Explicit Modular Decomposition

Marc Hellmuth
Department of Mathematics
Faculty of Science
Stockholm University

WU Wien, 2024

Research

Research

Discrete Mathematics

Research

Discrete Mathematics

- Graph and Hypergraph Theory
- Discrete Optimization and Matroid Theory
- Combinatorics and Geometric Graph Theory

Packings, Edge- and Vertex-Colorings

Research

Discrete Mathematics

- Graph and Hypergraph Theory
- Discrete Optimization and Matroid Theory
- Combinatorics and Geometric Graph Theory

Computer Science

Research

Discrete Mathematics

- Graph and Hypergraph Theory
- Discrete Optimization and Matroid Theory
- Combinatorics and Geometric Graph Theory

Computer Science

- Complexity Theory
(Co)NP-completeness, Fixed-Parameter Tractability (FPT)
- Algorithm Design

Exact algorithms, Heuristics, Integer Linear Programming (ILP), Approximation algorithms

Packings, Edge- and Vertex-Colorings

Reductions, NP-hardness, ILP, FPT, approx. algorithms

Research

Discrete Mathematics

- Graph and Hypergraph Theory
- Discrete Optimization and Matroid Theory
- Combinatorics and Geometric Graph Theory

Computer Science

- Complexity Theory
(Co)NP-completeness, Fixed-Parameter Tractability (FPT)
- Algorithm Design

Exact algorithms, Heuristics, Integer Linear Programming (ILP), Approximation algorithms

Applied Mathematics \& Math. Data Science

Packings, Edge- and Vertex-Colorings

Planarity and 1-Face Embeddings (= particular planar drawing on orientable manifolds)

Reductions, NP-hardness, ILP, FPT, approx. algorithms

Research

Discrete Mathematics

- Graph and Hypergraph Theory
- Discrete Optimization and Matroid Theory
- Combinatorics and Geometric Graph Theory

Computer Science

- Complexity Theory
(Co)NP-completeness, Fixed-Parameter Tractability (FPT)
- Algorithm Design

Exact algorithms, Heuristics, Integer Linear Programming (ILP), Approximation algorithms

Applied Mathematics \& Math. Data Science

- General Focus: mathematical characterization of discrete data and structures that naturally occur in Life Sciences or Engineering

Packings, Edge- and Vertex-Colorings

Graph Grammars, Cayley Graphs,
Chemical Reaction Networks

Planarity and 1-Face Embeddings (= particular planar drawing on orientable manifolds)

Reductions, NP-hardness, ILP, FPT, approx. algorithms

Basics: Graphs and their Representation

undirected, simple graph G

Aim:
find efficient representation
that provides deep structural insights
and helps to understand complexity of certain problems

Basics: Graphs and their Representation

Representation
$A(G)=\left[\begin{array}{lllll}\mathbf{a} & \mathbf{b} & \mathbf{c} & \mathbf{d} & \mathbf{e} \\ 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0\end{array}\right] \begin{gathered}\mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{d} \\ \mathbf{e}\end{gathered}$

$A_{\text {list }}(G)=$| a | b | c | e |
| :---: | :--- | :--- | :--- |
| b | a | d | |
| c | a | d | |
| d | b | c | e |
| e | a | d | |

undirected, simple graph G

Aim:
find efficient representation
that provides deep structural insights
and helps to understand complexity of certain problems

Basics: Graphs and their Representation

Representation

$A_{\text {list }}(G)=$| a | b | c | e |
| :--- | :--- | :--- | :--- |
| b | a | d | |
| c | a | d | |
| d | b | c | e |
| e | a | d | |

Use other discrete structures as a way to present graphs

undirected, simple graph G

Aim:
find efficient representation
that provides deep structural insights
and helps to understand complexity of certain problems

Basics: Graphs and their Representation

Representation via (T, t)

lca $=$ last common ancestor
undirected, simple graph G

Basics: Graphs and their Representation

Representation via (T, t)
undirected, simple graph G

[^0]
Basics: Graphs and their Representation

Representation via (T, t)

undirected, simple graph G

In this example, (T, t) contains all structural information of G and can be used to recover G, i.e.,
G is explained by $(T, t): t\left(\operatorname{lca}_{T}(x, y)\right)=1 \Longleftrightarrow\{x, y\} \in E$

Basics: Graphs and their Representation

Representation via (T, t)

Ica = last common ancestor
rooted tree T with 0/1-labeling t

In this example, (T, t) contains all structural information of G and can be used to recover G, i.e.,
G is explained by $(T, t): t\left(\operatorname{lca}_{T}(x, y)\right)=1 \Longleftrightarrow\{x, y\} \in E$

Basics: Graphs and their Representation

Representation via (T, t)

Ica = last common ancestor
rooted tree T with 0/1-labeling t
undirected, simple graph G

In this example, (T, t) contains all structural information of G and can be used to recover G, i.e.,
G is explained by $(T, t): t\left(\operatorname{lca}_{T}(x, y)\right)=1 \Longleftrightarrow\{x, y\} \in E$

Basics: Graphs and their Representation

Representation via (T, t)

undirected, simple graph G

In this example, (T, t) contains all structural information of G and can be used to recover G, i.e.,
G is explained by $(T, t): t\left(\operatorname{lca}_{T}(x, y)\right)=1 \Longleftrightarrow\{x, y\} \in E$

Basics: Graphs and their Representation

Representation via (T, t)

Ica = last common ancestor
rooted tree T with 0/1-labeling t
undirected, simple graph G

In this example, (T, t) contains all structural information of G and can be used to recover G, i.e.,
G is explained by $(T, t): t\left(\operatorname{lca}_{T}(x, y)\right)=1 \Longleftrightarrow\{x, y\} \in E$

Basics: Graphs and their Representation

Representation via (T, t)
undirected, simple graph G

In this example, (T, t) contains all structural information of G and can be used to recover G, i.e.,
G is explained by $(T, t): t\left(\operatorname{lca}_{T}(x, y)\right)=1 \Longleftrightarrow\{x, y\} \in E$

Basics: Graphs and their Representation

Representation via (T, t)

undirected, simple graph G

In this example, (T, t) contains all structural information of G and can be used to recover G, i.e.,
G is explained by $(T, t): t\left(\operatorname{lca}_{T}(x, y)\right)=1 \Longleftrightarrow\{x, y\} \in E$

Basics: Graphs and their Representation

Representation via (T, t)

undirected, simple graph G

In this example, (T, t) contains all structural information of G and can be used to recover G, i.e.,
G is explained by $(T, t): t\left(\operatorname{lca}_{T}(x, y)\right)=1 \Longleftrightarrow\{x, y\} \in E$
The subclass of graphs that can be explained by (T, t) are precisely the cographs

Basics: Graphs and their Representation

Cographs?

In this example, (T, t) contains all structural information of G and can be used to recover G, i.e.,
G is explained by $(T, t): t\left(\operatorname{lca}_{T}(x, y)\right)=1 \Longleftrightarrow\{x, y\} \in E$
The subclass of graphs that can be explained by (T, t) are precisely the cographs

Cographs

Cographs ...

Cotree (T, t) explains cograph G

Cographs

Cographs ...

- ...form an extremely well-known graph class

Cotree (T, t) explains cograph G

Cographs

Cographs ...

- ...form an extremely well-known graph class
-are recursively defined (omitted)

Cotree (T, t) explains cograph G

Cographs

Cographs ...

- ...form an extremely well-known graph class
- are recursively defined (omitted)
- ... are presicely the graphs that do not contain induced paths on 4 vertices: •-•-•-•

Cotree (T, t) explains cograph G

Cographs

Cographs ...

- ...form an extremely well-known graph class
- are recursively defined (omitted)
- ... are presicely the graphs that do not contain induced paths on 4 vertices: •-•-•-•

Cotree (T, t) explains cograph G

Cographs

Cographs ...

- ...form an extremely well-known graph class
- are recursively defined (omitted)
- ... are presicely the graphs that do not contain induced paths on 4 vertices: •-•-•-•

Cotree (T, t) explains cograph G

Cographs

Cographs ...

- ...form an extremely well-known graph class
- are recursively defined (omitted)
- ... are presicely the graphs that do not contain induced paths on 4 vertices: •-•-•-•

Cotree (T, t) explains cograph G

Cographs

Cographs ...

- ...form an extremely well-known graph class
- are recursively defined (omitted)
- ... are presicely the graphs that do not contain induced paths on 4 vertices: •-•-•-•

Cotree (T, t) explains cograph G

discovered independently by several authors since the 1970s; Jung (1978), Lerchs (1971), Seinsche (1974), and Sumner (1974).

Cographs

Cographs ...

-form an extremely well-known graph class
- are recursively defined (omitted)
- ... are presicely the graphs that do not contain induced paths on 4 vertices: •-•-•-•

Cotree (T, t) explains cograph G

forces
edge $\{a, d\}\}$

Cographs

Cographs...

- ... form an extremely well-known graph class
- are recursively defined (omitted)
- ... are presicely the graphs that do not contain induced paths on 4 vertices: •-•-•-•

Core (T, t) explains cograph G

forces edge $\{b, d\}$

forces
edge $\{a, d\}$
$\left.\begin{array}{l}\text { forces } \\ \text { edge }\{a, d\}\end{array}\right\}$
or "non-edge" $\{c, d\}$
discovered independently by several authors since the 1970s; Jung (1978), Lerchs (1971), Seinsche (1974), and Sumner (1974).

Cographs

Cographs ...

- ... form an extremely well-known graph class
- are recursively defined (omitted)
- are presicely the graphs that do not contain induced paths on 4 vertices: •-•-•-•
- ... have appealing properties
(GI - easy, many NP-hard problems become polynomial-time solvable)

Core (T, t) explains cograph G

forces edge $\{b, d\}$

or "non-edge" $\{c, d\}$

[^1]
Cographs

Cographs ...

