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Guttman (1944) Scale 
 

00000 
00001 
00011 
00011 
00011 
00111 
00111 
00111 
01111 
11111 

• Example of 10 subjects, 5 
items 

• “1” means correct (keyed) 
response 

• Items ordered from hard to 
easy 

Key point: If person gets a 
“hard” item right, he/she 
gets all easier items right 

Largely abandoned – no clear 
statistical estimation and 
testing machinery 
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Early References 

 
Walker, D. A. (1931). Answer-pattern and score-scatter in tests 

and examinations. British Journal of Psychology, 22, 73-86. 
 (“unig” answer patterns) 
 

Guttman, L. (1944). A basis for scaling qualitative data. American 
Sociological Review, 9, 139-150. 

 (“scale” – now a “Guttman scale”) 
 

Loevinger, J. (1948). The technic of homogeneous tests 
compared with some aspects of “scale analysis” and factor 
analysis. Psychological Bulletin, 45(6), 507-529. 

 (“cumulative homogeneous scale”) 
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 Example: Self-reported Height  

Answer “yes” or “no.” Are you 
(1) over 5’ tall (152.4 cm); (2) over 5’2” tall (157.4 cm); (3) over 
5’6” tall (168 cm), (4) over 6’ tall (182.9 cm)? 
 

With 1 = yes and 0 = no; and hk is the k-th person’s height, the 
only logically possible response patterns are: 

0000 if hk ≤ 5’                 (hk ≤ 152.4 cm) 
1000 if 5’ < hk ≤ 5’2”     (152.4<hk≤157.4 cm) 
1100  if 5’2” < hk ≤ 5’6” (157.4<hk≤168 cm) 
1110  if 5’6” < hk ≤ 6’     (168<hk≤182.9 cm) 
1111  if 6’ < hk                         (182.9 cm < hk) 

Every other pattern makes no sense – it’s an “error”. 
How about 1101? Then  hk 168 cm, but also hk   182.9 cm 
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Absolute Simplex Theory (AST) 
(Bentler, 1971) 

 

• An absolute simplex is an n by p data matrix (n>p) that can 
be generated completely from one parameter per item. The 
parameters are “absolute” (cannot be rescaled without 
information loss) 

  

• It is a parameterization, estimation, and testing machinery 
for Guttman and near-Guttman data 

 

• Approach discussed today is based on recent developments, 
including structural equation modeling and regression 
(Bentler, 2009, 2011ab; Bentler & Yuan, 2011) 
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A Unique Feature of AST Total Scores 
 
Let X be a p-vector with ( )E X   and ( )Cov X   

A total score is TX w X where w is any fixed weights.  

 
The ordering of persons by a total score TX in an AST 

population is invariant to choice of item weights 0iw  . 

If the person ordering depends on item weights, the 
items do not arise from a strict AST population. Also, 

TX X  
There is no further information in the pattern of 0-1 
responses. 
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To prove this, consider the Height data with weighted 
sum TX w X based on arbitrary weights 

1 2 3 4{ , , , } 0w w w w  . Then the only possible total scores are 
 

1 2 3 4

1 2 3

1 2

1

1 1 1 1

1 1 1 0 0

 1 1 0 0 0 0

1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

w w w w

w w w

w w

w

     
     
   

      
   

  
   

          

 
The largest TX will be largest for any choice of 4 0w   

The 2nd largest will be so regardless of choice of 3 0w   

and so on by induction to any AST scale. 
 

This is non-parametric. Parametric models are next. 
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Absolute Simplex Model Structures  

 

Mean Parameterization 
 

Parameters are: 1 2, ,..., p    

Raw 2nd Moment Matrix (MM) ( )m m       

Regression Model ( )P y


 X  
   

Variation Parameterization 
 

Parameters are: 
1 2, ,..., p    [ /i i i   ] 

Coefficient of Variation (CV) Model 1 1 ( )v vD D          

Regression Model ( )O y

 X   
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A Distance Property 
 

Distances based on MM and CV are unidimensional. Let 
A be any pp pd matrix from moments of  and i jX X  

with 0 <i j     such that  if ij ia i j  . Also, let   

have elements 2ij ii jj ija a a    . Then we have 
 

1 1 1 1

1 2 2 2

1 2 3 3

1 2 3 4

A

   

   

   

   

 
 
 
 
 
 

 and 

2 1 3 1 4 1

2 1 3 2 4 2

3 1 3 2 4 3

4 1 4 2 4 3

0

0

0

0

     

     

     

     

   
   
  

   
 

   

 

 
With h i j  , hj hi ij     are additive, i.e., the 

variables are unidimensional. 
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An Ordering Property 

