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Basics: Graphs and their Representation
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G is explained by (T, t): t(lcaT(x,y)) = 1 ⇐⇒ {x,y} ∈ E
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Cographs

Cographs . . .

• . . . form an extremely well-known graph class
• . . . are recursively defined (omitted)
• . . . are presicely the graphs that do not contain

induced paths on 4 vertices: • – • – • – •
• . . . have appealing properties

(GI - easy, many NP-hard problems become
polynomial-time solvable)

• . . . data-storage O(|V(G)|)

a

b c

e d
a b ecd

1

0 0

Cotree (T, t) explains cograph G

discovered independently by several authors since the 1970s; Jung (1978), Lerchs (1971), Seinsche (1974), and Sumner (1974).
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Basics: Modular Decomposition (MD)∗

M ⊆ V(G) is a module in G if N(x)\M = N(y)\M for all x,y ∈M

G
M

Every graph has a unique decomposition into non-overlapping modules that
can be computed in linear-time.

MD = set of all non-overlapping modules

= hierarchy = rooted tree

There are different type of modules:

0, 1 and P (Prime) modules
defined in terms of connectedness conditions (omitted).

∗MD is a standard technique to understand discrete structure by decomposing them into smaller “building blocks”.
MD is of such basic importance that it was rediscovered several times under several names, e.g., Gallai (1967),
Habib&Maurer (1979), Möhring&Rademacher (1979), Sumner (1971)
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0- and 1-vertices in MD-tree are good:

t(lca(x,y)) = 0 =⇒ {x,y} /∈ E(G) and t(lca(x,y)) = 1 =⇒ {x,y} ∈ E(G)

BUT, not all structural information of G is provided by the MD-tree if it contains P-vertices.

t(lca(3,4)) = P and {3,4} ∈ E(G)

t(lca(3,5)) = P and {3,5} /∈ E(G)

Full information of G is provided only if MD-tree does not contain P-vertices (cographs)
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The MD-tree cannot be used to recover G (structural information gets lost on P-vertices)

P-vertices =̂ extremely secured closed box hiding structural information.

Can we break and unbox the P-vertices to obtain 0/1-labeled rooted networks that
provides the missing structural information of G ?
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General Aim:

• Preserve the main features of the MD-tree,

try to modify only the P-vertices

to obtain 0/1-labeled rooted networks to explain graphs

Proof of Concept: Half-grid networks.
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Explicit Modular Decomposition: Half-grids
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Theorem (2021)
Every graph G can be explained by a 0/1-labeled half-grid and thus, by a network obtained from
MDT by locally replacing ”P”-vertices by half-grids = median graphs.

Proof: In half-grids we have lca(x,y) 6= lca(x′,y′) for distinct pairs x,y and x′,y′.

=⇒ The idea of explicit modular decomposition is feasible!

But half-grids are only as suitable as representing G with its adjacency matrix
(no deep structural insights)

Bruckmann, Stadler, Hellmuth, From Modular Decomposition Trees to Rooted Median Graphs, Discr. Appl. Math, 2021
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Instead of using ”dense” half-grids let’s look at the other extreme:
Use the most-simplest non-tree structure to replace P-vertices.

From here one, we focus on the special case:

replacing P-vertices by rooted 0/1-labeled cycles

Question: Which type of graphs can be explained by such networks (N, t)?
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Simple case: Single P-vertex

Consider graphs G whose MD-tree is a star-tree with single P-vertex
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1st Task: Characterize graphs G where
• MD-tree is star with single P-vertex and
• the resulting network (N, t) explains G?
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Simple case: Single P-vertex and Pseudo-cographs

A graph G is a pseudo-cograph if |V(G)| ≤ 2

or if there is a vertex v ∈ V(G) and induced
subgraphs G1,G2 ⊆G, both with at least two
vertices such that

(P1) V(G1)∪V(G2) = V(G),
V(G1)∩V(G2) = {v};

(P2) G1 and G2 are cographs;

(P3) G− v is either the join or the disjoint
union of G1− v and G2− v.

1st Task: Characterize graphs G where
• MD-tree is star with single P-vertex and
• the resulting network (N, t) explains G?

Solution: Pseudo-cographs

Scholz & Hellmuth, From Modular Decomposition Trees to Level-1 networks: Pseudo-Cographs, Polar-Cats and Prime
Polar-Cats, Discr. Appl. Math, 2022
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Simple case: Single P-vertex and Pseudo-cographs

A graph G is a pseudo-cograph if |V(G)| ≤ 2
or if there is a vertex v ∈ V(G) and induced
subgraphs G1,G2 ⊆G, both with at least two
vertices such that

(P1) V(G1)∪V(G2) = V(G),
V(G1)∩V(G2) = {v};

(P2) G1 and G2 are cographs;

(P3) G− v is either the join or the disjoint
union of G1− v and G2− v.
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The general case: GATEX graphs

P

P 10

0

Galled-tree := 0/1-labeled rooted network
where all cycles are edge-disjoint

General Aim: Characterize graphs G where
• MD-tree is any tree with several P-vertices and
• the resulting network (N, t) explains G?