- ...form an extremely well-known graph class
-are recursively defined (omitted)
- ... are presicely the graphs that do not contain induced paths on 4 vertices: •-•-•-•
- ... have appealing properties
(GI - easy, many NP-hard problems become polynomial-time solvable)

Core (T, t) explains cograph G

- ... data-storage $O(|V(G)|)$

forces edge $\{b, d\}$

or "non-edge" $\{c, d\}$

[^2]
Basics: Graphs and their Representation

Representation via (T, t)
undirected, simple graph G

Ica = last common ancestor
rooted tree T with 0/1-labeling t

Basics: Graphs and their Representation

Representation via (T, t)
undirected, simple graph G

Ica = last common ancestor
rooted tree T with 0/1-labeling t
BAD news: Not all graphs can be explained by such 0/1-labeled trees (T, t)

Basics: Graphs and their Representation

Representation via (T, t)

undirected, simple graph G

BAD news: Not all graphs can be explained by such 0/1-labeled trees (T, t)
The subclass of graphs that can be explained by (T, t) are precisely the cographs (= extremely well-studied graph class).

Basics: Graphs and their Representation

Representation via (T, t)

Ica = last common ancestor
rooted tree T with 0/1-labeling t
undirected, simple graph G

BAD news: Not all graphs can be explained by such 0/1-labeled trees (T, t)
The subclass of graphs that can be explained by (T, t) are precisely the cographs (= extremely well-studied graph class).

GOOD news: Every graph G has a unique Modular Decomposition Tree that at least to some extent provides structural information of G

Basics: Modular Decomposition (MD)*

$M \subseteq V(G)$ is a module in G if $N(x) \backslash M=N(y) \backslash M$ for all $x, y \in M$

[^3]
Basics: Modular Decomposition (MD)*

$M \subseteq V(G)$ is a module in G if $N(x) \backslash M=N(y) \backslash M$ for all $x, y \in M$

Every graph has a unique decomposition into non-overlapping modules that can be computed in linear-time.
MD = set of all non-overlapping modules

[^4]
Basics: Modular Decomposition (MD)*

$M \subseteq V(G)$ is a module in G if $N(x) \backslash M=N(y) \backslash M$ for all $x, y \in M$

Every graph has a unique decomposition into non-overlapping modules that can be computed in linear-time.
MD = set of all non-overlapping modules

[^5]
Basics: Modular Decomposition (MD)*

$M \subseteq V(G)$ is a module in G if $N(x) \backslash M=N(y) \backslash M$ for all $x, y \in M$

Every graph has a unique decomposition into non-overlapping modules that can be computed in linear-time.
MD = set of all non-overlapping modules

[^6]
Basics: Modular Decomposition (MD)*

$M \subseteq V(G)$ is a module in G if $N(x) \backslash M=N(y) \backslash M$ for all $x, y \in M$

Every graph has a unique decomposition into non-overlapping modules that can be computed in linear-time.
MD = set of all non-overlapping modules = hierarchy = rooted tree

[^7]
Basics: Modular Decomposition (MD)*

$M \subseteq V(G)$ is a module in G if $N(x) \backslash M=N(y) \backslash M$ for all $x, y \in M$

Every graph has a unique decomposition into non-overlapping modules that can be computed in linear-time.
MD = set of all non-overlapping modules = hierarchy = rooted tree

[^8]
Basics: Modular Decomposition (MD)*

$M \subseteq V(G)$ is a module in G if $N(x) \backslash M=N(y) \backslash M$ for all $x, y \in M$

Every graph has a unique decomposition into non-overlapping modules that can be computed in linear-time.
MD = set of all non-overlapping modules = hierarchy = rooted tree
There are different type of modules:
0,1 and P (Prime) modules
defined in terms of connectedness conditions (omitted).

[^9]
Basics: Modular Decomposition (MD)*

$M \subseteq V(G)$ is a module in G if $N(x) \backslash M=N(y) \backslash M$ for all $x, y \in M$

Every graph has a unique decomposition into non-overlapping modules that can be computed in linear-time.
MD = set of all non-overlapping modules = hierarchy = rooted tree
There are different type of modules:
0,1 and P (Prime) modules
defined in terms of connectedness conditions (omitted).

[^10]
Basics: Modular Decomposition (MD)

$M \subseteq V(G)$ is a module in G if $N(x) \backslash M=N(y) \backslash M$ for all $x, y \in M$

0 - and 1 -vertices in MD-tree are good:

$$
t(\operatorname{lca}(x, y))=0 \Longrightarrow\{x, y\} \notin E(G) \quad \text { and } \quad t(\operatorname{lca}(x, y))=1 \Longrightarrow\{x, y\} \in E(G)
$$

Basics: Modular Decomposition (MD)

$M \subseteq V(G)$ is a module in G if $N(x) \backslash M=N(y) \backslash M$ for all $x, y \in M$

0 - and 1 -vertices in MD-tree are good:

$$
t(\operatorname{lca}(x, y))=0 \Longrightarrow\{x, y\} \notin E(G) \quad \text { and } \quad t(\operatorname{lca}(x, y))=1 \Longrightarrow\{x, y\} \in E(G)
$$

BUT, not all structural information of G is provided by the MD-tree if it contains P-vertices.

$$
\begin{aligned}
& t(\operatorname{lca}(3,4))=P \text { and }\{3,4\} \in E(G) \\
& t(\operatorname{lca}(3,5))=P \text { and }\{3,5\} \notin E(G)
\end{aligned}
$$

Basics: Modular Decomposition (MD)

$M \subseteq V(G)$ is a module in G if $N(x) \backslash M=N(y) \backslash M$ for all $x, y \in M$

0 - and 1-vertices in MD-tree are good:

$$
t(\operatorname{lca}(x, y))=0 \Longrightarrow\{x, y\} \notin E(G) \quad \text { and } \quad t(\operatorname{lca}(x, y))=1 \Longrightarrow\{x, y\} \in E(G)
$$

BUT, not all structural information of G is provided by the MD-tree if it contains P-vertices.

$$
\begin{aligned}
& t(\operatorname{lca}(3,4))=P \text { and }\{3,4\} \in E(G) \\
& t(\operatorname{lca}(3,5))=P \text { and }\{3,5\} \notin E(G)
\end{aligned}
$$

Full information of G is provided only if MD-tree does not contain P-vertices (cographs)

Basics: Modular Decomposition (MD)

$M \subseteq V(G)$ is a module in G if $N(x) \backslash M=N(y) \backslash M$ for all $x, y \in M$

The MD-tree cannot be used to recover G (structural information gets lost on P-vertices)

Basics: Modular Decomposition (MD)

$M \subseteq V(G)$ is a module in G if $N(x) \backslash M=N(y) \backslash M$ for all $x, y \in M$

The MD-tree cannot be used to recover G (structural information gets lost on P-vertices) P-vertices $\widehat{=}$ extremely secured closed box hiding structural information.

Basics: Modular Decomposition (MD)

$M \subseteq V(G)$ is a module in G if $N(x) \backslash M=N(y) \backslash M$ for all $x, y \in M$

The MD-tree cannot be used to recover G (structural information gets lost on P-vertices)
P-vertices $\widehat{=}$ extremely secured closed box hiding structural information.
Can we break and unbox the P-vertices to obtain 0/1-labeled rooted networks that provides the missing structural information of G ?

Basics: Modular Decomposition (MD)

$M \subseteq V(G)$ is a module in G if $N(x) \backslash M=N(y) \backslash M$ for all $x, y \in M$

The MD-tree cannot be used to recover G (structural information gets lost on P-vertices)
P-vertices $\widehat{=}$ extremely secured closed box hiding structural information.
Can we break and unbox the P-vertices to obtain 0/1-labeled rooted networks that provides the missing structural information of G ?

Basics: Modular Decomposition (MD)

$M \subseteq V(G)$ is a module in G if $N(x) \backslash M=N(y) \backslash M$ for all $x, y \in M$

The MD-tree cannot be used to recover G (structural information gets lost on P-vertices)
P-vertices $\widehat{=}$ extremely secured closed box hiding structural information.
Can we break and unbox the P-vertices to obtain 0/1-labeled rooted networks that provides the missing structural information of G ?
\Longrightarrow Explicit Modular Decomposition

Explicit Modular Decomposition

General Aim:

- Preserve the main features of the MD-tree, try to modify only the P-vertices
to obtain 0/1-labeled rooted networks to explain graphs

Explicit Modular Decomposition

General Aim:

- Preserve the main features of the MD-tree,
try to modify only the P-vertices
to obtain 0/1-labeled rooted networks to explain graphs

Explicit Modular Decomposition

General Aim:

- Preserve the main features of the MD-tree, try to modify only the P-vertices
to obtain 0/1-labeled rooted networks to explain graphs

Explicit Modular Decomposition

General Aim:

- Preserve the main features of the MD-tree, try to modify only the P-vertices
to obtain 0/1-labeled rooted networks to explain graphs
Proof of Concept: Half-grid networks.

Explicit Modular Decomposition: Half-grids

Explicit Modular Decomposition: Half-grids

Explicit Modular Decomposition: Half-grids

Theorem (2021)

Every graph G can be explained by a 0/1-labeled half-grid and thus, by a network obtained from MDT by locally replacing "P"-vertices by half-grids = median graphs.

Proof: In half-grids we have $\operatorname{Ica}(x, y) \neq \operatorname{Ica}\left(x^{\prime}, y^{\prime}\right)$ for distinct pairs x, y and x^{\prime}, y^{\prime}.