Population moment matrices in AST theory have an 
important property:  
The variables (items) can be ordered by the magnitude 
of column sums and/or standard deviations of the 
moment matrix. 
Reminder: 

1 1 1 1

1 2 2 2

1 2 3 3

1 2 3 4

A

   

   

   

   

 
 
 
 
 
   

 

This result is useful for ordering variables based on 
sample moment matrices.  
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Mean Parameterization 
 

Let 
1 2

...
p

    . In an AST population the moment 

matrix ( )m m       has a 1-parameter per 

item structure as shown above:   
    

    

    

    

    

 
 
 

   
 
 
  

1 1 1 1 1

1 2 2 2 2

1 2 3 3 3

1 2 3 4 4

1 2 3 4 5

m

 
 

Items showing such a structure are unidimensional. 
Example of 10 persons responding to 4 items  
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Person↓ Item→ 1 2 3 4 
1 1 1 1 1 
2 1 1 1 1 
3 1 1 1 0 
4 1 1 1 0 
5 1 1 1 0 
6 1 1 0 0 
7 1 1 0 0 
8 1 1 0 0 
9 1 0 0 0 

10 0 0 0 0 

iX   .9 .8 .5 .2 

Clearly, e.g.  3 4 2 4 1 4 4

1

10
X X X X X X X      = 4 .2X   
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A consistent sample estimator of ( )m m       

is 
mS S XX   . The sampling distribution of sample 

moments is known in structural equation modeling 
(e.g., Satorra, 1992; Yuan & Bentler, 1997).  
 
Thus, the structural model ( )m   can be fit to 

mS  . 

 
Asymptotically distribution-free (minimum chi-square, 
minimum distance) approaches give estimates, 
standard errors, and a 2  goodness-of-fit model test. 
More stable estimators in small samples such as normal 
theory (e.g. ML) are consistent, but robust test statistics 
and standard errors (e.g., Satorra & Bentler, 1994; Yuan 
& Bentler, 2010) must be used.  
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An example moment matrix 
m

S for male sexual behavior 

based on N=175 is: 
 

      V1     V2     V3     V4     V5     V6     V7     V8      
V1   .891  .771  .697  .583  .566  .497  .394  .377 
V2   .771  .789  .686  .577  .566  .491  .377  .377 
V3   .697  .686  .709  .571  .531  .497  .383  .377 
V4   .583  .577  .571  .594  .526  .463  .371  .383 
V5   .566  .566  .531  .526  .577  .429  .360  .366 
V6   .497  .491  .497  .463  .429  .509  .366  .366  
V7   .394  .377  .383  .371  .360  .366  .411  .337  
V8   .377  .377  .377  .383  .366  .366  .337  .389
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Some Specific Model Structures 
 

1. 
m

  a symmetric matrix with equality constraints. 

2. 
m diff

TD T
  with T  a lower triangular 1’s matrix and 

1

2 1

1

...diff

p p

D



 

  

 
 
 
 
 

 
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3. Autoregressive approach, e.g., 

  
 
4. Covariance structure approach.  Since 

m
    it 

follows that 
m

    . To run, just add one factor to 

above model with variance -1, plus constraints. In setup 2, 

diff
Td  with 1

diff dif
d D  . Or ( )

diff diff diff
T D d d T  

    . 
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5. Precision matrix approach. Model is for 1

m

 , the 

inverse of m . Let  

 

1

1

21
2 1

1

1

1

( )

...

1

( )

diff

p

p p

d

d
D D

d





 

 





 
 

 
 

  
 
 
 
 

  
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Then 1

m

  is tridiagonal, a function of the same p para-

meters. Here is a 4-item example: 
 

1 2 2

2 2 3 31

3 3 4 4

4 4

0 0

0

0

0 0

m

d d d

d d d d

d d d d

d d



  
   
  

   
 

 

 

 
 
In all the above models, restrictions can be freed for 
more general models. An example is lag-2 effects in the 
autoregressive structure.
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Structural Model for Transformed Moment Matrix 

 

Instead of modeling 
m

  (& later, a related matrix  ), we can 

transform the data and hence the moment matrices. 

  

 Let 

1 0 0 0

1 1 0 0

1 1 1 0

1 1 1 1

T

 
 
 
 
 
 

, then 1

1 0 0 0

1 1 0 0

0 1 1 0

0 0 1 1

T 

 
 
 

 
 

   
 

Transform items as 1Y T X , and accordingly transform 
m

S  and 

m
 e.g., 1 1

m m
S T S T   . A simpler model structure results: 
1 1 1 1( )

m m diff diff
T T T TD T T D 

         , a diagonal matrix.  
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Absolute Quasi-simplex Models 
 
Model variants that allow excess variability are natural. They 
allow the diagonals of 

m
 to differ from those of the off-diagonals. 