Graphs for which this approach works are called

GATEX := Galled-Tree Explainable (graphs that can be explained by such networks)

Scholz & Hellmuth, From Modular Decomposition Trees to Level-1 networks: Pseudo-Cographs, Polar-Cats and Prime
Polar-Cats, Discr. Appl. Math, 2022

Scholz & Hellmuth, Resolving Prime Modules: The Structure of Pseudo-cographs and Galled-Tree Explainable Graphs,
Discr. Appl. Math, 2024
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The general case: GATEX graphs

P

P 10

0

Theorem (2022, 2023)
A graph is GATEX ⇐⇒ for all P-modules M the “quotient of G[M]” is a pseudo-cograph.

⇐⇒ G is F-free (leads to a brute-force O(n8)-time recognition algorithm).

GATEX graphs can be recognized and construction of (N, t) can be done in linear time.

GATEX graphs can have O(|n|2) edges, but can be stored using only linear space.
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Consequences

GATEX graphs form a novel and interesting class of graphs that is closely related to many other
well-known and famous graph classes.

Among other results, GATEX graphs are:
• perfect graphs

Chromatic number of every induced subgraph =
size of the largest clique of that subgraph

• comparability (=transitive orientable) graphs
There exists a transitive orientation on this graphs = represents partial orders
in where two elements are connected by an edge if they are comparable to
each other in the partial order.

• permutation graphs
used to represent permutations

• perfectly orderable
there is an ordering of the vertices of G such that a greedy coloring algorithm
with that ordering optimally colors every induced subgraph of the given graph

Every cograph and every graph whose vertices are contained in at one most induced P4 are GATEX

Scholz & Hellmuth, Resolving Prime Modules: The Structure of Pseudo-cographs and Galled-Tree Explainable Graphs,
Discr. Appl. Math, 2024
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NP-hard Problems that become easy . . .

Example: Find optimal vertex coloring.

Scholz & Hellmuth, Resolving Prime Modules: The Structure of Pseudo-cographs and Galled-Tree Explainable Graphs,
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Optimal vertex coloring can be solved in linear-time on GATEX graphs.
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NP-hard Problems that become easy . . .

Theorem (2023)
The following NP-hard problems can be solved in linear-time on GATEX graphs.
• Finding a minimum vertex coloring
• Finding a perfect order
• Finding a maximum clique
• Finding a maximum independent set

Moreover, GATEX graphs have bounded twin-width, i.e., many complexity results established for
those graphs (e.g. FPT or approximation results) become applicable for GATEX graphs.

We conjecture that also the graph-isomorphism problem has a linear-time solution for GATEX

graphs (work in progress).

Basic idea: Use the network (N, t) as a guide for the optimization algorithms

Explicit modular decomposition provides an essential tool-box
for solving discrete optimization problems!

Scholz & Hellmuth, Linear Time Algorithms for NP-hard Problems restricted to GaTEx Graphs,
29th International Computing and Combinatorics Conference (COCOON 23), 2024
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Summary - Explicit Modular Decomposition

P

P 10

0

General Aim:
• Preserve the main features of the MD-tree,

try to modify only the P-vertices

to obtain 0/1-labeled rooted networks to explain graphs

• Here: replace “P” vertices in MD tree by simple cycles or half-grids

This is only a snapshot of what is possible!

• we are not restricted to resolving P-vertices in the MD-tree by simple cycles or half-grids only

For generalizations, we can draw on nearly unlimited resources from phylogenetic networks.
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Summary - Explicit Modular Decomposition

• Every graph can be explained by half-grid networks
= proof of concept

• we characterized GATEX graphs (=graphs that can be explained by 0/1 galled trees)

GATEX graphs are closely related to other famous graph classes

several NP-hard problems become easy on GATEX graphs

• Explicit Modular Decomposition is a very novel concept and a great playground
(generalizations e.g. edge-colored di-graphs or matroids are coming)!
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Applications

The initial motivation to investigate ”explicit modular decomposition” is based on the fact that we
want understand in more detail pairwise relationships between genes (e.g horizontal gene transfer
and orthology)

Given a relationship R that can be represented by trees T
• Colors of pairwise lca’s determine relationship

Noise in the data or NON-tree-like evolution =⇒ cannot expect trees!

• How are networks characterized with pairwise-lca-properties?
=⇒ explicit modular decomposition

Hellmuth & Wieseke et al., Phylogenomics with Paralogs, Proceedings of the National Academy of Sciences (PNAS), 2015
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Cographs : Graphs without prime modules

Cographs . . .