Explicit Modular Decomposition: Half-grids

Theorem (2021)

Every graph G can be explained by a 0/1-labeled half-grid and thus, by a network obtained from MDT by locally replacing "P"-vertices by half-grids = median graphs.

Proof: In half-grids we have $\operatorname{Ica}(x, y) \neq \operatorname{Ica}\left(x^{\prime}, y^{\prime}\right)$ for distinct pairs x, y and x^{\prime}, y^{\prime}.

Explicit Modular Decomposition: Half-grids

Theorem (2021)

Every graph G can be explained by a 0/1-labeled half-grid and thus, by a network obtained from MDT by locally replacing "P"-vertices by half-grids = median graphs.

Proof: In half-grids we have Ica $(x, y) \neq \operatorname{Ica}\left(x^{\prime}, y^{\prime}\right)$ for distinct pairs x, y and x^{\prime}, y^{\prime}.

Explicit Modular Decomposition: Half-grids

Theorem (2021)

Every graph G can be explained by a 0/1-labeled half-grid and thus, by a network obtained from MDT by locally replacing "P"-vertices by half-grids = median graphs.

Proof: In half-grids we have Ica $(x, y) \neq \operatorname{Ica}\left(x^{\prime}, y^{\prime}\right)$ for distinct pairs x, y and x^{\prime}, y^{\prime}.
\Longrightarrow The idea of explicit modular decomposition is feasible!

Explicit Modular Decomposition: Half-grids

Theorem (2021)

Every graph G can be explained by a 0/1-labeled half-grid and thus, by a network obtained from MDT by locally replacing "P"-vertices by half-grids = median graphs.

Proof: In half-grids we have Ica $(x, y) \neq \operatorname{Ica}\left(x^{\prime}, y^{\prime}\right)$ for distinct pairs x, y and x^{\prime}, y^{\prime}.
\Longrightarrow The idea of explicit modular decomposition is feasible!
But half-grids are only as suitable as representing G with its adjacency matrix (no deep structural insights)

Explicit Modular Decomposition

General Aim:

- Preserve the main features of the MD-tree, try to modify only the P-vertices
to obtain 0/1-labeled rooted networks to explain graphs

Explicit Modular Decomposition

General Aim:

- Preserve the main features of the MD-tree, try to modify only the P-vertices
to obtain 0/1-labeled rooted networks to explain graphs

Explicit Modular Decomposition

Instead of using "dense" half-grids let's look at the other extreme: Use the most-simplest non-tree structure to replace P-vertices.

Explicit Modular Decomposition

Instead of using "dense" half-grids let's look at the other extreme: Use the most-simplest non-tree structure to replace P-vertices.

From here one, we focus on the special case:
replacing P-vertices by rooted 0/1-labeled cycles

Explicit Modular Decomposition

Instead of using "dense" half-grids let's look at the other extreme: Use the most-simplest non-tree structure to replace P-vertices.

From here one, we focus on the special case:
replacing P-vertices by rooted 0/1-labeled cycles
Question: Which type of graphs can be explained by such networks (N, t) ?

Simple case: Single P-vertex

Consider graphs G whose MD-tree is a star-tree with single P-vertex

Simple case: Single P-vertex

Consider graphs G whose MD-tree is a star-tree with single P-vertex

1st Task: Characterize graphs G where

- MD-tree is star with single P-vertex and
- the resulting network (N, t) explains G ?

Simple case: Single P-vertex

Consider graphs G whose MD-tree is a star-tree with single P-vertex

1st Task: Characterize graphs G where

- MD-tree is star with single P-vertex and
- the resulting network (N, t) explains G ?

Simple case: Single P-vertex and Pseudo-cographs

Scholz \& Hellmuth, From Modular Decomposition Trees to Level-1 networks: Pseudo-Cographs, Polar-Cats and Prime Polar-Cats, Discr. Appl. Math, 2022

Simple case: Single P-vertex and Pseudo-cographs

A graph G is a pseudo-cograph if $|V(G)| \leq 2$

Simple case: Single P-vertex and Pseudo-cographs

A graph G is a pseudo-cograph if $|V(G)| \leq 2$ or if there is a vertex $v \in V(G)$ and induced subgraphs $G_{1}, G_{2} \subseteq G$, both with at least two vertices such that

Simple case: Single P-vertex and Pseudo-cographs

A graph G is a pseudo-cograph if $|V(G)| \leq 2$ or if there is a vertex $v \in V(G)$ and induced subgraphs $G_{1}, G_{2} \subseteq G$, both with at least two vertices such that
(P1) $V\left(G_{1}\right) \cup V\left(G_{2}\right)=V(G)$, $V\left(G_{1}\right) \cap V\left(G_{2}\right)=\{v\} ;$
(P2) G_{1} and G_{2} are cographs;
(P3) $G-v$ is either the join or the disjoint union of $G_{1}-v$ and $G_{2}-v$.

Simple case: Single P-vertex and Pseudo-cographs

A graph G is a pseudo-cograph if $|V(G)| \leq 2$ or if there is a vertex $v \in V(G)$ and induced subgraphs $G_{1}, G_{2} \subseteq G$, both with at least two vertices such that
(P1) $V\left(G_{1}\right) \cup V\left(G_{2}\right)=V(G)$, $V\left(G_{1}\right) \cap V\left(G_{2}\right)=\{v\} ;$
(P2) G_{1} and G_{2} are cographs;
(P3) $G-v$ is either the join or the disjoint union of $G_{1}-v$ and $G_{2}-v$.

Simple case: Single P-vertex and Pseudo-cographs

A graph G is a pseudo-cograph if $|V(G)| \leq 2$ or if there is a vertex $v \in V(G)$ and induced subgraphs $G_{1}, G_{2} \subseteq G$, both with at least two vertices such that
(P1) $V\left(G_{1}\right) \cup V\left(G_{2}\right)=V(G)$, $V\left(G_{1}\right) \cap V\left(G_{2}\right)=\{v\} ;$
(P2) G_{1} and G_{2} are cographs;
(P3) $G-v$ is either the join or the disjoint
 union of $G_{1}-v$ and $G_{2}-v$.

Simple case: Single P-vertex and Pseudo-cographs

A graph G is a pseudo-cograph if $|V(G)| \leq 2$ or if there is a vertex $v \in V(G)$ and induced subgraphs $G_{1}, G_{2} \subseteq G$, both with at least two vertices such that
(P1) $V\left(G_{1}\right) \cup V\left(G_{2}\right)=V(G)$, $V\left(G_{1}\right) \cap V\left(G_{2}\right)=\{v\} ;$
(P2) G_{1} and G_{2} are cographs;
(P3) $G-v$ is either the join or the disjoint union of $G_{1}-v$ and $G_{2}-v$.

Simple case: Single P-vertex and Pseudo-cographs

A graph G is a pseudo-cograph if $|V(G)| \leq 2$ or if there is a vertex $v \in V(G)$ and induced subgraphs $G_{1}, G_{2} \subseteq G$, both with at least two vertices such that
(P1) $V\left(G_{1}\right) \cup V\left(G_{2}\right)=V(G)$,
 $V\left(G_{1}\right) \cap V\left(G_{2}\right)=\{v\} ;$
(P2) G_{1} and G_{2} are cographs;
(P3) $G-v$ is either the join or the disjoint union of $G_{1}-v$ and $G_{2}-v$.

Simple case: Single P-vertex and Pseudo-cographs

A graph G is a pseudo-cograph if $|V(G)| \leq 2$ or if there is a vertex $v \in V(G)$ and induced subgraphs $G_{1}, G_{2} \subseteq G$, both with at least two vertices such that
(P1) $V\left(G_{1}\right) \cup V\left(G_{2}\right)=V(G)$,
$V\left(G_{1}\right) \cap V\left(G_{2}\right)=\{v\} ;$
(P2) G_{1} and G_{2} are cographs;
(P3) $G-v$ is either the join or the disjoint union of $G_{1}-v$ and $G_{2}-v$.

[^11]
Simple case: Single P-vertex and Pseudo-cographs

A graph G is a pseudo-cograph if $|V(G)| \leq 2$ or if there is a vertex $v \in V(G)$ and induced subgraphs $G_{1}, G_{2} \subseteq G$, both with at least two vertices such that
(P1) $V\left(G_{1}\right) \cup V\left(G_{2}\right)=V(G)$, $V\left(G_{1}\right) \cap V\left(G_{2}\right)=\{v\} ;$
(P2) G_{1} and G_{2} are cographs;
(P3) $G-v$ is either the join or the disjoint union of $G_{1}-v$ and $G_{2}-v$.

Simple case: Single P-vertex and Pseudo-cographs

A graph G is a pseudo-cograph if $|V(G)| \leq 2$ or if there is a vertex $v \in V(G)$ and induced subgraphs $G_{1}, G_{2} \subseteq G$, both with at least two vertices such that
(P1) $V\left(G_{1}\right) \cup V\left(G_{2}\right)=V(G)$, $V\left(G_{1}\right) \cap V\left(G_{2}\right)=\{v\} ;$
(P2) G_{1} and G_{2} are cographs;
(P3) $G-v$ is either the join or the disjoint

1st Task: Characterize graphs G where

- MD-tree is star with single P-vertex and
- the resulting network (N, t) explains G ?

Solution: Pseudo-cographs

[^12]
Simple case: Single P-vertex and Pseudo-cographs

A graph G is a pseudo-cograph if $|V(G)| \leq 2$ or if there is a vertex $v \in V(G)$ and induced subgraphs $G_{1}, G_{2} \subseteq G$, both with at least two vertices such that
(P1) $V\left(G_{1}\right) \cup V\left(G_{2}\right)=V(G)$, $V\left(G_{1}\right) \cap V\left(G_{2}\right)=\{v\} ;$
(P2) G_{1} and G_{2} are cographs;
(P3) $G-v$ is either the join or the disjoint

1st Task: Characterize graphs G where

- MD-tree is star with single P-vertex and
- the resulting network (N, t) explains G ?