A specific example is  
m diff m

TD T
    , where 

m
 is a diagonal 

matrix. Unlike factor analysis, one parameter in 
m

  must be 

fixed, so the quasi-simplex AST model has (2p – 1) parameters.    
 

With appropriate adjustments, all the results for an AST simplex 
are relevant to the latent AST quasi-simplex, such as 
( )

m m diff
TD T

   . The parameters now refer items to a 

latent continuum.  
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Information in Higher Moments 

3rd –order item products also provide information about 
model parameters for gains in efficient estimation. The earlier 
10x4 data yield 10x10 moments based on 4 parameters: 

 

Item 1 2 1×2 3 1×3 2×3 4 1×4 2×4 3×4 

1 .9          

2 .8 .8         

1×2 .8 .8 .8        

3 .5 .5 .5 .5       

1×3 .5 .5 .5 .5 .5      

2×3 .5 .5 .5 .5 .5 .5     

4 .2 .2 .2 .2 .2 .2 .2    

1×4 .2 .2 .2 .2 .2 .2 .2 .2   
2×4 .2 .2 .2 .2 .2 .2 .2 .2 .2  

3×4 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 
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Data-based Interval Scale Scores 

 

Since TX  completely orders the distribution of a uni-

dimensional absolute simplex, it can be used to get 
the empirical cumulative distribution function (CDF) 
of the trait. 
 
Given the CDF, we can use the inverse normal distri-
bution function to compute z-scores. 
 

This produces an interval scale if we are correct that 
the trait is normally distributed.  
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Ordered Total Scores Generate 
the CDF of the Scale 
 
% of subjects below a pattern 
= % of subjects below total score              
Pattern  Score XT %below CDF 
11111  5  90   1.00 
01111  4  80     .90 
00111  3  50     .80 
00011  2  20     .50 
00001  1  10     .20 
00000  0    0     .10
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Regression Estimation 
 

The proportion of the population below a given total score is
( ) ( )P y prob Y y  . We have  

1 1 2 2
( ) ...

p p
P y x x x       

predicts the CDFBELOW exactly with 2 1.0R  . The   para-

meters can be obtained from the   via 1
p p

    and 

1i i i
  


   . 

In practice we get an estimate y  of ( )P y  and run the 

regression y e X  to get the estimator ̂  and the 

associated statistics.  

The closeness of 2R̂  to 1.0 provides a measure of the validity 
of the model. Robust standard errors are available.
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Adding items with 0
i

   , ( )P y  becomes continuous as 

p, i.e., in a “universe” of items. If also n, then 

( )P y  approaches the population/universe trait CDF. 
 

Notice that the population distribution function can be 

approximated by ̂X  without the use of any norms. The 

item parameters carry this information. Also, ̂X  is a 

formative measure – the trait arises from the item 
responses. 
 

If the population distribution is normal, normal z-scores 
can be obtained through the inverse normal CDF. In 
practice, it can be desirable to compute an estimate of 

( )P y  independently of X  for the regression. 
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Mimic Model Estimation 
With many items, items can be grouped into sets, each with a 

full range of item content, item means, and with its own 
total score X1T, X2T, … 

The several X1T, X2T, … can yield several ( )P y  - proportions 

below - such as p1T, p2T, … 
 

A latent factor F can be created and a mimic model used in 

place of regression estimation. This means ̂X  estimates 

the latent trait F proportion below. 
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Uncontaminated Bivariate Regression 
(with a normality assumption) 

1. Compute mS S XX     

2. Estimate ̂  based on mS  

3. Compute ̂ based on ̂  

4. Compute ˆˆ( )P y X  and estimated CDF 

5. Compute ẑ  from estimated CDF using inverse normal 
6. Compute bivariate regression of an “experimentally 

independent”  observed score on the predicted ẑ  from the 
model 

The following example is not pure according to #6, but it 
shows how well the AST model can recover quantitative data. 
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Male Stature (Height) in cm (n= 1774) 
15 artificial Guttman items created from national data. 
AST model fitted, z-scores obtained, and height predicted. 
Extreme binary data was all 1’s, or all 0’s – no Bayes. 
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Male Sexual Behavior 
21 parameter AST model – Distribution free, no z 
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Variation Parameterization 
 

The Coefficient of Variation (CV) matrix 1 1

v D D 

     

with 2 2 2/i i i    and /ij ij i j     in a strict AST 

population has diagonal elements 2

i  and off-diagonal 

elements 2  if i i j  . 

This is a p-parameter model as before, with patterns of 
equalities and inequalities similar to that shown for the 
means. Thus it also gives a unidimensional representa-
tion. If there is additional variation, we have the quasi 
simplex *

v     with   diagonal. 

