-4

-2

0

2

4

d2 = 1

x2 (Glucose concentration [mg/dl])

20 30 40 50 60

-5

0

5

10

d5 = 3

x5 (BMI [kg/m2])

0.0 0.5 1.0 1.5 2.0 2.5

-3

-2

-1

0

1

2

3

4

d6 = 2

x6 (Diabetes pedigree function)

20 30 40 50 60 70 80

-10

-5

0

d7 = 4

x7 (Age)

(means with pointwise and simultaneous 95% credible intervals)

Bayes factors P values Generalized additive model selection References

The 10 best models

npreg glu bp skin bmi ped age logMargLik prior post

1 0 1 0 0 3 2 4 -243.3850 2.755732e-06 0.017715737

2 0 1 0 0 4 2 4 -243.5438 2.755732e-06 0.015115243

3 0 1 0 0 3 2 3 -243.5813 2.755732e-06 0.014558931

4 0 1 0 0 4 2 3 -243.7555 2.755732e-06 0.012231371

5 0 2 0 0 3 2 4 -243.7892 2.755732e-06 0.011825606

6 0 1 0 0 2 2 4 -243.9368 2.755732e-06 0.010202615

7 0 2 0 0 4 2 4 -243.9417 2.755732e-06 0.010152803

8 0 1 0 0 3 1 4 -243.9580 2.755732e-06 0.009988492

9 0 2 0 0 3 2 3 -243.9862 2.755732e-06 0.009710784

10 0 1 0 0 3 3 4 -244.0169 2.755732e-06 0.009417629
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Postprocessing

� Meta-model: posterior probabilities of sub-models are added and
used as weights for model averaging

� Best variable-selection meta-model includes x2, x5, x6 and x7 and
has posterior probability 46.6%

� We may define the median probability model comprising all models
including those covariates that have more than 50% posterior
inclusion probability.
Here: identical to the best variable-selection meta-model.

� We can also optimize the degrees of freedom of included covariates
with respect to the marginal likelihood:

d = (0, 1, 0, 0, 3, 2, 4) −→ d∗ = (0, 1, 0, 0, 3.42, 2.13, 3.69)

log p(y |d) = −243.39 −→ log p(y |d∗) = −243.23
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MAP model
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Best variable-selection meta-model
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