Solution: Pseudo-cographs

[^13]
The general case: GATEx graphs

General Aim: Characterize graphs G where

- MD-tree is any tree with several P-vertices and
- the resulting network (N, t) explains G ?

Scholz \& Hellmuth, From Modular Decomposition Trees to Level-1 networks: Pseudo-Cographs, Polar-Cats and Prime Polar-Cats, Discr. Appl. Math, 2022
Scholz \& Hellmuth, Resolving Prime Modules: The Structure of Pseudo-cographs and Galled-Tree Explainable Graphs, Discr. Appl. Math, 2024

The general case: GaTEx graphs

General Aim: Characterize graphs G where

- MD-tree is any tree with several P-vertices and
- the resulting network (N, t) explains G ?

Scholz \& Hellmuth, From Modular Decomposition Trees to Level-1 networks: Pseudo-Cographs, Polar-Cats and Prime Polar-Cats, Discr. Appl. Math, 2022
Scholz \& Hellmuth, Resolving Prime Modules: The Structure of Pseudo-cographs and Galled-Tree Explainable Graphs, Discr. Appl. Math, 2024

The general case: GaTEx graphs

General Aim: Characterize graphs G where

- MD-tree is any tree with several P-vertices and
- the resulting network (N, t) explains G ?

Graphs for which this approach works are called
GATEx := Galled-Tree Explainable (graphs that can be explained by such networks)

Scholz \& Hellmuth, From Modular Decomposition Trees to Level-1 networks: Pseudo-Cographs, Polar-Cats and Prime Polar-Cats, Discr. Appl. Math, 2022
Scholz \& Hellmuth, Resolving Prime Modules: The Structure of Pseudo-cographs and Galled-Tree Explainable Graphs, Discr. Appl. Math, 2024

The general case: GaTEx graphs

General Aim: Characterize graphs G where

Galled-tree := 0/1-labeled rooted network where all cycles are edge-disjoint

- MD-tree is any tree with several P-vertices and
- the resulting network (N, t) explains G ?

Graphs for which this approach works are called
GATEx := Galled-Tree Explainable (graphs that can be explained by such networks)

[^14]
The general case: GATEx graphs

Theorem $(2022,2023)$
A graph is GATEx \Longleftrightarrow for all P-modules M the "quotient of $G[M]$ " is a pseudo-cograph.

Scholz \& Hellmuth, From Modular Decomposition Trees to Level-1 networks: Pseudo-Cographs, Polar-Cats and Prime Polar-Cats, Discr. Appl. Math, 2022
Scholz \& Hellmuth, Resolving Prime Modules: The Structure of Pseudo-cographs and Galled-Tree Explainable Graphs, Discr. Appl. Math, 2024

The general case: GATEx graphs

Theorem $(2022,2023)$
A graph is GATEx \Longleftrightarrow for all P-modules M the "quotient of $G[M]$ " is a pseudo-cograph.

Scholz \& Hellmuth, From Modular Decomposition Trees to Level-1 networks: Pseudo-Cographs, Polar-Cats and Prime Polar-Cats, Discr. Appl. Math, 2022
Scholz \& Hellmuth, Resolving Prime Modules: The Structure of Pseudo-cographs and Galled-Tree Explainable Graphs, Discr. Appl. Math, 2024

The general case: GATEx graphs

Theorem $(2022,2023)$
A graph is GATEx \Longleftrightarrow for all P-modules M the "quotient of $G[M]$ " is a pseudo-cograph.

Scholz \& Hellmuth, From Modular Decomposition Trees to Level-1 networks: Pseudo-Cographs, Polar-Cats and Prime Polar-Cats, Discr. Appl. Math, 2022
Scholz \& Hellmuth, Resolving Prime Modules: The Structure of Pseudo-cographs and Galled-Tree Explainable Graphs, Discr. Appl. Math, 2024

The general case: GATEx graphs

Theorem $(2022,2023)$
A graph is GATEx \Longleftrightarrow for all P-modules M the "quotient of $G[M]$ " is a pseudo-cograph.

Scholz \& Hellmuth, From Modular Decomposition Trees to Level-1 networks: Pseudo-Cographs, Polar-Cats and Prime Polar-Cats, Discr. Appl. Math, 2022
Scholz \& Hellmuth, Resolving Prime Modules: The Structure of Pseudo-cographs and Galled-Tree Explainable Graphs, Discr. Appl. Math, 2024

The general case: GaTEx graphs

Theorem $(2022,2023)$
A graph is GATEx \Longleftrightarrow for all P-modules M the "quotient of $G[M]$ " is a pseudo-cograph.

Scholz \& Hellmuth, From Modular Decomposition Trees to Level-1 networks: Pseudo-Cographs, Polar-Cats and Prime Polar-Cats, Discr. Appl. Math, 2022
Scholz \& Hellmuth, Resolving Prime Modules: The Structure of Pseudo-cographs and Galled-Tree Explainable Graphs, Discr. Appl. Math, 2024

The general case: GATEx graphs

Theorem $(2022,2023)$

A graph is GATEx \Longleftrightarrow for all P-modules M the "quotient of $G[M]$ " is a pseudo-cograph.
$\Longleftrightarrow G$ is \mathcal{F}-free (leads to a brute-force $O\left(n^{8}\right)$-time recognition algorithm).

Scholz \& Hellmuth, From Modular Decomposition Trees to Level-1 networks: Pseudo-Cographs, Polar-Cats and Prime Polar-Cats, Discr. Appl. Math, 2022
Scholz \& Hellmuth, Resolving Prime Modules: The Structure of Pseudo-cographs and Galled-Tree Explainable Graphs, Discr. Appl. Math, 2024

The general case: GaTEx graphs

Theorem $(2022,2023)$

A graph is GATEx \Longleftrightarrow for all P-modules M the "quotient of $G[M]$ " is a pseudo-cograph.

$$
\Longleftrightarrow G \text { is } \mathcal{F} \text {-free (leads to a brute-force } O\left(n^{8}\right) \text {-time recognition algorithm). }
$$

GATEx graphs can be recognized and construction of (N, t) can be done in linear time.

Scholz \& Hellmuth, From Modular Decomposition Trees to Level-1 networks: Pseudo-Cographs, Polar-Cats and Prime Polar-Cats, Discr. Appl. Math, 2022
Scholz \& Hellmuth, Resolving Prime Modules: The Structure of Pseudo-cographs and Galled-Tree Explainable Graphs, Discr. Appl. Math, 2024

The general case: GaTEx graphs

Theorem $(2022,2023)$

A graph is GATEx \Longleftrightarrow for all P-modules M the "quotient of $G[M]$ " is a pseudo-cograph.

$$
\Longleftrightarrow G \text { is } \mathcal{F} \text {-free (leads to a brute-force } O\left(n^{8}\right) \text {-time recognition algorithm). }
$$

GATEx graphs can be recognized and construction of (N, t) can be done in linear time. GATEX graphs can have $O\left(|n|^{2}\right)$ edges, but can be stored using only linear space.

Scholz \& Hellmuth, From Modular Decomposition Trees to Level-1 networks: Pseudo-Cographs, Polar-Cats and Prime Polar-Cats, Discr. Appl. Math, 2022
Scholz \& Hellmuth, Resolving Prime Modules: The Structure of Pseudo-cographs and Galled-Tree Explainable Graphs, Discr. Appl. Math, 2024

Consequences

GaTEx graphs form a novel and interesting class of graphs that is closely related to many other well-known and famous graph classes.

Among other results, GATEx graphs are:

- perfect graphs

Chromatic number of every induced subgraph = size of the largest clique of that subgraph

- comparability (=transitive orientable) graphs

There exists a transitive orientation on this graphs = represents partial orders in where two elements are connected by an edge if they are comparable to each other in the partial order.

- permutation graphs
used to represent permutations
- perfectly orderable
there is an ordering of the vertices of G such that a greedy coloring algorithm with that ordering optimally colors every induced subgraph of the given graph

Every cograph and every graph whose vertices are contained in at one most induced P_{4} are GaTEX

[^15]
NP-hard Problems that become easy ...

Example: Find optimal vertex coloring.

Scholz \& Hellmuth, Resolving Prime Modules: The Structure of Pseudo-cographs and Galled-Tree Explainable Graphs,

NP-hard Problems that become easy ...

Example: Find optimal vertex coloring.

Scholz \& Hellmuth, Resolving Prime Modules: The Structure of Pseudo-cographs and Galled-Tree Explainable Graphs,

NP-hard Problems that become easy ...

Example: Find optimal vertex coloring.

Scholz \& Hellmuth, Resolving Prime Modules: The Structure of Pseudo-cographs and Galled-Tree Explainable Graphs,

NP-hard Problems that become easy ...

Example: Find optimal vertex coloring.

Scholz \& Hellmuth, Resolving Prime Modules: The Structure of Pseudo-cographs and Galled-Tree Explainable Graphs,

NP-hard Problems that become easy ...

Example: Find optimal vertex coloring.

Scholz \& Hellmuth, Resolving Prime Modules: The Structure of Pseudo-cographs and Galled-Tree Explainable Graphs,

NP-hard Problems that become easy ...

Example: Find optimal vertex coloring.

NP-hard Problems that become easy ...

Example: Find optimal vertex coloring.

Scholz \& Hellmuth, Resolving Prime Modules: The Structure of Pseudo-cographs and Galled-Tree Explainable Graphs,

NP-hard Problems that become easy ...