  
This was the 1971 parameterization. 
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Here’s a small CV matrix for 4 items: 
 

.111 .111 .111 .111 

.111 .250 .250 .250 

.111 .250 1.000 1.000 

.111 .250 1.000 4.000 

 
The CV matrix has the same pattern as the moment 
matrix. Unidimensionality and the same six model types 
(with variation parameters instead of means) can be 
used to estimate and test the model. There is also a 7th 
method.  Furthermore, the absolute quasi-simplex with 
added diagonal variation exists for all variants. 
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Seven CV Models 

 

 (1) a patterned matrix with equality constraints and 

parameters 2 2 2

1 2, ,..., p   ;  

(2) the structure v diffTD T
  , where T is a lower 

triangular matrix with 1.0 elements and diffD is a diagonal 

matrix with diagonal elements 2 2 2 2 2

1 2 1 1, ,..., p p       ;  

(3) an autoregressive model based on equations 

1 1 2 1 21 1 , 1,  ,..., ,...,j i ji p p p pX X X X             

with moment parameters of 1 and the ji  as  
2 2 2 2 2

1 2 1 1, ,..., p p       . 

(4) tri-diagonal precision matrix 1



  

(5) transformed variables and moments method
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(6) covariance structure. Let D  be a diagonal matrix 

that contains 2 1( 1)i
 as its ith diagonal element. 

Then, a covariance structure model for an absolute 
simplex is given by diffD TD T D  

  . 
 

A 7th Structure: Simplex Correlation Structure 
The correlation of two AST variables with variation para-
meters i j   is given by the ratio /ij i j   . This is 

similar to Guttman’s (1954) simplex correlation matrix, 
but AST variation parameters are absolute and cannot 
be rescaled. Hence AST simplexGuttman simplex, 
though they are similar. 
 



36 
 

CV Estimation Methods 
 
Let 

X
D be a diagonal matrix that contains sample 

means. Then a consistent estimator of the CV matrix v

is 1 1

v X X
S D SD  . 

 

Hence we may fit ( )v   to vS  to get ̂ . Bentler (2009) 

developed the asymptotic distribution of S  as a delta 

method function of the known asymptotic distribution 
of means and covariances. Then the usual wide variety 
of standard SEM estimators, standard errors, model 
tests, etc. become available. See also Boik and Shirvani 
(Statistical Methodology, 2009). 
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Regression Estimation  
 

The proportion of the population below a given score 

TX , ( ) ( )P y prob Y y  , was described before. Now we 

consider person odds-below ( ) ( ) /{1 ( )}O y P y P y  . 

Then we have  
( )O y


 X   

where 2 2 2 2 2

1 2 1 1( , ,..., )p p      
    . 

 
An illustrative example of person odds-below in relation 
to variation parameters can be seen from the example 
given previously. 
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Person Items Total 
Score 

XT 

Prop. 
Persons 
Below 

Odds 
Persons 
Below 

1 1 1 1 1 4 .80 4.0 

2 1 1 1 1 4 .80 4.0 
3 1 1 1 0 3 .50 1.0 

4 1 1 1 0 3 .50 1.0 
5 1 1 1 0 3 .50 1.0 
6 1 1 0 0 2 .20 .25 

7 1 1 0 0 2 .20 .25 
8 1 1 0 0 2 .20 .25 

9 1 0 0 0 1 .10 .11 
10 0 0 0 0 0 0 0 

iX   .9 .8 .5 .2    
2

is  .09 .16 .25 .16    
2 2/i is X  .11a .25 1.0 4.0 ←Variation Parameters 



39 
 

 
In practice, we can estimate ( )O y  from TX  and add an 

error term to the model. A high 2R̂  is desirable.  
 
To get a latent variable model, as before, we need 
multiple total scores X1T, X2T, … that yield several ( )P y  - 

proportions below and, in turn, several odds below. 
Then we put a factor F behind these, and use a mimic 
model to predict F . 
 
This gives an estimated latent trait CDFBELOW for each 
individual, and hence provides the latent CDF. If 
normality is assumed, a z-score can be obtained. 
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Summary 
 Walker, Guttman, Loevinger had good ideas 

 Guttman scales are defined on response patterns and 
hence are hard to incorporate into standard statistical 
models and methods 

 Absolute simplex theory was published in 1971 for CV 
matrices, but structural modeling did not exist and no 
formal statistical machinery was available 

 AST theory has now been extended to a wide variety of 
model types with standard statistical methodologies 

 Evaluation of these methodologies and comparison to 
existing scaling methodologies such as item response 
theory, classical test theory, etc. remains to be done. 
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