• . . . are explained by a 0/1-labeled tree (T, t):

{x,y} ∈ E ⇐⇒ t(lca(x,y)) = 1
• . . . form an extremely well-known graph class
• . . . are recursively defined (omitted)
• . . . are precisely the graphs that do not contain

induced paths on 4 vertices: • – • – • – •

a

b c

e d
a b ecd

1

0 0

Cotree (T, t) explains cograph G

discovered independently by several authors since the 1970s; Jung (1978), Lerchs (1971), Seinsche (1974), and Sumner (1974).
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Pseudo-cographs: Algorithms
Recognition - The Basic Idea

If G cograph - done

Else find one P4
For all v ∈ P4

If G− v or G− v disconnected
take one connected component C
Put V(G1) = C∪{v}
Put V(G2) = (V \C)∪{v}
If G1 and G2 are cographs

return (v,G1,G2)

Theorem (2022)
Pseudo-cographs can be recognized in linear time
and a corresponding 0/1-labeled network can be
constructed within the same time complexity.

Scholz & Hellmuth, From Modular Decomposition Trees to Level-1 networks: Pseudo-Cographs, Polar-Cats and Prime
Polar-Cats, Discr. Appl. Math, 2022
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Pseudo-cographs and galled-tree explainable graphs
Basic Properties

• Every cograph is a pseudo-cograph and, in particular, galled-tree explainable.
• G is galled-tree explainable ⇐⇒ G is galled-tree explainable.

[closed under complementation]
• G is galled-tree explainable ⇐⇒ every induced subgraph of G is galled-tree explainable.

[heritable]
• Pseudo-cographs as well as galled-tree explainable graph are weakly-chordal and, thus,

perfect.

=⇒ Many NP-hard problems get easy on such graphs!

This looks like a very interesting, novel graph class !!
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Explicit Modular Decomposition

General Aim:
• Preserve the main feature of the MD-tree,

try to modify only the prime-vertices ”P”
to obtain 0/1-labeled rooted networks to explain graphs

• “unbox” the structure of prime modules

As a first attempt we may ask:
Is there a 0/1-labeled network that can explain EVERY given graph?
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Explicit Modular Decomposition: Half-grids

(1,1)
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(i,j-1)

(i,j)

(j-1,j-1) (j,j-1)

(j-1,j) (j,j)
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(3,2)

x1 x2

x3

xj

xn-1

xn

xn+1

xj+1

Theorem (2021)
Every graph G can be explained by a 0/1-labeled half-grid and thus, by a network obtained from the
MD-tree by locally replacing ”P”-vertices by half-grids = median graphs.

Half-grids are rather “heavy” (O(|V(G)|2) edges and vertices) and of less interest from the structural
point and biological point of view.
=⇒ Can we go simpler?

Bruckmann, Stadler, Hellmuth, From Modular Decomposition Trees to Rooted Median Graphs, Discr. Appl. Math, 2021
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Pseudo-cographs: Characterization

Theorem (2022)
G is a pseudo-cograph ⇐⇒ |V(G)| ≤ 2 or G can be explained by a galled-tree (N, t) that

contains precisely one cycle C such that ρC = ρN and
the (unique) hybrid has precisely one child.

Pseudo-cographs can be recognized in linear time and a corresponding 0/1-labeled network can be
constructed within the same time complexity.

Scholz & Hellmuth, From Modular Decomposition Trees to Level-1 networks: Pseudo-Cographs, Polar-Cats and Prime
Polar-Cats, Discr. Appl. Math, 2022
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Explicit Modular Decomposition

General Aim:

• Preserve the main features of the MD-tree,

try to modify only the prime-vertices ”P”

to obtain 0/1-labeled rooted networks to explain graphs

• “unbox” the structure of prime modules
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Summary: GATEX graphs

• we characterized GATEX graphs (=graphs that can be explained by 0/1 galled trees)
• GATEX graphs are closely related to other famous graph classes
• Several NP-hard problems become easy on GATEX graphs

Open Questions:
• 0/1/. . . /n-labeled networks to explain edge-colored graphs.

t(lcaT(x,y)) = i ⇐⇒ {x,y} ∈ E has color i

• What if we have directed graphs that we want to explain by
labeled networks?

Can we use ordered networks to explain them?

• In the MD-tree (T, t) clusters = modules

In (N, t), the modules of G form a subset of the clusters in (N, t)

=⇒ generalization of modules!
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The general case: GATEX graphs

Galled-tree: = 0/1-labeled rooted network “consisting” of edges and simple cycles

We call such graphs Galled-Tree Explainable (GATEX)

Can we characterize the class of GATEX graphs?

. . . let us start simple . . .
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What if we have directed graphs that we want to explain by
labeled networks?

Can we use ordered networks to explain them?
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