Example: Find optimal vertex coloring.

Scholz \& Hellmuth, Resolving Prime Modules: The Structure of Pseudo-cographs and Galled-Tree Explainable Graphs,

NP-hard Problems that become easy ...

Example: Find optimal vertex coloring.

NP-hard Problems that become easy ...

Example: Find optimal vertex coloring.

Optimal vertex coloring can be solved in linear-time on GATEx graphs.

Scholz \& Hellmuth, Resolving Prime Modules: The Structure of Pseudo-cographs and Galled-Tree Explainable Graphs, Discr. Appl. Math, 2024

NP-hard Problems that become easy ...

Theorem (2023)

The following NP-hard problems can be solved in linear-time on GaTEx graphs.

- Finding a minimum vertex coloring
- Finding a perfect order
- Finding a maximum clique
- Finding a maximum independent set

Scholz \& Hellmuth, Linear Time Algorithms for NP-hard Problems restricted to GaTEx Graphs,
29th International Computing and Combinatorics Conference (COCOON 23), 2024
Scholz \& Hellmuth, Resolving Prime Modules: The Structure of Pseudo-cographs and Galled-Tree Explainable Graphs,
Discr. Appl. Math, 2024

NP-hard Problems that become easy ...

Theorem (2023)

The following NP-hard problems can be solved in linear-time on GaTEx graphs.

- Finding a minimum vertex coloring
- Finding a perfect order
- Finding a maximum clique
- Finding a maximum independent set

Moreover, GATEX graphs have bounded twin-width, i.e., many complexity results established for those graphs (e.g. FPT or approximation results) become applicable for GaTEx graphs.

[^16]29th International Computing and Combinatorics Conference (COCOON 23), 2024
Scholz \& Hellmuth, Resolving Prime Modules: The Structure of Pseudo-cographs and Galled-Tree Explainable Graphs,
Discr. Appl. Math, 2024

NP-hard Problems that become easy ...

Theorem (2023)

The following NP-hard problems can be solved in linear-time on GaTEx graphs.

- Finding a minimum vertex coloring
- Finding a perfect order
- Finding a maximum clique
- Finding a maximum independent set

Moreover, GATEX graphs have bounded twin-width, i.e., many complexity results established for those graphs (e.g. FPT or approximation results) become applicable for GaTEx graphs.

We conjecture that also the graph-isomorphism problem has a linear-time solution for GATEX graphs (work in progress).

[^17]
NP-hard Problems that become easy ...

Theorem (2023)

The following NP-hard problems can be solved in linear-time on GaTEx graphs.

- Finding a minimum vertex coloring
- Finding a perfect order
- Finding a maximum clique
- Finding a maximum independent set

Moreover, GATEx graphs have bounded twin-width, i.e., many complexity results established for those graphs (e.g. FPT or approximation results) become applicable for GaTEx graphs.

We conjecture that also the graph-isomorphism problem has a linear-time solution for GATEX graphs (work in progress).

Basic idea: Use the network (N, t) as a guide for the optimization algorithms

[^18]
NP-hard Problems that become easy ...

Theorem (2023)

The following NP-hard problems can be solved in linear-time on GATEx graphs.

- Finding a minimum vertex coloring
- Finding a perfect order
- Finding a maximum clique
- Finding a maximum independent set

Moreover, GATEx graphs have bounded twin-width, i.e., many complexity results established for those graphs (e.g. FPT or approximation results) become applicable for GATEx graphs.

We conjecture that also the graph-isomorphism problem has a linear-time solution for GATEX graphs (work in progress).

Basic idea: Use the network (N, t) as a guide for the optimization algorithms

Explicit modular decomposition provides an essential tool-box

 for solving discrete optimization problems![^19]
Summary - Explicit Modular Decomposition

General Aim:

- Preserve the main features of the MD-tree,
try to modify only the P-vertices
to obtain 0/1-labeled rooted networks to explain graphs

Summary - Explicit Modular Decomposition

General Aim:

- Preserve the main features of the MD-tree,
try to modify only the P-vertices
to obtain 0/1-labeled rooted networks to explain graphs
- Here: replace " P " vertices in MD tree by simple cycles or half-grids This is only a snapshot of what is possible!

Summary - Explicit Modular Decomposition

General Aim:

- Preserve the main features of the MD-tree,
try to modify only the P-vertices
to obtain 0/1-labeled rooted networks to explain graphs
- Here: replace " P " vertices in MD tree by simple cycles or half-grids This is only a snapshot of what is possible!
- we are not restricted to resolving P-vertices in the MD-tree by simple cycles or half-grids only For generalizations, we can draw on nearly unlimited resources from phylogenetic networks.

Summary - Explicit Modular Decomposition

- Every graph can be explained by half-grid networks
= proof of concept

Summary - Explicit Modular Decomposition

- Every graph can be explained by half-grid networks = proof of concept
- we characterized GATEx graphs (=graphs that can be explained by $0 / 1$ galled trees)

Summary - Explicit Modular Decomposition

- Every graph can be explained by half-grid networks = proof of concept
- we characterized GATEX graphs (=graphs that can be explained by $0 / 1$ galled trees) GATEx graphs are closely related to other famous graph classes

Summary - Explicit Modular Decomposition

- Every graph can be explained by half-grid networks = proof of concept
- we characterized GATEX graphs (=graphs that can be explained by $0 / 1$ galled trees) GaTEx graphs are closely related to other famous graph classes several NP-hard problems become easy on GaTEx graphs

Summary - Explicit Modular Decomposition

- Every graph can be explained by half-grid networks = proof of concept
- we characterized GATEX graphs (=graphs that can be explained by $0 / 1$ galled trees) GaTEX graphs are closely related to other famous graph classes several NP-hard problems become easy on GaTEx graphs
- Explicit Modular Decomposition is a very novel concept and a great playground (generalizations e.g. edge-colored di-graphs or matroids are coming)!

Applications

The initial motivation to investigate "explicit modular decomposition" is based on the fact that we want understand in more detail pairwise relationships between genes (e.g horizontal gene transfer and orthology)

Applications

The initial motivation to investigate "explicit modular decomposition" is based on the fact that we want understand in more detail pairwise relationships between genes (e.g horizontal gene transfer and orthology)
genomic sequence data + similarity information

pairwise relationships
between genes

Applications

The initial motivation to investigate "explicit modular decomposition" is based on the fact that we want understand in more detail pairwise relationships between genes (e.g horizontal gene transfer and orthology)
genomic sequence data + similarity information

pairwise relationships between genes

phylogenetic tree representing relationships

color of lca (x, y)
$=$ relationship of x and y

Given a relationship R that can be represented by trees T

Applications

The initial motivation to investigate "explicit modular decomposition" is based on the fact that we want understand in more detail pairwise relationships between genes (e.g horizontal gene transfer and orthology)
genomic sequence data + similarity information

pairwise relationships between genes

phylogenetic tree representing relationships

color of lca (x, y)
$=$ relationship of x and y

Given a relationship R that can be represented by trees T

- Colors of pairwise Ica's determine relationship

Applications

The initial motivation to investigate "explicit modular decomposition" is based on the fact that we want understand in more detail pairwise relationships between genes (e.g horizontal gene transfer and orthology)
genomic sequence data + similarity information

pairwise relationships between genes

phylogenetic tree representing relationships

color of lca (x, y)
$=$ relationship of x and y

Given a relationship R that can be represented by trees T

- Colors of pairwise Ica's determine relationship

Noise in the data or NON-tree-like evolution \Longrightarrow cannot expect trees!

Applications

The initial motivation to investigate "explicit modular decomposition" is based on the fact that we want understand in more detail pairwise relationships between genes (e.g horizontal gene transfer and orthology)
genomic sequence data + similarity information

pairwise relationships
between genes

phylogenetic tree representing relationships

color of lca (x, y)
$=$ relationship of x and y

Given a relationship R that can be represented by trees T

- Colors of pairwise Ica's determine relationship

Noise in the data or NON-tree-like evolution \Longrightarrow cannot expect trees!

Applications

The initial motivation to investigate "explicit modular decomposition" is based on the fact that we want understand in more detail pairwise relationships between genes (e.g horizontal gene transfer and orthology)

Given a relationship R that can be represented by trees T

- Colors of pairwise Ica's determine relationship

Noise in the data or NON-tree-like evolution \Longrightarrow cannot expect trees!

- How are networks characterized with pairwise-Ica-properties?
\Longrightarrow explicit modular decomposition

Applications

The initial motivation to investigate "explicit modular decomposition" is based on the fact that we want understand in more detail pairwise relationships between genes (e.g horizontal gene transfer and orthology)
genomic sequence data + similarity information

pairwise relationships
between genes

phylogenetic tree representing relationships

color of 1ca(x, y) $=$ relationship of x and y

Given a relationship R that can be represented by trees T

- Colors of pairwise Ica's determine relationship

Noise in the data or NON-tree-like evolution \Longrightarrow cannot expect trees!

- How are networks characterized with pairwise-Ica-properties?
\Longrightarrow explicit modular decomposition

Collaborations

Anna Lindeberg

Guillaume Scholz

Carmen
Bruckmann

Peter F. Stadler

Collaborations

Anna Lindeberg

Guillaume Scholz

Carmen
Bruckmann

Peter F. Stadler

THANK YOU!

Appendix

Cographs: Graphs without prime modules

Cographs...

Cotree (T, t) explains cograph G

Cographs: Graphs without prime modules

Cographs ...

- ... are explained by a 0/1-labeled tree (T, t) :

$$
\{x, y\} \in E \Longleftrightarrow t(\operatorname{lca}(x, y))=1
$$

Cotree (T, t) explains cograph G

Cographs: Graphs without prime modules

Cographs...

- ... are explained by a 0/1-labeled tree (T, t) :

$$
\{x, y\} \in E \Longleftrightarrow t(\operatorname{lca}(x, y))=1
$$

- ...form an extremely well-known graph class

Cotree (T, t) explains cograph G

Cographs: Graphs without prime modules

Cographs ...

- ... are explained by a 0/1-labeled tree (T, t) :

$$
\{x, y\} \in E \Longleftrightarrow t(\operatorname{lca}(x, y))=1
$$

- ...form an extremely well-known graph class
- are recursively defined (omitted)

Cotree (T, t) explains cograph G

Cographs: Graphs without prime modules

Cographs...

- ... are explained by a 0/1-labeled tree (T, t) :

$$
\{x, y\} \in E \Longleftrightarrow t(\operatorname{lca}(x, y))=1
$$

- ...form an extremely well-known graph class
- . . . are recursively defined (omitted)
- ... are precisely the graphs that do not contain

Cotree (T, t) explains cograph G induced paths on 4 vertices: •-•-•-•

Cographs: Graphs without prime modules

Cographs ...

- ... are explained by a 0/1-labeled tree (T, t) :

$$
\{x, y\} \in E \Longleftrightarrow t(\operatorname{lca}(x, y))=1
$$

- ...form an extremely well-known graph class
- . . . are recursively defined (omitted)
- ... are precisely the graphs that do not contain

Cotree (T, t) explains cograph G induced paths on 4 vertices: •-•-•-•

Cographs: Graphs without prime modules

Cographs...

- ... are explained by a 0/1-labeled tree (T, t) :

$$
\{x, y\} \in E \Longleftrightarrow t(\operatorname{lca}(x, y))=1
$$

- ...form an extremely well-known graph class
- . . . are recursively defined (omitted)
- ... are precisely the graphs that do not contain

Cotree (T, t) explains cograph G induced paths on 4 vertices: •-•-•-॰

Cographs: Graphs without prime modules

Cographs...

- ... are explained by a 0/1-labeled tree (T, t) :

$$
\{x, y\} \in E \Longleftrightarrow t(\operatorname{lca}(x, y))=1
$$

- ...form an extremely well-known graph class
- are recursively defined (omitted)
- ... are precisely the graphs that do not contain

Cotree (T, t) explains cograph G induced paths on 4 vertices:

Cographs: Graphs without prime modules

Cographs...

- ... are explained by a 0/1-labeled tree (T, t) :

$$
\{x, y\} \in E \Longleftrightarrow t(\operatorname{lca}(x, y))=1
$$

- ...form an extremely well-known graph class
- are recursively defined (omitted)
- ... are precisely the graphs that do not contain

Cotree (T, t) explains cograph G induced paths on 4 vertices:

forces
edge $\{a, d\}\}$

Cographs: Graphs without prime modules

Cographs...

- ... are explained by a 0/1-labeled tree (T, t) :

$$
\{x, y\} \in E \Longleftrightarrow t(\operatorname{lca}(x, y))=1
$$

- ...form an extremely well-known graph class
- . . . are recursively defined (omitted)
- ... are precisely the graphs that do not contain

Core (T, t) explains cograph G induced paths on 4 vertices:

forces
forces edge $\{b, d\}$
edge $\{a, d\} y$ or "non-edge" $\{c, d\}$

Pseudo-cographs: Algorithms

Recognition - The Basic Idea

If G cograph - done

Pseudo-cographs: Algorithms

Recognition - The Basic Idea

If G cograph - done
Else find one P_{4}
For all $v \in P_{4}$
If $G-v$ or $\overline{G-v}$ disconnected
take one connected component C
Put $V\left(G_{1}\right)=C \cup\{v\}$
Put $V\left(G_{2}\right)=(V \backslash C) \cup\{v\}$
If G_{1} and G_{2} are cographs return $\left(v, G_{1}, G_{2}\right)$

Scholz \& Hellmuth, From Modular Decomposition Trees to Level-1 networks: Pseudo-Cographs, Polar-Cats and Prime Polar-Cats, Discr. Appl. Math, 2022

Pseudo-cographs: Algorithms

Recognition - The Basic Idea

If G cograph - done
Else find one P_{4}
For all $v \in P_{4}$
If $G-v$ or $\overline{G-v}$ disconnected take one connected component C
Put $V\left(G_{1}\right)=C \cup\{v\}$
Put $V\left(G_{2}\right)=(V \backslash C) \cup\{v\}$
If G_{1} and G_{2} are cographs return $\left(v, G_{1}, G_{2}\right)$

Theorem (2022)
Pseudo-cographs can be recognized in linear time and a corresponding 0/1-labeled network can be constructed within the same time complexity.

[^20]
Pseudo-cographs: Algorithms

Recognition - The Basic Idea

If G cograph - done
Else find one P_{4}
For all $v \in P_{4}$
If $G-v$ or $\overline{G-v}$ disconnected take one connected component C
Put $V\left(G_{1}\right)=C \cup\{v\}$
Put $V\left(G_{2}\right)=(V \backslash C) \cup\{v\}$
If G_{1} and G_{2} are cographs return $\left(v, G_{1}, G_{2}\right)$

Theorem (2022)
Pseudo-cographs can be recognized in linear time and a corresponding 0/1-labeled network can be constructed within the same time complexity.

[^21]
Pseudo-cographs and galled-tree explainable graphs

Basic Properties

Pseudo-cographs and galled-tree explainable graphs

Basic Properties

- Every cograph is a pseudo-cograph and, in particular, galled-tree explainable.

Pseudo-cographs and galled-tree explainable graphs

Basic Properties

- Every cograph is a pseudo-cograph and, in particular, galled-tree explainable.
- G is galled-tree explainable $\Longleftrightarrow \bar{G}$ is galled-tree explainable. [closed under complementation]

Pseudo-cographs and galled-tree explainable graphs

Basic Properties

- Every cograph is a pseudo-cograph and, in particular, galled-tree explainable.
- G is galled-tree explainable $\Longleftrightarrow \bar{G}$ is galled-tree explainable. [closed under complementation]
- G is galled-tree explainable \Longleftrightarrow every induced subgraph of G is galled-tree explainable. [heritable]

Pseudo-cographs and galled-tree explainable graphs

Basic Properties

- Every cograph is a pseudo-cograph and, in particular, galled-tree explainable.
- G is galled-tree explainable $\Longleftrightarrow \bar{G}$ is galled-tree explainable. [closed under complementation]
- G is galled-tree explainable \Longleftrightarrow every induced subgraph of G is galled-tree explainable. [heritable]
- Pseudo-cographs as well as galled-tree explainable graph are weakly-chordal and, thus, perfect.
\Longrightarrow Many NP-hard problems get easy on such graphs!

Pseudo-cographs and galled-tree explainable graphs

Basic Properties

- Every cograph is a pseudo-cograph and, in particular, galled-tree explainable.
- G is galled-tree explainable $\Longleftrightarrow \bar{G}$ is galled-tree explainable. [closed under complementation]
- G is galled-tree explainable \Longleftrightarrow every induced subgraph of G is galled-tree explainable. [heritable]
- Pseudo-cographs as well as galled-tree explainable graph are weakly-chordal and, thus, perfect.
\Longrightarrow Many NP-hard problems get easy on such graphs!

This looks like a very interesting, novel graph class !!

Explicit Modular Decomposition

Explicit Modular Decomposition

General Aim:

- Preserve the main feature of the MD-tree, try to modify only the prime-vertices "P"
to obtain 0/1-labeled rooted networks to explain graphs
- "unbox" the structure of prime modules

Explicit Modular Decomposition

General Aim:

- Preserve the main feature of the MD-tree, try to modify only the prime-vertices "P"
to obtain 0/1-labeled rooted networks to explain graphs
- "unbox" the structure of prime modules

As a first attempt we may ask:
Is there a 0/1-labeled network that can explain EVERY given graph?

Explicit Modular Decomposition: Half-grids

Theorem (2021)

Every graph G can be explained by a 0/1-labeled half-grid and thus, by a network obtained from the MD-tree by locally replacing "P"-vertices by half-grids = median graphs.

Explicit Modular Decomposition: Half-grids

Theorem (2021)

Every graph G can be explained by a 0/1-labeled half-grid and thus, by a network obtained from the MD-tree by locally replacing "P"-vertices by half-grids = median graphs.

Explicit Modular Decomposition: Half-grids

Theorem (2021)

Every graph G can be explained by a 0/1-labeled half-grid and thus, by a network obtained from the MD-tree by locally replacing "P"-vertices by half-grids = median graphs.

Explicit Modular Decomposition: Half-grids

Theorem (2021)

Every graph G can be explained by a 0/1-labeled half-grid and thus, by a network obtained from the MD-tree by locally replacing "P"-vertices by half-grids = median graphs.

Half-grids are rather "heavy" $\left(O\left(|V(G)|^{2}\right)\right.$ edges and vertices) and of less interest from the structural point and biological point of view.
\Longrightarrow Can we go simpler?

Basics: Modular Decomposition (MD)

$M \subseteq V(G)$ is a module in G if $N(x) \backslash M=N(y) \backslash M$ for all $x, y \in M$

Basics: Modular Decomposition (MD)

$M \subseteq V(G)$ is a module in G if $N(x) \backslash M=N(y) \backslash M$ for all $x, y \in M$

Basics: Modular Decomposition (MD)

$M \subseteq V(G)$ is a module in G if $N(x) \backslash M=N(y) \backslash M$ for all $x, y \in M$

Basics: Modular Decomposition (MD)

$M \subseteq V(G)$ is a module in G if $N(x) \backslash M=N(y) \backslash M$ for all $x, y \in M$

Basics: Modular Decomposition (MD)

$M \subseteq V(G)$ is a module in G if $N(x) \backslash M=N(y) \backslash M$ for all $x, y \in M$

MD = set of all non-overlapping modules

Basics: Modular Decomposition (MD)

$M \subseteq V(G)$ is a module in G if $N(x) \backslash M=N(y) \backslash M$ for all $x, y \in M$

MD = set of all non-overlapping modules
MD is uniquely determined and can be computed in linear time

Basics: Modular Decomposition (MD)

$M \subseteq V(G)$ is a module in G if $N(x) \backslash M=N(y) \backslash M$ for all $x, y \in M$

MD = set of all non-overlapping modules
MD is uniquely determined and can be computed in linear time
MD forms a hierarchy = rooted tree

Basics: Modular Decomposition (MD)

$M \subseteq V(G)$ is a module in G if $N(x) \backslash M=N(y) \backslash M$ for all $x, y \in M$

MD = set of all non-overlapping modules
MD is uniquely determined and can be computed in linear time
MD forms a hierarchy = rooted tree

Basics: Modular Decomposition (MD)

$M \subseteq V(G)$ is a module in G if $N(x) \backslash M=N(y) \backslash M$ for all $x, y \in M$

MD = set of all non-overlapping modules
MD is uniquely determined and can be computed in linear time
MD forms a hierarchy = rooted tree
There are different type of modules:
Parallel (0), Series (1) and Prime (P) modules defined in terms of connectedness conditions (omitted).

Basics: Modular Decomposition (MD)

$M \subseteq V(G)$ is a module in G if $N(x) \backslash M=N(y) \backslash M$ for all $x, y \in M$

BUT, full information of G is provided only if G does not contain prime modules.

- $t(\operatorname{lca}(3,4))=\mathbf{P}$ and $\{3,4\} \in E(G)$
- $t(\operatorname{Ica}(3,5))=\mathrm{P}$ and $\{3,5\} \notin E(G)$

Basics: Modular Decomposition (MD)

$M \subseteq V(G)$ is a module in G if $N(x) \backslash M=N(y) \backslash M$ for all $x, y \in M$

BUT, full information of G is provided only if G does not contain prime modules.

- $t(\operatorname{lca}(3,4))=\mathbf{P}$ and $\{3,4\} \in E(G)$
- $t(\operatorname{lca}(3,5))=\mathbf{P}$ and $\{3,5\} \notin E(G)$

For cographs:

- The MD does not contain prime modules
- $\{x, y\} \in E \Longleftrightarrow t(\operatorname{lca}(x, y))=1$

Thus, full information about cographs is provided by MD

Basics: Modular Decomposition (MD)

$M \subseteq V(G)$ is a module in G if $N(x) \backslash M=N(y) \backslash M$ for all $x, y \in M$

BUT, full information of G is provided only if G does not contain prime modules.

- $t(\operatorname{lca}(3,4))=\mathbf{P}$ and $\{3,4\} \in E(G)$
- $t(\operatorname{lca}(3,5))=\mathbf{P}$ and $\{3,5\} \notin E(G)$

For cographs:

- The MD does not contain prime modules
- $\{x, y\} \in E \Longleftrightarrow t(\operatorname{Ica}(x, y))=1$

Thus, full information about cographs is provided by MD

Basics: Modular Decomposition (MD)

$M \subseteq V(G)$ is a module in G if $N(x) \backslash M=N(y) \backslash M$ for all $x, y \in M$

BUT, full information of G is provided only if G does not contain prime modules.
We used MD and cographs for studies in the context of evolutionary biology
Milestone: How to use "noise" in the data as an additional source of information!

Basics: Modular Decomposition (MD)

$M \subseteq V(G)$ is a module in G if $N(x) \backslash M=N(y) \backslash M$ for all $x, y \in M$

BUT, full information of G is provided only if G does not contain prime modules.
We used MD and cographs for studies in the context of evolutionary biology
Milestone: How to use "noise" in the data as an additional source of information!
We observed:

- It is crucial to understand the structure of subgraphs induced by prime modules!
- Evolution is not always tree-like and often better explained by networks!

Basics: Modular Decomposition (MD)

$M \subseteq V(G)$ is a module in G if $N(x) \backslash M=N(y) \backslash M$ for all $x, y \in M$

Central Questions:
Can we explain graphs by structures that go beyond trees?

Basics: Modular Decomposition (MD)

$M \subseteq V(G)$ is a module in G if $N(x) \backslash M=N(y) \backslash M$ for all $x, y \in M$

2

Central Questions:

Can we explain graphs by structures that go beyond trees?

Basics: Modular Decomposition (MD)

$M \subseteq V(G)$ is a module in G if $N(x) \backslash M=N(y) \backslash M$ for all $x, y \in M$

2

Central Questions:

Can we explain graphs by structures that go beyond trees?
Aim: Understand graph classes that can be explained by 0/1-labeled networks.

Pseudo-cographs: Characterization

Theorem (2022)

G is a pseudo-cograph $\Longleftrightarrow|V(G)| \leq 2$ or G can be explained by a galled-tree (N, t) that contains precisely one cycle C such that $\rho_{C}=\rho_{N}$ and the (unique) hybrid has precisely one child.

Scholz \& Hellmuth, From Modular Decomposition Trees to Level-1 networks: Pseudo-Cographs, Polar-Cats and Prime Polar-Cats, Discr. Appl. Math, 2022

Pseudo-cographs: Characterization

Theorem (2022)

G is a pseudo-cograph $\Longleftrightarrow|V(G)| \leq 2$ or G can be explained by a galled-tree (N, t) that contains precisely one cycle C such that $\rho_{C}=\rho_{N}$ and the (unique) hybrid has precisely one child.
Pseudo-cographs can be recognized in linear time and a corresponding 0/1-labeled network can be constructed within the same time complexity.

Scholz \& Hellmuth, From Modular Decomposition Trees to Level-1 networks: Pseudo-Cographs, Polar-Cats and Prime Polar-Cats, Discr. Appl. Math, 2022

Explicit Modular Decomposition

Explicit Modular Decomposition

General Aim:

- Preserve the main features of the MD-tree, try to modify only the prime-vertices "P"
to obtain 0/1-labeled rooted networks to explain graphs
- "unbox" the structure of prime modules

MD and simple cycles

MD and simple cycles

MD and simple cycles

Galled-tree: = 0/1-labeled network "consisting" of edges and simple cycles

MD and simple cycles

G explained by (N, t) if $\{x, y\} \in E(G) \Longleftrightarrow t\left(\operatorname{lca}_{N}(x, y)\right)=1$.

Galled-tree: $=0 / 1$-labeled network "consisting" of edges and simple cycles

MD and simple cycles

G explained by (N, t) if $\{x, y\} \in E(G) \Longleftrightarrow t\left(\operatorname{lca}_{N}(x, y)\right)=1$.
Galled-tree: $=0 / 1$-labeled network "consisting" of edges and simple cycles

We call such graphs Galled-Tree Explainable (GATEx)

MD and simple cycles

G explained by (N, t) if $\{x, y\} \in E(G) \Longleftrightarrow t\left(\operatorname{lca}_{N}(x, y)\right)=1$.

Galled-tree: = 0/1-labeled network "consisting" of edges and simple cycles

We call such graphs Galled-Tree Explainable (GaTEx)
Can we characterize the class of graphs of GATEx graphs?

MD and simple cycles

G explained by (N, t) if $\{x, y\} \in E(G) \Longleftrightarrow t\left(\operatorname{lca}_{N}(x, y)\right)=1$.

Galled-tree: = 0/1-labeled network "consisting" of edges and simple cycles

We call such graphs Galled-Tree Explainable (GaTEx)
Can we characterize the class of graphs of GATEx graphs?
... let us start simple ...

MD and simple cycles

Galled-tree: = 0/1-labeled network "consisting" of edges and simple cycles

We call such graphs Galled-Tree Explainable (GaTEx)
Can we characterize the class of graphs of GATEX graphs?
... let us start simple ...

Summary: GaTEx graphs

- we characterized GATEX graphs (=graphs that can be explained by $0 / 1$ galled trees)
- GaTEx graphs are closely related to other famous graph classes
- Several NP-hard problems become easy on GaTEx graphs

Summary: GaTEx graphs

- we characterized GATEX graphs (=graphs that can be explained by $0 / 1$ galled trees)
- GATEx graphs are closely related to other famous graph classes
- Several NP-hard problems become easy on GATEx graphs

Open Questions:

- 0/1/.../n-labeled networks to explain edge-colored graphs.

$$
t\left(\operatorname{lca}_{T}(x, y)\right)=i \Longleftrightarrow\{x, y\} \in E \text { has color } i
$$

Summary: GaTEx graphs

- we characterized GATEX graphs (=graphs that can be explained by $0 / 1$ galled trees)
- GATEX graphs are closely related to other famous graph classes
- Several NP-hard problems become easy on GATEx graphs

Open Questions:

- 0/1/.../n-labeled networks to explain edge-colored graphs.

$$
t\left(\operatorname{lca}_{T}(x, y)\right)=i \Longleftrightarrow\{x, y\} \in E \text { has color } i
$$

- What if we have directed graphs that we want to explain by labeled networks?
Can we use ordered networks to explain them?

Summary: GaTEx graphs

- we characterized GATEX graphs (=graphs that can be explained by $0 / 1$ galled trees)
- GATEX graphs are closely related to other famous graph classes
- Several NP-hard problems become easy on GATEx graphs

Open Questions:

- 0/1/.../n-labeled networks to explain edge-colored graphs.

$$
t\left(\operatorname{lca}_{T}(x, y)\right)=i \Longleftrightarrow\{x, y\} \in E \text { has color } i
$$

- What if we have directed graphs that we want to explain by labeled networks?
Can we use ordered networks to explain them?
- In the MD-tree (T, t) clusters = modules In (N, t), the modules of G form a subset of the clusters in (N, t) \Longrightarrow generalization of modules!

The general case: GATEx graphs

The general case: GaTEx graphs

Galled-tree: = 0/1-labeled rooted network "consisting" of edges and simple cycles

The general case: GATEx graphs

G explained by (N, t) if $\{x, y\} \in E(G) \Longleftrightarrow t\left(\operatorname{lca}_{N}(x, y)\right)=1$.
Galled-tree: = 0/1-labeled rooted network "consisting" of edges and simple cycles

The general case: GATEX graphs

G explained by (N, t) if $\{x, y\} \in E(G) \Longleftrightarrow t\left(\operatorname{lca}_{N}(x, y)\right)=1$.
Galled-tree: = 0/1-labeled rooted network "consisting" of edges and simple cycles We call such graphs Galled-Tree Explainable (GATEx)

The general case: GATEx graphs

G explained by (N, t) if $\{x, y\} \in E(G) \Longleftrightarrow t\left(\operatorname{lca}_{N}(x, y)\right)=1$.
Galled-tree: = 0/1-labeled rooted network "consisting" of edges and simple cycles We call such graphs Galled-Tree Explainable (GATEx)

Can we characterize the class of GATEX graphs?

The general case: GATEx graphs

G explained by (N, t) if $\{x, y\} \in E(G) \Longleftrightarrow t\left(\operatorname{lca}_{N}(x, y)\right)=1$.
Galled-tree: = 0/1-labeled rooted network "consisting" of edges and simple cycles We call such graphs Galled-Tree Explainable (GATEx)

Can we characterize the class of GATEX graphs?
... let us start simple ...

The general case: GATEX graphs

Galled-tree: = 0/1-labeled rooted network "consisting" of edges and simple cycles We call such graphs Galled-Tree Explainable (GaTEx)
Can we characterize the class of GATEx graphs?
... let us start simple ...

Summary: GaTEx graphs

- we characterized GATEX graphs (=graphs that can be explained by $0 / 1$ galled trees)
- GaTEx graphs are closely related to other famous graph classes
- Several NP-hard problems become easy on GaTEx graphs

Summary: GaTEx graphs

- we characterized GATEX graphs (=graphs that can be explained by $0 / 1$ galled trees)
- GaTEx graphs are closely related to other famous graph classes
- Several NP-hard problems become easy on GaTEx graphs

Open Questions:

- Edge-Colored Graphs
$0 / 1 / \ldots / \mathrm{n}$-labeled networks to explain edge-colored graphs.

$$
t\left(\operatorname{lca}_{T}(x, y)\right)=i \Longleftrightarrow\{x, y\} \in E \text { has color } i
$$

Summary: GaTEx graphs

- we characterized GATEX graphs (=graphs that can be explained by $0 / 1$ galled trees)
- GaTEx graphs are closely related to other famous graph classes
- Several NP-hard problems become easy on GaTEx graphs

Open Questions:

- Edge-Colored Graphs
$0 / 1 / \ldots / \mathrm{n}$-labeled networks to explain edge-colored graphs.

$$
t\left(\operatorname{lca}_{T}(x, y)\right)=i \Longleftrightarrow\{x, y\} \in E \text { has color } i
$$

- Directed Graphs

What if we have directed graphs that we want to explain by labeled networks?
Can we use ordered networks to explain them?

Summary: GaTEx graphs

- we characterized GATEX graphs (=graphs that can be explained by $0 / 1$ galled trees)
- GATEX graphs are closely related to other famous graph classes
- Several NP-hard problems become easy on GATEx graphs

Open Questions:

- Edge-Colored Graphs

0/1/.../n-labeled networks to explain edge-colored graphs.

$$
t\left(\operatorname{lca}_{T}(x, y)\right)=i \Longleftrightarrow\{x, y\} \in E \text { has color } i
$$

- Directed Graphs

What if we have directed graphs that we want to explain by labeled networks?
Can we use ordered networks to explain them?

- Hypergraphs and Set-Systems

[^0]: Ica = last common ancestor
 rooted tree T with 0/1-labeling t

[^1]: discovered independently by several authors since the 1970s; Jung (1978), Lerchs (1971), Seinsche (1974), and Sumner (1974).

[^2]: discovered independently by several authors since the 1970s; Jung (1978), Lerchs (1971), Seinsche (1974), and Sumner (1974).

[^3]: *MD is a standard technique to understand discrete structure by decomposing them into smaller "building blocks". MD is of such basic importance that it was rediscovered several times under several names, e.g., Gallai (1967), Habib\&Maurer (1979), Möhring\&Rademacher (1979), Sumner (1971)

[^4]: *MD is a standard technique to understand discrete structure by decomposing them into smaller "building blocks".
 MD is of such basic importance that it was rediscovered several times under several names, e.g., Gallai (1967),
 Habib\&Maurer (1979), Möhring\&Rademacher (1979), Sumner (1971)

[^5]: *MD is a standard technique to understand discrete structure by decomposing them into smaller "building blocks".
 MD is of such basic importance that it was rediscovered several times under several names, e.g., Gallai (1967),
 Habib\&Maurer (1979), Möhring\&Rademacher (1979), Sumner (1971)

[^6]: *MD is a standard technique to understand discrete structure by decomposing them into smaller "building blocks".
 MD is of such basic importance that it was rediscovered several times under several names, e.g., Gallai (1967),
 Habib\&Maurer (1979), Möhring\&Rademacher (1979), Sumner (1971)

[^7]: *MD is a standard technique to understand discrete structure by decomposing them into smaller "building blocks".
 MD is of such basic importance that it was rediscovered several times under several names, e.g., Gallai (1967),
 Habib\&Maurer (1979), Möhring\&Rademacher (1979), Sumner (1971)

[^8]: *MD is a standard technique to understand discrete structure by decomposing them into smaller "building blocks".
 MD is of such basic importance that it was rediscovered several times under several names, e.g., Gallai (1967),
 Habib\&Maurer (1979), Möhring\&Rademacher (1979), Sumner (1971)

[^9]: *MD is a standard technique to understand discrete structure by decomposing them into smaller "building blocks".
 MD is of such basic importance that it was rediscovered several times under several names, e.g., Gallai (1967),
 Habib\&Maurer (1979), Möhring\&Rademacher (1979), Sumner (1971)

[^10]: *MD is a standard technique to understand discrete structure by decomposing them into smaller "building blocks".
 MD is of such basic importance that it was rediscovered several times under several names, e.g., Gallai (1967),
 Habib\&Maurer (1979), Möhring\&Rademacher (1979), Sumner (1971)

[^11]: Scholz \& Hellmuth, From Modular Decomposition Trees to Level-1 networks: Pseudo-Cographs, Polar-Cats and Prime Polar-Cats, Discr. Appl. Math, 2022

[^12]: Scholz \& Hellmuth, From Modular Decomposition Trees to Level-1 networks: Pseudo-Cographs, Polar-Cats and Prime Polar-Cats, Discr. Appl. Math, 2022

[^13]: Scholz \& Hellmuth, From Modular Decomposition Trees to Level-1 networks: Pseudo-Cographs, Polar-Cats and Prime Polar-Cats, Discr. Appl. Math, 2022

[^14]: Scholz \& Hellmuth, From Modular Decomposition Trees to Level-1 networks: Pseudo-Cographs, Polar-Cats and Prime Polar-Cats, Discr. Appl. Math, 2022
 Scholz \& Hellmuth, Resolving Prime Modules: The Structure of Pseudo-cographs and Galled-Tree Explainable Graphs, Discr. Appl. Math, 2024

[^15]: Scholz \& Hellmuth, Resolving Prime Modules: The Structure of Pseudo-cographs and Galled-Tree Explainable Graphs,
 Discr. Appl. Math, 2024

[^16]: Scholz \& Hellmuth, Linear Time Algorithms for NP-hard Problems restricted to GaTEx Graphs,

[^17]: Scholz \& Hellmuth, Linear Time Algorithms for NP-hard Problems restricted to GaTEx Graphs,
 29th International Computing and Combinatorics Conference (COCOON 23), 2024
 Scholz \& Hellmuth, Resolving Prime Modules: The Structure of Pseudo-cographs and Galled-Tree Explainable Graphs,
 Discr. Appl. Math, 2024

[^18]: Scholz \& Hellmuth, Linear Time Algorithms for NP-hard Problems restricted to GaTEx Graphs,
 29th International Computing and Combinatorics Conference (COCOON 23), 2024
 Scholz \& Hellmuth, Resolving Prime Modules: The Structure of Pseudo-cographs and Galled-Tree Explainable Graphs,
 Discr. Appl. Math, 2024

[^19]: Scholz \& Hellmuth, Linear Time Algorithms for NP-hard Problems restricted to GaTEx Graphs,
 29th International Computing and Combinatorics Conference (COCOON 23), 2024
 Scholz \& Hellmuth, Resolving Prime Modules: The Structure of Pseudo-cographs and Galled-Tree Explainable Graphs,
 Discr. Appl. Math, 2024

[^20]: Scholz \& Hellmuth, From Modular Decomposition Trees to Level-1 networks: Pseudo-Cographs, Polar-Cats and Prime Polar-Cats, Discr. Appl. Math, 2022

[^21]: Scholz \& Hellmuth, From Modular Decomposition Trees to Level-1 networks: Pseudo-Cographs, Polar-Cats and Prime Polar-Cats, Discr. Appl. Math, 2022

